W. Liu, D. B. Mitzi, M. Yuan, A. J. Kellock, S. J. Chey, and O. Gunawan, “12% Efficiency CuIn(Se,S)2 Photovoltaic Device Prepared Using a Hydrazine Solution Process,” Chem. Mater. 22, 1010–1014 (2010).
[Crossref]
H. Chen, S. M. Yu, D. W. Shin, and J. B. Yoo, “Solvothermal Synthesis and Characterization of Chalcopyrite CuInSe2 Nanoparticles,” Nanoscale Res. Lett. 5, 217–233 (2010).
[Crossref]
G. Sun, F. Chang, and R. A. Soref, “High efficiency thin-film crystalline Si/Ge tandem solar cell,” Opt. Express 18(4), 3746–3753 (2010).
[Crossref]
[PubMed]
C. Domínguez, I. Antón, and G. Sala, “Solar simulator for concentrator photovoltaic systems,” Opt. Express 16(19), 14894–14901 (2008).
[Crossref]
[PubMed]
C. H. Tsuei, J. W. Pen, and W. S. Sun, “Simulating the illuminance and the efficiency of the LED and fluorescent lights used in indoor lighting design,” Opt. Express 16(23), 18692–18701 (2008).
[Crossref]
J. Mohelnikova, “Evaluation of Indoor Illuminance from Light Guides,” J. Light Visual Environ. 32, 20–26 (2008).
[Crossref]
M. Hernández, A. Cvetkovic, P. Benítez, and J. C. Miñano, ““High-performance Köhler concentrators with uniform irradiance on solar cell”, Invited paper Nonimaging Optics and Efficient Illumination Systems V,” Proc. SPIE 7059, 705908 (2008).
I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient znO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
[Crossref]
R. Devonshire, “The Competitive Technology Environment for LED Lighting,” J. Light Visual Environ. 32, 275–287 (2008).
[Crossref]
N. Zheludev, “The life and times of the LED- a 100-year history,” Nat. Photonics 1, 189–192 (2007).
[Crossref]
H. Ries, J. Gordon, and M. Lasken, “High-flux photovoltaic solar concentrators with kaleidoscope-based optical designs,” Sol. Energy 60, 11–16 (1997).
[Crossref]
M. Hernández, A. Cvetkovic, P. Benítez, and J. C. Miñano, ““High-performance Köhler concentrators with uniform irradiance on solar cell”, Invited paper Nonimaging Optics and Efficient Illumination Systems V,” Proc. SPIE 7059, 705908 (2008).
H. Chen, S. M. Yu, D. W. Shin, and J. B. Yoo, “Solvothermal Synthesis and Characterization of Chalcopyrite CuInSe2 Nanoparticles,” Nanoscale Res. Lett. 5, 217–233 (2010).
[Crossref]
W. Liu, D. B. Mitzi, M. Yuan, A. J. Kellock, S. J. Chey, and O. Gunawan, “12% Efficiency CuIn(Se,S)2 Photovoltaic Device Prepared Using a Hydrazine Solution Process,” Chem. Mater. 22, 1010–1014 (2010).
[Crossref]
I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient znO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
[Crossref]
M. Hernández, A. Cvetkovic, P. Benítez, and J. C. Miñano, ““High-performance Köhler concentrators with uniform irradiance on solar cell”, Invited paper Nonimaging Optics and Efficient Illumination Systems V,” Proc. SPIE 7059, 705908 (2008).
I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient znO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
[Crossref]
R. Devonshire, “The Competitive Technology Environment for LED Lighting,” J. Light Visual Environ. 32, 275–287 (2008).
[Crossref]
I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient znO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
[Crossref]
H. Ries, J. Gordon, and M. Lasken, “High-flux photovoltaic solar concentrators with kaleidoscope-based optical designs,” Sol. Energy 60, 11–16 (1997).
[Crossref]
W. Liu, D. B. Mitzi, M. Yuan, A. J. Kellock, S. J. Chey, and O. Gunawan, “12% Efficiency CuIn(Se,S)2 Photovoltaic Device Prepared Using a Hydrazine Solution Process,” Chem. Mater. 22, 1010–1014 (2010).
[Crossref]
M. Hernández, A. Cvetkovic, P. Benítez, and J. C. Miñano, ““High-performance Köhler concentrators with uniform irradiance on solar cell”, Invited paper Nonimaging Optics and Efficient Illumination Systems V,” Proc. SPIE 7059, 705908 (2008).
W. Liu, D. B. Mitzi, M. Yuan, A. J. Kellock, S. J. Chey, and O. Gunawan, “12% Efficiency CuIn(Se,S)2 Photovoltaic Device Prepared Using a Hydrazine Solution Process,” Chem. Mater. 22, 1010–1014 (2010).
[Crossref]
H. Ries, J. Gordon, and M. Lasken, “High-flux photovoltaic solar concentrators with kaleidoscope-based optical designs,” Sol. Energy 60, 11–16 (1997).
[Crossref]
W. Liu, D. B. Mitzi, M. Yuan, A. J. Kellock, S. J. Chey, and O. Gunawan, “12% Efficiency CuIn(Se,S)2 Photovoltaic Device Prepared Using a Hydrazine Solution Process,” Chem. Mater. 22, 1010–1014 (2010).
[Crossref]
M. Hernández, A. Cvetkovic, P. Benítez, and J. C. Miñano, ““High-performance Köhler concentrators with uniform irradiance on solar cell”, Invited paper Nonimaging Optics and Efficient Illumination Systems V,” Proc. SPIE 7059, 705908 (2008).
W. Liu, D. B. Mitzi, M. Yuan, A. J. Kellock, S. J. Chey, and O. Gunawan, “12% Efficiency CuIn(Se,S)2 Photovoltaic Device Prepared Using a Hydrazine Solution Process,” Chem. Mater. 22, 1010–1014 (2010).
[Crossref]
J. Mohelnikova, “Evaluation of Indoor Illuminance from Light Guides,” J. Light Visual Environ. 32, 20–26 (2008).
[Crossref]
I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient znO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
[Crossref]
I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient znO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
[Crossref]
I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient znO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
[Crossref]
H. Ries, J. Gordon, and M. Lasken, “High-flux photovoltaic solar concentrators with kaleidoscope-based optical designs,” Sol. Energy 60, 11–16 (1997).
[Crossref]
I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient znO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
[Crossref]
H. Chen, S. M. Yu, D. W. Shin, and J. B. Yoo, “Solvothermal Synthesis and Characterization of Chalcopyrite CuInSe2 Nanoparticles,” Nanoscale Res. Lett. 5, 217–233 (2010).
[Crossref]
I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient znO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
[Crossref]
H. Chen, S. M. Yu, D. W. Shin, and J. B. Yoo, “Solvothermal Synthesis and Characterization of Chalcopyrite CuInSe2 Nanoparticles,” Nanoscale Res. Lett. 5, 217–233 (2010).
[Crossref]
H. Chen, S. M. Yu, D. W. Shin, and J. B. Yoo, “Solvothermal Synthesis and Characterization of Chalcopyrite CuInSe2 Nanoparticles,” Nanoscale Res. Lett. 5, 217–233 (2010).
[Crossref]
W. Liu, D. B. Mitzi, M. Yuan, A. J. Kellock, S. J. Chey, and O. Gunawan, “12% Efficiency CuIn(Se,S)2 Photovoltaic Device Prepared Using a Hydrazine Solution Process,” Chem. Mater. 22, 1010–1014 (2010).
[Crossref]
N. Zheludev, “The life and times of the LED- a 100-year history,” Nat. Photonics 1, 189–192 (2007).
[Crossref]
W. Liu, D. B. Mitzi, M. Yuan, A. J. Kellock, S. J. Chey, and O. Gunawan, “12% Efficiency CuIn(Se,S)2 Photovoltaic Device Prepared Using a Hydrazine Solution Process,” Chem. Mater. 22, 1010–1014 (2010).
[Crossref]
R. Devonshire, “The Competitive Technology Environment for LED Lighting,” J. Light Visual Environ. 32, 275–287 (2008).
[Crossref]
J. Mohelnikova, “Evaluation of Indoor Illuminance from Light Guides,” J. Light Visual Environ. 32, 20–26 (2008).
[Crossref]
H. Chen, S. M. Yu, D. W. Shin, and J. B. Yoo, “Solvothermal Synthesis and Characterization of Chalcopyrite CuInSe2 Nanoparticles,” Nanoscale Res. Lett. 5, 217–233 (2010).
[Crossref]
N. Zheludev, “The life and times of the LED- a 100-year history,” Nat. Photonics 1, 189–192 (2007).
[Crossref]
C. Domínguez, I. Antón, and G. Sala, “Solar simulator for concentrator photovoltaic systems,” Opt. Express 16(19), 14894–14901 (2008).
[Crossref]
[PubMed]
C. H. Tsuei, J. W. Pen, and W. S. Sun, “Simulating the illuminance and the efficiency of the LED and fluorescent lights used in indoor lighting design,” Opt. Express 16(23), 18692–18701 (2008).
[Crossref]
G. Sun, F. Chang, and R. A. Soref, “High efficiency thin-film crystalline Si/Ge tandem solar cell,” Opt. Express 18(4), 3746–3753 (2010).
[Crossref]
[PubMed]
M. Hernández, A. Cvetkovic, P. Benítez, and J. C. Miñano, ““High-performance Köhler concentrators with uniform irradiance on solar cell”, Invited paper Nonimaging Optics and Efficient Illumination Systems V,” Proc. SPIE 7059, 705908 (2008).
I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient znO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
[Crossref]
H. Ries, J. Gordon, and M. Lasken, “High-flux photovoltaic solar concentrators with kaleidoscope-based optical designs,” Sol. Energy 60, 11–16 (1997).
[Crossref]
D. Malacara, Optical Shop Testing 2ndEdition, (Wiley, 1992).
Nichia, “NS6w183T Datasheet,” http://www.nichia.com/specification/led_09/NS6W183T-H3-E.pdf
V. N. Mahajan, Optical Imaging And Aberrations - Part 1 Ray Geometrical Optics, (SPIE press,1998).
Illumination Engineering Society of North America, “Glare,” in IESNA Lighting Handbook 9thEdition, (IESNA, 2000), pp. 128–131.