S. Gupta, M. Nair, A. Pradhan, N. Biswal, N. Agarwal, A. Agarwal, and P. Panigrahi, “Wavelet-based characterization of spectral fluctuations in normal, benign, and cancerous human breast tissues,” J. Biomed. Opt. 10, 054012 (2005).
[Crossref]
[PubMed]
S. Gupta, M. Nair, A. Pradhan, N. Biswal, N. Agarwal, A. Agarwal, and P. Panigrahi, “Wavelet-based characterization of spectral fluctuations in normal, benign, and cancerous human breast tissues,” J. Biomed. Opt. 10, 054012 (2005).
[Crossref]
[PubMed]
N. Agarwal, S. Gupta, A. Pradhan, K. Vishwanathan, and P. Panigrahi, “Wavelet transform of breast tissue fluorescence spectra: a technique for diagnosis of tumors,” IEEE J. Sel. Top. Quantum Electron. 9, 154–161 (2003).
[Crossref]
R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[Crossref]
A. H. Gharekhan, S. Arora, A. N. Oza, M. B. Sureshkumar, A. Pradhan, and P. K. Panigrahi, “Distinguishing autofluorescence of normal, benign, and cancerous breast tissues through wavelet domain correlation studies,” J. Biomed. Opt. 16, 087003 (2011).
[Crossref]
[PubMed]
A. Gharekhan, S. Arora, P. Panigrahi, and A. Pradhan, “Distinguishing cancer and normal breast tissue autofluorescence using continuous wavelet transform,” IEEE J. Sel. Top. Quantum Electron. 16, 893–899 (2010).
[Crossref]
A. Gharekhan, S. Arora, K. Mayya, P. Panigrahi, M. Sureshkumar, and A. Pradhan, “Characterizing breast cancer tissues through the spectral correlation properties of polarized fluorescence,” J. Biomed. Opt. 13, 054063 (2008).
[Crossref]
[PubMed]
J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[Crossref]
[PubMed]
N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12, 285–314 (2010).
[Crossref]
[PubMed]
İ. R. Çapoğlu, J. D. Rogers, A. Taflove, and V. Backman, “Accuracy of the Born approximation in calculating the scattering coefficient of biological continuous random media,” Opt. Lett. 34, 2679–2681 (2009).
[Crossref]
[PubMed]
M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[Crossref]
[PubMed]
R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[Crossref]
[PubMed]
L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[Crossref]
M. Kalashnikov, W. Choi, C.-C. Yu, Y. Sung, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Assessing light scattering of intracellular organelles in single intact living cells,” Opt. Express 17, 19674–19681 (2009).
[Crossref]
[PubMed]
C.-C. Yu, C. Lau, G. O’Donoghue, J. Mirkovic, S. McGee, L. Galindo, A. Elackattu, E. Stier, G. Grillone, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative spectroscopic imaging for non-invasive early cancer detection,” Opt. Express 16, 16227–16239 (2008).
[Crossref]
[PubMed]
W. Choi, C.-C. Yu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Field-based angle-resolved light-scattering study of single live cells,” Opt. Lett. 33, 1596–1598 (2008).
[Crossref]
[PubMed]
W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]
[PubMed]
M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[Crossref]
[PubMed]
R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[Crossref]
[PubMed]
J. D. Bancroft and M. Gamble, Theory and Practice of Histopathological Techniques, 5th ed. (Churchill Livingstone, 2002).
N. Ghosh, A. Banerjee, and J. Soni, “Turbid medium polarimetry in biomedical imaging and diagnosis,” Eur. Phys. J. Appl. Phys. 54, 30001 (2011).
[Crossref]
S. Gupta, M. Nair, A. Pradhan, N. Biswal, N. Agarwal, A. Agarwal, and P. Panigrahi, “Wavelet-based characterization of spectral fluctuations in normal, benign, and cancerous human breast tissues,” J. Biomed. Opt. 10, 054012 (2005).
[Crossref]
[PubMed]
N. Biswal, S. Gupta, N. Ghosh, and A. Pradhan, “Recovery of turbidity free fluorescence from measured fluorescence: an experimental approach,” Opt. Express 11, 3320–3331 (2003).
[Crossref]
[PubMed]
R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[Crossref]
[PubMed]
M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[Crossref]
[PubMed]
A. Wax, C. Yang, M. G. Mller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).
[PubMed]
N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12, 285–314 (2010).
[Crossref]
[PubMed]
N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12, 285–314 (2010).
[Crossref]
[PubMed]
N. Ghosh, P. Buddhiwant, A. Uppal, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Simultaneous determination of size and refractive index of red blood cells by light scattering measurements,” Appl. Phys. Lett. 88, 084101 (2006).
[Crossref]
J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. E. Stanley, “Multifractal detrended fluctuation analysis of nonstationary time series,” Physica A 316, 87–114 (2002).
[Crossref]
M. Kalashnikov, W. Choi, C.-C. Yu, Y. Sung, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Assessing light scattering of intracellular organelles in single intact living cells,” Opt. Express 17, 19674–19681 (2009).
[Crossref]
[PubMed]
W. Choi, C.-C. Yu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Field-based angle-resolved light-scattering study of single live cells,” Opt. Lett. 33, 1596–1598 (2008).
[Crossref]
[PubMed]
W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]
[PubMed]
R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[Crossref]
R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[Crossref]
[PubMed]
C. Torrence and G. Compo, “A practical guide to wavelet analysis,” Bull. Am. Meteorol. Soc. 79, 61–78 (1998).
[Crossref]
L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[Crossref]
A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. (USA) 102, 12371–12376 (2005).
[Crossref]
M. Kalashnikov, W. Choi, C.-C. Yu, Y. Sung, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Assessing light scattering of intracellular organelles in single intact living cells,” Opt. Express 17, 19674–19681 (2009).
[Crossref]
[PubMed]
C.-C. Yu, C. Lau, G. O’Donoghue, J. Mirkovic, S. McGee, L. Galindo, A. Elackattu, E. Stier, G. Grillone, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative spectroscopic imaging for non-invasive early cancer detection,” Opt. Express 16, 16227–16239 (2008).
[Crossref]
[PubMed]
W. Choi, C.-C. Yu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Field-based angle-resolved light-scattering study of single live cells,” Opt. Lett. 33, 1596–1598 (2008).
[Crossref]
[PubMed]
W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]
[PubMed]
A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. (USA) 102, 12371–12376 (2005).
[Crossref]
A. Wax, C. Yang, M. G. Mller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).
[PubMed]
R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[Crossref]
[PubMed]
I. Daubechies, Ten Lectures on Wavelets, 1st ed., CBMS-NSF Regional Conference Series in Applied Mathematics (SIAM: Society for Industrial and Applied Mathematics, 1992).
[Crossref]
J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[Crossref]
[PubMed]
R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[Crossref]
[PubMed]
A. Eke, P. Herman, L. Kocsis, and L. R. Kozak, “Fractal characterization of complexity in temporal physiological signals,” Physiol. Meas. 23, R1–R38 (2002).
[Crossref]
[PubMed]
C.-C. Yu, C. Lau, G. O’Donoghue, J. Mirkovic, S. McGee, L. Galindo, A. Elackattu, E. Stier, G. Grillone, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative spectroscopic imaging for non-invasive early cancer detection,” Opt. Express 16, 16227–16239 (2008).
[Crossref]
[PubMed]
W. Choi, C.-C. Yu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Field-based angle-resolved light-scattering study of single live cells,” Opt. Lett. 33, 1596–1598 (2008).
[Crossref]
[PubMed]
W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]
[PubMed]
M. Farge, “Wavelet transforms and their applications to turbulence,” Annu. Rev. Fluid Mech. 24, 395–458 (1992).
[Crossref]
M. Kalashnikov, W. Choi, C.-C. Yu, Y. Sung, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Assessing light scattering of intracellular organelles in single intact living cells,” Opt. Express 17, 19674–19681 (2009).
[Crossref]
[PubMed]
C.-C. Yu, C. Lau, G. O’Donoghue, J. Mirkovic, S. McGee, L. Galindo, A. Elackattu, E. Stier, G. Grillone, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative spectroscopic imaging for non-invasive early cancer detection,” Opt. Express 16, 16227–16239 (2008).
[Crossref]
[PubMed]
W. Choi, C.-C. Yu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Field-based angle-resolved light-scattering study of single live cells,” Opt. Lett. 33, 1596–1598 (2008).
[Crossref]
[PubMed]
W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]
[PubMed]
M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[Crossref]
[PubMed]
A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. (USA) 102, 12371–12376 (2005).
[Crossref]
A. Wax, C. Yang, M. G. Mller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).
[PubMed]
R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[Crossref]
[PubMed]
L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[Crossref]
A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. (USA) 102, 12371–12376 (2005).
[Crossref]
R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[Crossref]
[PubMed]
J. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367 (2003).
[Crossref]
[PubMed]
C.-C. Yu, C. Lau, G. O’Donoghue, J. Mirkovic, S. McGee, L. Galindo, A. Elackattu, E. Stier, G. Grillone, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative spectroscopic imaging for non-invasive early cancer detection,” Opt. Express 16, 16227–16239 (2008).
[Crossref]
[PubMed]
J. D. Bancroft and M. Gamble, Theory and Practice of Histopathological Techniques, 5th ed. (Churchill Livingstone, 2002).
W. Gao, “Square law between spatial frequency of spatial correlation function of scattering potential of tissue and spectrum of scattered light,” J. Biomed. Opt. 15, 030502 (2010).
[Crossref]
[PubMed]
R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[Crossref]
[PubMed]
A. Gharekhan, S. Arora, P. Panigrahi, and A. Pradhan, “Distinguishing cancer and normal breast tissue autofluorescence using continuous wavelet transform,” IEEE J. Sel. Top. Quantum Electron. 16, 893–899 (2010).
[Crossref]
A. Gharekhan, S. Arora, K. Mayya, P. Panigrahi, M. Sureshkumar, and A. Pradhan, “Characterizing breast cancer tissues through the spectral correlation properties of polarized fluorescence,” J. Biomed. Opt. 13, 054063 (2008).
[Crossref]
[PubMed]
A. H. Gharekhan, S. Arora, A. N. Oza, M. B. Sureshkumar, A. Pradhan, and P. K. Panigrahi, “Distinguishing autofluorescence of normal, benign, and cancerous breast tissues through wavelet domain correlation studies,” J. Biomed. Opt. 16, 087003 (2011).
[Crossref]
[PubMed]
N. Ghosh, A. Banerjee, and J. Soni, “Turbid medium polarimetry in biomedical imaging and diagnosis,” Eur. Phys. J. Appl. Phys. 54, 30001 (2011).
[Crossref]
N. Ghosh, P. Buddhiwant, A. Uppal, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Simultaneous determination of size and refractive index of red blood cells by light scattering measurements,” Appl. Phys. Lett. 88, 084101 (2006).
[Crossref]
N. Ghosh, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Depth-resolved fluorescence measurement in a layered turbid mediumby polarized fluorescence spectroscopy,” Opt. Lett. 30, 162–164 (2005).
[Crossref]
[PubMed]
N. Biswal, S. Gupta, N. Ghosh, and A. Pradhan, “Recovery of turbidity free fluorescence from measured fluorescence: an experimental approach,” Opt. Express 11, 3320–3331 (2003).
[Crossref]
[PubMed]
N. Ghosh, S. K. Majumder, and P. K. Gupta, “Polarized fluorescence spectroscopy of human tissues,” Opt. Lett. 27, 2007–2009 (2002).
[Crossref]
N. Ghosh, S. K. Mohanty, S. K. Majumder, and P. K. Gupta, “Measurement of optical transport properties of normal and malignant human breast tissue,” Appl. Opt. 40, 176–184 (2001).
[Crossref]
N. Ghosh, M. Wood, and A. Vitkin, “Polarized light assessment of complex turbid media such as biological tissues using mueller matrix decomposition,” in Handbook of Photonics for Biomedical Science, V. V. Tuchin, ed. (CRC Press, 2010), Medical Physics and Biomedical Engineering, pp. 253–282.
[Crossref]
S. Ghosh, P. Manimaran, and P. K. Panigrahi, “Characterizing multi-scale self-similar behavior and non-statistical properties of financial time series,” Physica A 390, 4304–4316 (2011).
[Crossref]
M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[Crossref]
[PubMed]
C.-C. Yu, C. Lau, G. O’Donoghue, J. Mirkovic, S. McGee, L. Galindo, A. Elackattu, E. Stier, G. Grillone, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative spectroscopic imaging for non-invasive early cancer detection,” Opt. Express 16, 16227–16239 (2008).
[Crossref]
[PubMed]
R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[Crossref]
[PubMed]
N. Ghosh, P. Buddhiwant, A. Uppal, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Simultaneous determination of size and refractive index of red blood cells by light scattering measurements,” Appl. Phys. Lett. 88, 084101 (2006).
[Crossref]
N. Ghosh, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Depth-resolved fluorescence measurement in a layered turbid mediumby polarized fluorescence spectroscopy,” Opt. Lett. 30, 162–164 (2005).
[Crossref]
[PubMed]
N. Ghosh, S. K. Majumder, and P. K. Gupta, “Polarized fluorescence spectroscopy of human tissues,” Opt. Lett. 27, 2007–2009 (2002).
[Crossref]
N. Ghosh, S. K. Mohanty, S. K. Majumder, and P. K. Gupta, “Measurement of optical transport properties of normal and malignant human breast tissue,” Appl. Opt. 40, 176–184 (2001).
[Crossref]
S. Gupta, M. Nair, A. Pradhan, N. Biswal, N. Agarwal, A. Agarwal, and P. Panigrahi, “Wavelet-based characterization of spectral fluctuations in normal, benign, and cancerous human breast tissues,” J. Biomed. Opt. 10, 054012 (2005).
[Crossref]
[PubMed]
N. Agarwal, S. Gupta, A. Pradhan, K. Vishwanathan, and P. Panigrahi, “Wavelet transform of breast tissue fluorescence spectra: a technique for diagnosis of tumors,” IEEE J. Sel. Top. Quantum Electron. 9, 154–161 (2003).
[Crossref]
N. Biswal, S. Gupta, N. Ghosh, and A. Pradhan, “Recovery of turbidity free fluorescence from measured fluorescence: an experimental approach,” Opt. Express 11, 3320–3331 (2003).
[Crossref]
[PubMed]
R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[Crossref]
[PubMed]
A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. (USA) 102, 12371–12376 (2005).
[Crossref]
L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[Crossref]
J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. E. Stanley, “Multifractal detrended fluctuation analysis of nonstationary time series,” Physica A 316, 87–114 (2002).
[Crossref]
J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[Crossref]
[PubMed]
A. Eke, P. Herman, L. Kocsis, and L. R. Kozak, “Fractal characterization of complexity in temporal physiological signals,” Physiol. Meas. 23, R1–R38 (2002).
[Crossref]
[PubMed]
M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[Crossref]
[PubMed]
H. Hurst, “Long-term storage capacity of reservoirs,” Trans. Am. Soc. Civ. Eng. 116, 770–808 (1951).
R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[Crossref]
[PubMed]
L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[Crossref]
S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[Crossref]
[PubMed]
M. Kalashnikov, W. Choi, C.-C. Yu, Y. Sung, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Assessing light scattering of intracellular organelles in single intact living cells,” Opt. Express 17, 19674–19681 (2009).
[Crossref]
[PubMed]
M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[Crossref]
[PubMed]
J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. E. Stanley, “Multifractal detrended fluctuation analysis of nonstationary time series,” Physica A 316, 87–114 (2002).
[Crossref]
Y. L. Kim, V. M. Turzhitsky, Y. Liu, H. Subramanian, and P. Pradhan, “Low-coherence enhanced backscattering: review of principles and applications for colon cancer screening,” J. Biomed. Opt. 11, 041125 (2006).
[Crossref]
[PubMed]
A. Eke, P. Herman, L. Kocsis, and L. R. Kozak, “Fractal characterization of complexity in temporal physiological signals,” Physiol. Meas. 23, R1–R38 (2002).
[Crossref]
[PubMed]
J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. E. Stanley, “Multifractal detrended fluctuation analysis of nonstationary time series,” Physica A 316, 87–114 (2002).
[Crossref]
A. Eke, P. Herman, L. Kocsis, and L. R. Kozak, “Fractal characterization of complexity in temporal physiological signals,” Physiol. Meas. 23, R1–R38 (2002).
[Crossref]
[PubMed]
R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[Crossref]
C.-C. Yu, C. Lau, G. O’Donoghue, J. Mirkovic, S. McGee, L. Galindo, A. Elackattu, E. Stier, G. Grillone, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative spectroscopic imaging for non-invasive early cancer detection,” Opt. Express 16, 16227–16239 (2008).
[Crossref]
[PubMed]
S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[Crossref]
[PubMed]
L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[Crossref]
Y. L. Kim, V. M. Turzhitsky, Y. Liu, H. Subramanian, and P. Pradhan, “Low-coherence enhanced backscattering: review of principles and applications for colon cancer screening,” J. Biomed. Opt. 11, 041125 (2006).
[Crossref]
[PubMed]
W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]
[PubMed]
R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[Crossref]
[PubMed]
N. Ghosh, P. Buddhiwant, A. Uppal, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Simultaneous determination of size and refractive index of red blood cells by light scattering measurements,” Appl. Phys. Lett. 88, 084101 (2006).
[Crossref]
N. Ghosh, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Depth-resolved fluorescence measurement in a layered turbid mediumby polarized fluorescence spectroscopy,” Opt. Lett. 30, 162–164 (2005).
[Crossref]
[PubMed]
N. Ghosh, S. K. Majumder, and P. K. Gupta, “Polarized fluorescence spectroscopy of human tissues,” Opt. Lett. 27, 2007–2009 (2002).
[Crossref]
N. Ghosh, S. K. Mohanty, S. K. Majumder, and P. K. Gupta, “Measurement of optical transport properties of normal and malignant human breast tissue,” Appl. Opt. 40, 176–184 (2001).
[Crossref]
S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell.11, 674–693 (1989).
[Crossref]
R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[Crossref]
[PubMed]
B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman, 1982).
S. Ghosh, P. Manimaran, and P. K. Panigrahi, “Characterizing multi-scale self-similar behavior and non-statistical properties of financial time series,” Physica A 390, 4304–4316 (2011).
[Crossref]
P. Manimaran, P. Panigrahi, and J. Parikh, “Multiresolution analysis of fluctuations in non-stationary time series through discrete wavelets,” Physica A 388, 2306–2314 (2009).
[Crossref]
P. Manimaran, P. K. Panigrahi, and J. C. Parikh, “Wavelet analysis and scaling properties of time series,” Phys. Rev. E 72, 046120 (2005).
[Crossref]
L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[Crossref]
A. Gharekhan, S. Arora, K. Mayya, P. Panigrahi, M. Sureshkumar, and A. Pradhan, “Characterizing breast cancer tissues through the spectral correlation properties of polarized fluorescence,” J. Biomed. Opt. 13, 054063 (2008).
[Crossref]
[PubMed]
C.-C. Yu, C. Lau, G. O’Donoghue, J. Mirkovic, S. McGee, L. Galindo, A. Elackattu, E. Stier, G. Grillone, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative spectroscopic imaging for non-invasive early cancer detection,” Opt. Express 16, 16227–16239 (2008).
[Crossref]
[PubMed]
H. E. Stanley and P. Meakin, “Multifractal phenomena in physics and chemistry,” Nature 335, 405–409 (1988).
[Crossref]
C.-C. Yu, C. Lau, G. O’Donoghue, J. Mirkovic, S. McGee, L. Galindo, A. Elackattu, E. Stier, G. Grillone, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative spectroscopic imaging for non-invasive early cancer detection,” Opt. Express 16, 16227–16239 (2008).
[Crossref]
[PubMed]
A. Wax, C. Yang, M. G. Mller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).
[PubMed]
S. Gupta, M. Nair, A. Pradhan, N. Biswal, N. Agarwal, A. Agarwal, and P. Panigrahi, “Wavelet-based characterization of spectral fluctuations in normal, benign, and cancerous human breast tissues,” J. Biomed. Opt. 10, 054012 (2005).
[Crossref]
[PubMed]
A. Wax, C. Yang, M. G. Mller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).
[PubMed]
L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[Crossref]
C.-C. Yu, C. Lau, G. O’Donoghue, J. Mirkovic, S. McGee, L. Galindo, A. Elackattu, E. Stier, G. Grillone, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative spectroscopic imaging for non-invasive early cancer detection,” Opt. Express 16, 16227–16239 (2008).
[Crossref]
[PubMed]
W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]
[PubMed]
R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[Crossref]
A. H. Gharekhan, S. Arora, A. N. Oza, M. B. Sureshkumar, A. Pradhan, and P. K. Panigrahi, “Distinguishing autofluorescence of normal, benign, and cancerous breast tissues through wavelet domain correlation studies,” J. Biomed. Opt. 16, 087003 (2011).
[Crossref]
[PubMed]
A. Gharekhan, S. Arora, P. Panigrahi, and A. Pradhan, “Distinguishing cancer and normal breast tissue autofluorescence using continuous wavelet transform,” IEEE J. Sel. Top. Quantum Electron. 16, 893–899 (2010).
[Crossref]
P. Manimaran, P. Panigrahi, and J. Parikh, “Multiresolution analysis of fluctuations in non-stationary time series through discrete wavelets,” Physica A 388, 2306–2314 (2009).
[Crossref]
A. Gharekhan, S. Arora, K. Mayya, P. Panigrahi, M. Sureshkumar, and A. Pradhan, “Characterizing breast cancer tissues through the spectral correlation properties of polarized fluorescence,” J. Biomed. Opt. 13, 054063 (2008).
[Crossref]
[PubMed]
S. Gupta, M. Nair, A. Pradhan, N. Biswal, N. Agarwal, A. Agarwal, and P. Panigrahi, “Wavelet-based characterization of spectral fluctuations in normal, benign, and cancerous human breast tissues,” J. Biomed. Opt. 10, 054012 (2005).
[Crossref]
[PubMed]
N. Agarwal, S. Gupta, A. Pradhan, K. Vishwanathan, and P. Panigrahi, “Wavelet transform of breast tissue fluorescence spectra: a technique for diagnosis of tumors,” IEEE J. Sel. Top. Quantum Electron. 9, 154–161 (2003).
[Crossref]
A. H. Gharekhan, S. Arora, A. N. Oza, M. B. Sureshkumar, A. Pradhan, and P. K. Panigrahi, “Distinguishing autofluorescence of normal, benign, and cancerous breast tissues through wavelet domain correlation studies,” J. Biomed. Opt. 16, 087003 (2011).
[Crossref]
[PubMed]
S. Ghosh, P. Manimaran, and P. K. Panigrahi, “Characterizing multi-scale self-similar behavior and non-statistical properties of financial time series,” Physica A 390, 4304–4316 (2011).
[Crossref]
P. Manimaran, P. K. Panigrahi, and J. C. Parikh, “Wavelet analysis and scaling properties of time series,” Phys. Rev. E 72, 046120 (2005).
[Crossref]
P. Manimaran, P. Panigrahi, and J. Parikh, “Multiresolution analysis of fluctuations in non-stationary time series through discrete wavelets,” Physica A 388, 2306–2314 (2009).
[Crossref]
P. Manimaran, P. K. Panigrahi, and J. C. Parikh, “Wavelet analysis and scaling properties of time series,” Phys. Rev. E 72, 046120 (2005).
[Crossref]
N. Ghosh, P. Buddhiwant, A. Uppal, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Simultaneous determination of size and refractive index of red blood cells by light scattering measurements,” Appl. Phys. Lett. 88, 084101 (2006).
[Crossref]
N. Ghosh, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Depth-resolved fluorescence measurement in a layered turbid mediumby polarized fluorescence spectroscopy,” Opt. Lett. 30, 162–164 (2005).
[Crossref]
[PubMed]
L. Perelman, “Optical diagnostic technology based on light scattering spectroscopy for early cancer detection,” Expert Rev. Med. Devices 3, 787–803 (2006).
[Crossref]
R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[Crossref]
[PubMed]
L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[Crossref]
M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[Crossref]
[PubMed]
A. H. Gharekhan, S. Arora, A. N. Oza, M. B. Sureshkumar, A. Pradhan, and P. K. Panigrahi, “Distinguishing autofluorescence of normal, benign, and cancerous breast tissues through wavelet domain correlation studies,” J. Biomed. Opt. 16, 087003 (2011).
[Crossref]
[PubMed]
A. Gharekhan, S. Arora, P. Panigrahi, and A. Pradhan, “Distinguishing cancer and normal breast tissue autofluorescence using continuous wavelet transform,” IEEE J. Sel. Top. Quantum Electron. 16, 893–899 (2010).
[Crossref]
A. Gharekhan, S. Arora, K. Mayya, P. Panigrahi, M. Sureshkumar, and A. Pradhan, “Characterizing breast cancer tissues through the spectral correlation properties of polarized fluorescence,” J. Biomed. Opt. 13, 054063 (2008).
[Crossref]
[PubMed]
S. Gupta, M. Nair, A. Pradhan, N. Biswal, N. Agarwal, A. Agarwal, and P. Panigrahi, “Wavelet-based characterization of spectral fluctuations in normal, benign, and cancerous human breast tissues,” J. Biomed. Opt. 10, 054012 (2005).
[Crossref]
[PubMed]
N. Agarwal, S. Gupta, A. Pradhan, K. Vishwanathan, and P. Panigrahi, “Wavelet transform of breast tissue fluorescence spectra: a technique for diagnosis of tumors,” IEEE J. Sel. Top. Quantum Electron. 9, 154–161 (2003).
[Crossref]
N. Biswal, S. Gupta, N. Ghosh, and A. Pradhan, “Recovery of turbidity free fluorescence from measured fluorescence: an experimental approach,” Opt. Express 11, 3320–3331 (2003).
[Crossref]
[PubMed]
R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[Crossref]
Y. L. Kim, V. M. Turzhitsky, Y. Liu, H. Subramanian, and P. Pradhan, “Low-coherence enhanced backscattering: review of principles and applications for colon cancer screening,” J. Biomed. Opt. 11, 041125 (2006).
[Crossref]
[PubMed]
N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2, 89–117 (2000).
[Crossref]
[PubMed]
S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[Crossref]
[PubMed]
R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[Crossref]
[PubMed]
R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[Crossref]
[PubMed]
J. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[Crossref]
P. Šeba, “Random matrix analysis of human EEG data,” Phys. Rev. Lett. 91, 198104 (2003).
L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[Crossref]
R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[Crossref]
[PubMed]
A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. (USA) 102, 12371–12376 (2005).
[Crossref]
L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[Crossref]
N. Ghosh, A. Banerjee, and J. Soni, “Turbid medium polarimetry in biomedical imaging and diagnosis,” Eur. Phys. J. Appl. Phys. 54, 30001 (2011).
[Crossref]
J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. E. Stanley, “Multifractal detrended fluctuation analysis of nonstationary time series,” Physica A 316, 87–114 (2002).
[Crossref]
H. E. Stanley and P. Meakin, “Multifractal phenomena in physics and chemistry,” Nature 335, 405–409 (1988).
[Crossref]
A. Wax, C. Yang, M. G. Mller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).
[PubMed]
C.-C. Yu, C. Lau, G. O’Donoghue, J. Mirkovic, S. McGee, L. Galindo, A. Elackattu, E. Stier, G. Grillone, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative spectroscopic imaging for non-invasive early cancer detection,” Opt. Express 16, 16227–16239 (2008).
[Crossref]
[PubMed]
M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[Crossref]
[PubMed]
A. Wax, C. Yang, M. G. Mller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).
[PubMed]
Y. L. Kim, V. M. Turzhitsky, Y. Liu, H. Subramanian, and P. Pradhan, “Low-coherence enhanced backscattering: review of principles and applications for colon cancer screening,” J. Biomed. Opt. 11, 041125 (2006).
[Crossref]
[PubMed]
A. Gharekhan, S. Arora, K. Mayya, P. Panigrahi, M. Sureshkumar, and A. Pradhan, “Characterizing breast cancer tissues through the spectral correlation properties of polarized fluorescence,” J. Biomed. Opt. 13, 054063 (2008).
[Crossref]
[PubMed]
A. H. Gharekhan, S. Arora, A. N. Oza, M. B. Sureshkumar, A. Pradhan, and P. K. Panigrahi, “Distinguishing autofluorescence of normal, benign, and cancerous breast tissues through wavelet domain correlation studies,” J. Biomed. Opt. 16, 087003 (2011).
[Crossref]
[PubMed]
R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[Crossref]
C. Torrence and G. Compo, “A practical guide to wavelet analysis,” Bull. Am. Meteorol. Soc. 79, 61–78 (1998).
[Crossref]
V. V. Tuchin, L. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications (Springer-Verlag, 2006).
Y. L. Kim, V. M. Turzhitsky, Y. Liu, H. Subramanian, and P. Pradhan, “Low-coherence enhanced backscattering: review of principles and applications for colon cancer screening,” J. Biomed. Opt. 11, 041125 (2006).
[Crossref]
[PubMed]
N. Ghosh, P. Buddhiwant, A. Uppal, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Simultaneous determination of size and refractive index of red blood cells by light scattering measurements,” Appl. Phys. Lett. 88, 084101 (2006).
[Crossref]
L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[Crossref]
N. Agarwal, S. Gupta, A. Pradhan, K. Vishwanathan, and P. Panigrahi, “Wavelet transform of breast tissue fluorescence spectra: a technique for diagnosis of tumors,” IEEE J. Sel. Top. Quantum Electron. 9, 154–161 (2003).
[Crossref]
N. Ghosh, M. Wood, and A. Vitkin, “Polarized light assessment of complex turbid media such as biological tissues using mueller matrix decomposition,” in Handbook of Photonics for Biomedical Science, V. V. Tuchin, ed. (CRC Press, 2010), Medical Physics and Biomedical Engineering, pp. 253–282.
[Crossref]
L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[Crossref]
V. V. Tuchin, L. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications (Springer-Verlag, 2006).
M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[Crossref]
[PubMed]
R. Graf and A. Wax, “Nuclear morphology measurements using Fourier domain low coherence interferometry,” Opt. Express 13, 4693–4698 (2005).
[Crossref]
A. Wax, C. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett. 28, 1230–1232 (2003).
[Crossref]
[PubMed]
A. Wax, C. Yang, M. G. Mller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).
[PubMed]
N. Ghosh, M. Wood, and A. Vitkin, “Polarized light assessment of complex turbid media such as biological tissues using mueller matrix decomposition,” in Handbook of Photonics for Biomedical Science, V. V. Tuchin, ed. (CRC Press, 2010), Medical Physics and Biomedical Engineering, pp. 253–282.
[Crossref]
A. Wax, C. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett. 28, 1230–1232 (2003).
[Crossref]
[PubMed]
A. Wax, C. Yang, M. G. Mller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).
[PubMed]
M. Kalashnikov, W. Choi, C.-C. Yu, Y. Sung, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Assessing light scattering of intracellular organelles in single intact living cells,” Opt. Express 17, 19674–19681 (2009).
[Crossref]
[PubMed]
W. Choi, C.-C. Yu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Field-based angle-resolved light-scattering study of single live cells,” Opt. Lett. 33, 1596–1598 (2008).
[Crossref]
[PubMed]
C.-C. Yu, C. Lau, G. O’Donoghue, J. Mirkovic, S. McGee, L. Galindo, A. Elackattu, E. Stier, G. Grillone, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative spectroscopic imaging for non-invasive early cancer detection,” Opt. Express 16, 16227–16239 (2008).
[Crossref]
[PubMed]
V. V. Tuchin, L. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications (Springer-Verlag, 2006).
L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[Crossref]
J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. E. Stanley, “Multifractal detrended fluctuation analysis of nonstationary time series,” Physica A 316, 87–114 (2002).
[Crossref]
N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12, 285–314 (2010).
[Crossref]
[PubMed]
M. Farge, “Wavelet transforms and their applications to turbulence,” Annu. Rev. Fluid Mech. 24, 395–458 (1992).
[Crossref]
R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[Crossref]
[PubMed]
N. Ghosh, P. Buddhiwant, A. Uppal, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Simultaneous determination of size and refractive index of red blood cells by light scattering measurements,” Appl. Phys. Lett. 88, 084101 (2006).
[Crossref]
C. Torrence and G. Compo, “A practical guide to wavelet analysis,” Bull. Am. Meteorol. Soc. 79, 61–78 (1998).
[Crossref]
A. Wax, C. Yang, M. G. Mller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).
[PubMed]
N. Ghosh, A. Banerjee, and J. Soni, “Turbid medium polarimetry in biomedical imaging and diagnosis,” Eur. Phys. J. Appl. Phys. 54, 30001 (2011).
[Crossref]
L. Perelman, “Optical diagnostic technology based on light scattering spectroscopy for early cancer detection,” Expert Rev. Med. Devices 3, 787–803 (2006).
[Crossref]
R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[Crossref]
J. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[Crossref]
N. Agarwal, S. Gupta, A. Pradhan, K. Vishwanathan, and P. Panigrahi, “Wavelet transform of breast tissue fluorescence spectra: a technique for diagnosis of tumors,” IEEE J. Sel. Top. Quantum Electron. 9, 154–161 (2003).
[Crossref]
A. Gharekhan, S. Arora, P. Panigrahi, and A. Pradhan, “Distinguishing cancer and normal breast tissue autofluorescence using continuous wavelet transform,” IEEE J. Sel. Top. Quantum Electron. 16, 893–899 (2010).
[Crossref]
A. H. Gharekhan, S. Arora, A. N. Oza, M. B. Sureshkumar, A. Pradhan, and P. K. Panigrahi, “Distinguishing autofluorescence of normal, benign, and cancerous breast tissues through wavelet domain correlation studies,” J. Biomed. Opt. 16, 087003 (2011).
[Crossref]
[PubMed]
A. Gharekhan, S. Arora, K. Mayya, P. Panigrahi, M. Sureshkumar, and A. Pradhan, “Characterizing breast cancer tissues through the spectral correlation properties of polarized fluorescence,” J. Biomed. Opt. 13, 054063 (2008).
[Crossref]
[PubMed]
S. Gupta, M. Nair, A. Pradhan, N. Biswal, N. Agarwal, A. Agarwal, and P. Panigrahi, “Wavelet-based characterization of spectral fluctuations in normal, benign, and cancerous human breast tissues,” J. Biomed. Opt. 10, 054012 (2005).
[Crossref]
[PubMed]
S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[Crossref]
[PubMed]
W. Gao, “Square law between spatial frequency of spatial correlation function of scattering potential of tissue and spectrum of scattered light,” J. Biomed. Opt. 15, 030502 (2010).
[Crossref]
[PubMed]
Y. L. Kim, V. M. Turzhitsky, Y. Liu, H. Subramanian, and P. Pradhan, “Low-coherence enhanced backscattering: review of principles and applications for colon cancer screening,” J. Biomed. Opt. 11, 041125 (2006).
[Crossref]
[PubMed]
R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[Crossref]
[PubMed]
J. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367 (2003).
[Crossref]
[PubMed]
R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[Crossref]
[PubMed]
W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]
[PubMed]
H. E. Stanley and P. Meakin, “Multifractal phenomena in physics and chemistry,” Nature 335, 405–409 (1988).
[Crossref]
N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2, 89–117 (2000).
[Crossref]
[PubMed]
C.-C. Yu, C. Lau, G. O’Donoghue, J. Mirkovic, S. McGee, L. Galindo, A. Elackattu, E. Stier, G. Grillone, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative spectroscopic imaging for non-invasive early cancer detection,” Opt. Express 16, 16227–16239 (2008).
[Crossref]
[PubMed]
M. Kalashnikov, W. Choi, C.-C. Yu, Y. Sung, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Assessing light scattering of intracellular organelles in single intact living cells,” Opt. Express 17, 19674–19681 (2009).
[Crossref]
[PubMed]
R. Graf and A. Wax, “Nuclear morphology measurements using Fourier domain low coherence interferometry,” Opt. Express 13, 4693–4698 (2005).
[Crossref]
N. Biswal, S. Gupta, N. Ghosh, and A. Pradhan, “Recovery of turbidity free fluorescence from measured fluorescence: an experimental approach,” Opt. Express 11, 3320–3331 (2003).
[Crossref]
[PubMed]
N. Ghosh, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Depth-resolved fluorescence measurement in a layered turbid mediumby polarized fluorescence spectroscopy,” Opt. Lett. 30, 162–164 (2005).
[Crossref]
[PubMed]
N. Ghosh, S. K. Majumder, and P. K. Gupta, “Polarized fluorescence spectroscopy of human tissues,” Opt. Lett. 27, 2007–2009 (2002).
[Crossref]
A. Wax, C. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett. 28, 1230–1232 (2003).
[Crossref]
[PubMed]
W. Choi, C.-C. Yu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Field-based angle-resolved light-scattering study of single live cells,” Opt. Lett. 33, 1596–1598 (2008).
[Crossref]
[PubMed]
İ. R. Çapoğlu, J. D. Rogers, A. Taflove, and V. Backman, “Accuracy of the Born approximation in calculating the scattering coefficient of biological continuous random media,” Opt. Lett. 34, 2679–2681 (2009).
[Crossref]
[PubMed]
M. Xu and R. R. Alfano, “Fractal mechanisms of light scattering in biological tissue and cells,” Opt. Lett. 30, 3051–3053 (2005).
[Crossref]
[PubMed]
C. J. R. Sheppard, “Fractal model of light scattering in biological tissue and cells,” Opt. Lett. 32, 142–144 (2007).
[Crossref]
T. T. Wu, J. Y. Qu, and M. Xu, “Unified Mie and fractal scattering by biological cells and subcellular structures,” Opt. Lett. 32, 2324–2326 (2007).
[Crossref]
[PubMed]
J. M. Schmitt and G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Opt. Lett. 21, 1310–1312 (1996).
[Crossref]
[PubMed]
J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[Crossref]
[PubMed]
P. Manimaran, P. K. Panigrahi, and J. C. Parikh, “Wavelet analysis and scaling properties of time series,” Phys. Rev. E 72, 046120 (2005).
[Crossref]
M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[Crossref]
[PubMed]
L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[Crossref]
P. Šeba, “Random matrix analysis of human EEG data,” Phys. Rev. Lett. 91, 198104 (2003).
S. Ghosh, P. Manimaran, and P. K. Panigrahi, “Characterizing multi-scale self-similar behavior and non-statistical properties of financial time series,” Physica A 390, 4304–4316 (2011).
[Crossref]
P. Manimaran, P. Panigrahi, and J. Parikh, “Multiresolution analysis of fluctuations in non-stationary time series through discrete wavelets,” Physica A 388, 2306–2314 (2009).
[Crossref]
J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. E. Stanley, “Multifractal detrended fluctuation analysis of nonstationary time series,” Physica A 316, 87–114 (2002).
[Crossref]
A. Eke, P. Herman, L. Kocsis, and L. R. Kozak, “Fractal characterization of complexity in temporal physiological signals,” Physiol. Meas. 23, R1–R38 (2002).
[Crossref]
[PubMed]
A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. (USA) 102, 12371–12376 (2005).
[Crossref]
H. Hurst, “Long-term storage capacity of reservoirs,” Trans. Am. Soc. Civ. Eng. 116, 770–808 (1951).
B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman, 1982).
N. Ghosh, M. Wood, and A. Vitkin, “Polarized light assessment of complex turbid media such as biological tissues using mueller matrix decomposition,” in Handbook of Photonics for Biomedical Science, V. V. Tuchin, ed. (CRC Press, 2010), Medical Physics and Biomedical Engineering, pp. 253–282.
[Crossref]
V. V. Tuchin, L. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications (Springer-Verlag, 2006).
S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell.11, 674–693 (1989).
[Crossref]
I. Daubechies, Ten Lectures on Wavelets, 1st ed., CBMS-NSF Regional Conference Series in Applied Mathematics (SIAM: Society for Industrial and Applied Mathematics, 1992).
[Crossref]
J. D. Bancroft and M. Gamble, Theory and Practice of Histopathological Techniques, 5th ed. (Churchill Livingstone, 2002).