S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93, 133108 (2008).
[Crossref]
T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[Crossref]
[PubMed]
R. Glass, M. Möller, and J. P. Spatz, “Block copolymer micelle nanolithography,” Nanotechnology 14(10), 1153–1160 (2003).
[Crossref]
L. Cao, J. A. Massey, M. A. Winnik, I. Manners, S. Riethmüller, F. Banhart, J. P. Spatz, and M. Möller, “Reactive ion etching of cylindrical polyferrocenylsilane block copolymer micelles: Fabrication of ceramic nanolines on semiconducting substrates,” Adv. Funct. Mater. 13(4), 271–276 (2003).
[Crossref]
K. Asakawa and T. Hiraoka, “Nanopatterning with microdomains of Block Copolymers using reactive-ion etching selectivity,” Jpn. J. Appl. Phys. 41, 6112–6118 (2002).
[Crossref]
Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001).
[Crossref]
J. P. Spatz, S. Mössmer, C. Hartmann, and M. Möller, “Ordered Deposition of Inorganic Clusters from Micellar Block Copolymer Films,” Langmuir 16(2), 407–415 (2000).
[Crossref]
A. R. Parker, “515 million years of structural colors,” J. Opt. A: Pure Appl. Opt. 2, R15–R28 (2000).
[Crossref]
A. Gombert, K. Rose, A. Heinzel, W. Horbelt, Ch. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Solar Energy Materials & Solars Cells 54(1–4), 333–342 (1998).
[Crossref]
[PubMed]
M. Park, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, “Block Copolymer Lithography: Periodic Arrays of 1011 Holes in 1 Square Centimeter,” Science 276(5317), 1401–1404 (1997).
[Crossref]
E. B. Grann, M. G. Moharam, and D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures,” J. Opt. Soc. Am. A 12(2), 333–339 (1995).
[Crossref]
M.G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. 12(5), 1077–1085 (1995).
[Crossref]
R. Bräuer and O. Bryngdahl, “Design of antireflection gratings with approximate and rigorous methods,” Applied Optics 33(34), 7875–7882 (1994).
[Crossref]
[PubMed]
P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the ’moth eye’ principle,” Nature 244, 281–282 (1973).
[Crossref]
M. Park, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, “Block Copolymer Lithography: Periodic Arrays of 1011 Holes in 1 Square Centimeter,” Science 276(5317), 1401–1404 (1997).
[Crossref]
K. Asakawa and T. Hiraoka, “Nanopatterning with microdomains of Block Copolymers using reactive-ion etching selectivity,” Jpn. J. Appl. Phys. 41, 6112–6118 (2002).
[Crossref]
S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93, 133108 (2008).
[Crossref]
L. Cao, J. A. Massey, M. A. Winnik, I. Manners, S. Riethmüller, F. Banhart, J. P. Spatz, and M. Möller, “Reactive ion etching of cylindrical polyferrocenylsilane block copolymer micelles: Fabrication of ceramic nanolines on semiconducting substrates,” Adv. Funct. Mater. 13(4), 271–276 (2003).
[Crossref]
A. Gombert, K. Rose, A. Heinzel, W. Horbelt, Ch. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Solar Energy Materials & Solars Cells 54(1–4), 333–342 (1998).
[Crossref]
[PubMed]
S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93, 133108 (2008).
[Crossref]
R. Bräuer and O. Bryngdahl, “Design of antireflection gratings with approximate and rigorous methods,” Applied Optics 33(34), 7875–7882 (1994).
[Crossref]
[PubMed]
T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[Crossref]
[PubMed]
R. Bräuer and O. Bryngdahl, “Design of antireflection gratings with approximate and rigorous methods,” Applied Optics 33(34), 7875–7882 (1994).
[Crossref]
[PubMed]
L. Cao, J. A. Massey, M. A. Winnik, I. Manners, S. Riethmüller, F. Banhart, J. P. Spatz, and M. Möller, “Reactive ion etching of cylindrical polyferrocenylsilane block copolymer micelles: Fabrication of ceramic nanolines on semiconducting substrates,” Adv. Funct. Mater. 13(4), 271–276 (2003).
[Crossref]
M. Park, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, “Block Copolymer Lithography: Periodic Arrays of 1011 Holes in 1 Square Centimeter,” Science 276(5317), 1401–1404 (1997).
[Crossref]
P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the ’moth eye’ principle,” Nature 244, 281–282 (1973).
[Crossref]
M.G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. 12(5), 1077–1085 (1995).
[Crossref]
R. Glass, M. Möller, and J. P. Spatz, “Block copolymer micelle nanolithography,” Nanotechnology 14(10), 1153–1160 (2003).
[Crossref]
A. Gombert, K. Rose, A. Heinzel, W. Horbelt, Ch. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Solar Energy Materials & Solars Cells 54(1–4), 333–342 (1998).
[Crossref]
[PubMed]
M.G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. 12(5), 1077–1085 (1995).
[Crossref]
E. B. Grann, M. G. Moharam, and D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures,” J. Opt. Soc. Am. A 12(2), 333–339 (1995).
[Crossref]
Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001).
[Crossref]
Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24(20), 1422–1424 (1999).
[Crossref]
M. Park, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, “Block Copolymer Lithography: Periodic Arrays of 1011 Holes in 1 Square Centimeter,” Science 276(5317), 1401–1404 (1997).
[Crossref]
J. P. Spatz, S. Mössmer, C. Hartmann, and M. Möller, “Ordered Deposition of Inorganic Clusters from Micellar Block Copolymer Films,” Langmuir 16(2), 407–415 (2000).
[Crossref]
A. Gombert, K. Rose, A. Heinzel, W. Horbelt, Ch. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Solar Energy Materials & Solars Cells 54(1–4), 333–342 (1998).
[Crossref]
[PubMed]
T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[Crossref]
[PubMed]
K. Asakawa and T. Hiraoka, “Nanopatterning with microdomains of Block Copolymers using reactive-ion etching selectivity,” Jpn. J. Appl. Phys. 41, 6112–6118 (2002).
[Crossref]
A. Gombert, K. Rose, A. Heinzel, W. Horbelt, Ch. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Solar Energy Materials & Solars Cells 54(1–4), 333–342 (1998).
[Crossref]
[PubMed]
P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the ’moth eye’ principle,” Nature 244, 281–282 (1973).
[Crossref]
Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001).
[Crossref]
Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24(20), 1422–1424 (1999).
[Crossref]
T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[Crossref]
[PubMed]
L. Cao, J. A. Massey, M. A. Winnik, I. Manners, S. Riethmüller, F. Banhart, J. P. Spatz, and M. Möller, “Reactive ion etching of cylindrical polyferrocenylsilane block copolymer micelles: Fabrication of ceramic nanolines on semiconducting substrates,” Adv. Funct. Mater. 13(4), 271–276 (2003).
[Crossref]
L. Cao, J. A. Massey, M. A. Winnik, I. Manners, S. Riethmüller, F. Banhart, J. P. Spatz, and M. Möller, “Reactive ion etching of cylindrical polyferrocenylsilane block copolymer micelles: Fabrication of ceramic nanolines on semiconducting substrates,” Adv. Funct. Mater. 13(4), 271–276 (2003).
[Crossref]
M.G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. 12(5), 1077–1085 (1995).
[Crossref]
L. Cao, J. A. Massey, M. A. Winnik, I. Manners, S. Riethmüller, F. Banhart, J. P. Spatz, and M. Möller, “Reactive ion etching of cylindrical polyferrocenylsilane block copolymer micelles: Fabrication of ceramic nanolines on semiconducting substrates,” Adv. Funct. Mater. 13(4), 271–276 (2003).
[Crossref]
R. Glass, M. Möller, and J. P. Spatz, “Block copolymer micelle nanolithography,” Nanotechnology 14(10), 1153–1160 (2003).
[Crossref]
J. P. Spatz, S. Mössmer, C. Hartmann, and M. Möller, “Ordered Deposition of Inorganic Clusters from Micellar Block Copolymer Films,” Langmuir 16(2), 407–415 (2000).
[Crossref]
J. P. Spatz, S. Mössmer, C. Hartmann, and M. Möller, “Ordered Deposition of Inorganic Clusters from Micellar Block Copolymer Films,” Langmuir 16(2), 407–415 (2000).
[Crossref]
M. Park, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, “Block Copolymer Lithography: Periodic Arrays of 1011 Holes in 1 Square Centimeter,” Science 276(5317), 1401–1404 (1997).
[Crossref]
A. R. Parker, “515 million years of structural colors,” J. Opt. A: Pure Appl. Opt. 2, R15–R28 (2000).
[Crossref]
M.G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. 12(5), 1077–1085 (1995).
[Crossref]
E. B. Grann, M. G. Moharam, and D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures,” J. Opt. Soc. Am. A 12(2), 333–339 (1995).
[Crossref]
M. Park, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, “Block Copolymer Lithography: Periodic Arrays of 1011 Holes in 1 Square Centimeter,” Science 276(5317), 1401–1404 (1997).
[Crossref]
L. Cao, J. A. Massey, M. A. Winnik, I. Manners, S. Riethmüller, F. Banhart, J. P. Spatz, and M. Möller, “Reactive ion etching of cylindrical polyferrocenylsilane block copolymer micelles: Fabrication of ceramic nanolines on semiconducting substrates,” Adv. Funct. Mater. 13(4), 271–276 (2003).
[Crossref]
A. Gombert, K. Rose, A. Heinzel, W. Horbelt, Ch. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Solar Energy Materials & Solars Cells 54(1–4), 333–342 (1998).
[Crossref]
[PubMed]
Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001).
[Crossref]
T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[Crossref]
[PubMed]
L. Cao, J. A. Massey, M. A. Winnik, I. Manners, S. Riethmüller, F. Banhart, J. P. Spatz, and M. Möller, “Reactive ion etching of cylindrical polyferrocenylsilane block copolymer micelles: Fabrication of ceramic nanolines on semiconducting substrates,” Adv. Funct. Mater. 13(4), 271–276 (2003).
[Crossref]
R. Glass, M. Möller, and J. P. Spatz, “Block copolymer micelle nanolithography,” Nanotechnology 14(10), 1153–1160 (2003).
[Crossref]
J. P. Spatz, S. Mössmer, C. Hartmann, and M. Möller, “Ordered Deposition of Inorganic Clusters from Micellar Block Copolymer Films,” Langmuir 16(2), 407–415 (2000).
[Crossref]
T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[Crossref]
[PubMed]
L. Cao, J. A. Massey, M. A. Winnik, I. Manners, S. Riethmüller, F. Banhart, J. P. Spatz, and M. Möller, “Reactive ion etching of cylindrical polyferrocenylsilane block copolymer micelles: Fabrication of ceramic nanolines on semiconducting substrates,” Adv. Funct. Mater. 13(4), 271–276 (2003).
[Crossref]
A. Gombert, K. Rose, A. Heinzel, W. Horbelt, Ch. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Solar Energy Materials & Solars Cells 54(1–4), 333–342 (1998).
[Crossref]
[PubMed]
Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001).
[Crossref]
A. Gombert, K. Rose, A. Heinzel, W. Horbelt, Ch. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Solar Energy Materials & Solars Cells 54(1–4), 333–342 (1998).
[Crossref]
[PubMed]
L. Cao, J. A. Massey, M. A. Winnik, I. Manners, S. Riethmüller, F. Banhart, J. P. Spatz, and M. Möller, “Reactive ion etching of cylindrical polyferrocenylsilane block copolymer micelles: Fabrication of ceramic nanolines on semiconducting substrates,” Adv. Funct. Mater. 13(4), 271–276 (2003).
[Crossref]
Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001).
[Crossref]
S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93, 133108 (2008).
[Crossref]
R. Bräuer and O. Bryngdahl, “Design of antireflection gratings with approximate and rigorous methods,” Applied Optics 33(34), 7875–7882 (1994).
[Crossref]
[PubMed]
A. R. Parker, “515 million years of structural colors,” J. Opt. A: Pure Appl. Opt. 2, R15–R28 (2000).
[Crossref]
M.G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. 12(5), 1077–1085 (1995).
[Crossref]
K. Asakawa and T. Hiraoka, “Nanopatterning with microdomains of Block Copolymers using reactive-ion etching selectivity,” Jpn. J. Appl. Phys. 41, 6112–6118 (2002).
[Crossref]
J. P. Spatz, S. Mössmer, C. Hartmann, and M. Möller, “Ordered Deposition of Inorganic Clusters from Micellar Block Copolymer Films,” Langmuir 16(2), 407–415 (2000).
[Crossref]
T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[Crossref]
[PubMed]
R. Glass, M. Möller, and J. P. Spatz, “Block copolymer micelle nanolithography,” Nanotechnology 14(10), 1153–1160 (2003).
[Crossref]
P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the ’moth eye’ principle,” Nature 244, 281–282 (1973).
[Crossref]
M. Park, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, “Block Copolymer Lithography: Periodic Arrays of 1011 Holes in 1 Square Centimeter,” Science 276(5317), 1401–1404 (1997).
[Crossref]
A. Gombert, K. Rose, A. Heinzel, W. Horbelt, Ch. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Solar Energy Materials & Solars Cells 54(1–4), 333–342 (1998).
[Crossref]
[PubMed]
K. Hehl, “Unigit - versatile rigorous grating solver,” Jena, Germany, web site: http://www.unigit.com/ .