Y. He, R. Kan, F. V. Englich, W. Liu, and B. J. Orr, “Simultaneous multi-laser, multi-species trace-level sensing of gas mixtures by rapidly swept continuous-wave cavity-ringdown spectroscopy,” Opt. Express 18(19), 20059–20071 (2010).
[Crossref]
[PubMed]
D. Geskus, S. Aravazhi, K. Wörhoff, and M. Pollnau, “High-power, broadly tunable, and low-quantum-defect KGd(1-x)Lu(x)(WO(4))(2):Yb(3+) channel waveguide lasers,” Opt. Express 18(25), 26107–26112 (2010).
[Crossref]
[PubMed]
W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Z. Subramanian, J. S. Wilkinson, E. Cantelar, D. Jaque, G. Lifante, M. Aguiló, and F. Díaz, “Mirrorless buried waveguide laser in monoclinic double tungstates fabricated by a novel combination of ion milling and liquid phase epitaxy,” Opt. Express 18(26), 26937–26945 (2010).
[Crossref]
D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010).
[Crossref]
[PubMed]
Y. Peng, W. Zhang, L. Li, and Q. Yu, “Tunable fiber laser and fiber amplifier based photoacoustic spectrometer for trace gas detection,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 74(4), 924–927 (2009).
[Crossref]
[PubMed]
G. Rieker, J. Jeffries, and R. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 μm and implications on tunable diode laser sensor design,” Appl. Phys. B 94(1), 51–63 (2009).
[Crossref]
D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[Crossref]
F. Gardillou, Y. E. Romanyuk, C. N. Borca, R.-P. Salathé, and M. Pollnau, “Lu, Gd codoped KY(WO(4))(2):Yb epitaxial layers: towards integrated optics based on KY(WO(4))(2).,” Opt. Lett. 32(5), 488–490 (2007).
[Crossref]
[PubMed]
M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]
A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, and A. A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86(2), 287–292 (2007).
[Crossref]
J. Wu, Z. Yao, J. Zong, and S. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32(6), 638–640 (2007).
[Crossref]
[PubMed]
S. Rivier, X. Mateos, V. Petrov, U. Griebner, Y. E. Romanyuk, C. N. Borca, F. Gardillou, and M. Pollnau, “Tm:KY(WO(4))(2) waveguide laser,” Opt. Express 15(9), 5885–5892 (2007).
[Crossref]
[PubMed]
Y. E. Romanyuk, C. N. Borca, M. Pollnau, S. Rivier, V. Petrov, and U. Griebner, “Yb-doped KY(WO4)2 planar waveguide laser,” Opt. Lett. 31(1), 53–55 (2006).
[Crossref]
[PubMed]
J.-P. Besson, S. Schilt, E. Rochat, and L. Thévenaz, “Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy,” Appl. Phys. B 85(2-3), 323–328 (2006).
[Crossref]
E. Cantelar, J. A. Sanz-Garcia, G. Lifante, F. Cusso, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[Crossref]
B. Timmer, W. Olthuis, and A. van den Berg, “Ammonia sensors and their applications – a review,” Sens. Actuators B Chem. 107(2), 666–677 (2005).
[Crossref]
V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguiló, F. Díaz, and U. Grieber, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[Crossref]
F. Güell, Jna. Gavaldà, R. Solé, M. Aguiló, F. Díaz, M. Galan, and J. Massons, “1.48 and 1.84 μm thulium emissions in monoclinic KGd(WO4)2 single crystals,” J. Appl. Phys. 95, 919–923 (2004).
L. R. Narasimhan, W. Goodman, and N. Patel, “Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4617–4621 (2001).
[Crossref]
[PubMed]
M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, and R. K. Hanson, “Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 μm in bioreactor vent gases,” Appl. Opt. 40(24), 4395–4403 (2001).
[Crossref]
J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped Tm:YAG waveguide laser at 2 µm,” Electron. Lett. 37(14), 898–899 (2001).
[Crossref]
A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
[Crossref]
R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, and F. Díaz, “Growth of β-KGd1‑xNdx(WO4)2 single crystals in K2W2O7 solvents,” J. Cryst. Growth 169(3), 600–603 (1996).
[Crossref]
J. R. Salcedo, J. M. Sousa, and V. V. Kuzmin, “Theoretical treatment of relaxation oscillations in quasi-three-level systems,” Appl. Phys. B 62(1), 83–85 (1996).
[Crossref]
W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Z. Subramanian, J. S. Wilkinson, E. Cantelar, D. Jaque, G. Lifante, M. Aguiló, and F. Díaz, “Mirrorless buried waveguide laser in monoclinic double tungstates fabricated by a novel combination of ion milling and liquid phase epitaxy,” Opt. Express 18(26), 26937–26945 (2010).
[Crossref]
V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguiló, F. Díaz, and U. Grieber, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[Crossref]
R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, and F. Díaz, “Growth of β-KGd1‑xNdx(WO4)2 single crystals in K2W2O7 solvents,” J. Cryst. Growth 169(3), 600–603 (1996).
[Crossref]
D. Geskus, S. Aravazhi, K. Wörhoff, and M. Pollnau, “High-power, broadly tunable, and low-quantum-defect KGd(1-x)Lu(x)(WO(4))(2):Yb(3+) channel waveguide lasers,” Opt. Express 18(25), 26107–26112 (2010).
[Crossref]
[PubMed]
D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010).
[Crossref]
[PubMed]
D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[Crossref]
J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped Tm:YAG waveguide laser at 2 µm,” Electron. Lett. 37(14), 898–899 (2001).
[Crossref]
D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[Crossref]
J.-P. Besson, S. Schilt, E. Rochat, and L. Thévenaz, “Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy,” Appl. Phys. B 85(2-3), 323–328 (2006).
[Crossref]
W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Z. Subramanian, J. S. Wilkinson, E. Cantelar, D. Jaque, G. Lifante, M. Aguiló, and F. Díaz, “Mirrorless buried waveguide laser in monoclinic double tungstates fabricated by a novel combination of ion milling and liquid phase epitaxy,” Opt. Express 18(26), 26937–26945 (2010).
[Crossref]
S. Rivier, X. Mateos, V. Petrov, U. Griebner, Y. E. Romanyuk, C. N. Borca, F. Gardillou, and M. Pollnau, “Tm:KY(WO(4))(2) waveguide laser,” Opt. Express 15(9), 5885–5892 (2007).
[Crossref]
[PubMed]
F. Gardillou, Y. E. Romanyuk, C. N. Borca, R.-P. Salathé, and M. Pollnau, “Lu, Gd codoped KY(WO(4))(2):Yb epitaxial layers: towards integrated optics based on KY(WO(4))(2).,” Opt. Lett. 32(5), 488–490 (2007).
[Crossref]
[PubMed]
M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]
Y. E. Romanyuk, C. N. Borca, M. Pollnau, S. Rivier, V. Petrov, and U. Griebner, “Yb-doped KY(WO4)2 planar waveguide laser,” Opt. Lett. 31(1), 53–55 (2006).
[Crossref]
[PubMed]
A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
[Crossref]
W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Z. Subramanian, J. S. Wilkinson, E. Cantelar, D. Jaque, G. Lifante, M. Aguiló, and F. Díaz, “Mirrorless buried waveguide laser in monoclinic double tungstates fabricated by a novel combination of ion milling and liquid phase epitaxy,” Opt. Express 18(26), 26937–26945 (2010).
[Crossref]
E. Cantelar, J. A. Sanz-Garcia, G. Lifante, F. Cusso, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[Crossref]
W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Z. Subramanian, J. S. Wilkinson, E. Cantelar, D. Jaque, G. Lifante, M. Aguiló, and F. Díaz, “Mirrorless buried waveguide laser in monoclinic double tungstates fabricated by a novel combination of ion milling and liquid phase epitaxy,” Opt. Express 18(26), 26937–26945 (2010).
[Crossref]
A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
[Crossref]
E. Cantelar, J. A. Sanz-Garcia, G. Lifante, F. Cusso, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[Crossref]
W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Z. Subramanian, J. S. Wilkinson, E. Cantelar, D. Jaque, G. Lifante, M. Aguiló, and F. Díaz, “Mirrorless buried waveguide laser in monoclinic double tungstates fabricated by a novel combination of ion milling and liquid phase epitaxy,” Opt. Express 18(26), 26937–26945 (2010).
[Crossref]
V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguiló, F. Díaz, and U. Grieber, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[Crossref]
R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, and F. Díaz, “Growth of β-KGd1‑xNdx(WO4)2 single crystals in K2W2O7 solvents,” J. Cryst. Growth 169(3), 600–603 (1996).
[Crossref]
A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, and A. A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86(2), 287–292 (2007).
[Crossref]
Y. He, R. Kan, F. V. Englich, W. Liu, and B. J. Orr, “Simultaneous multi-laser, multi-species trace-level sensing of gas mixtures by rapidly swept continuous-wave cavity-ringdown spectroscopy,” Opt. Express 18(19), 20059–20071 (2010).
[Crossref]
[PubMed]
M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, and R. K. Hanson, “Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 μm in bioreactor vent gases,” Appl. Opt. 40(24), 4395–4403 (2001).
[Crossref]
A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
[Crossref]
M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]
F. Gardillou, Y. E. Romanyuk, C. N. Borca, R.-P. Salathé, and M. Pollnau, “Lu, Gd codoped KY(WO(4))(2):Yb epitaxial layers: towards integrated optics based on KY(WO(4))(2).,” Opt. Lett. 32(5), 488–490 (2007).
[Crossref]
[PubMed]
S. Rivier, X. Mateos, V. Petrov, U. Griebner, Y. E. Romanyuk, C. N. Borca, F. Gardillou, and M. Pollnau, “Tm:KY(WO(4))(2) waveguide laser,” Opt. Express 15(9), 5885–5892 (2007).
[Crossref]
[PubMed]
V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguiló, F. Díaz, and U. Grieber, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[Crossref]
R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, and F. Díaz, “Growth of β-KGd1‑xNdx(WO4)2 single crystals in K2W2O7 solvents,” J. Cryst. Growth 169(3), 600–603 (1996).
[Crossref]
D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010).
[Crossref]
[PubMed]
D. Geskus, S. Aravazhi, K. Wörhoff, and M. Pollnau, “High-power, broadly tunable, and low-quantum-defect KGd(1-x)Lu(x)(WO(4))(2):Yb(3+) channel waveguide lasers,” Opt. Express 18(25), 26107–26112 (2010).
[Crossref]
[PubMed]
D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[Crossref]
L. R. Narasimhan, W. Goodman, and N. Patel, “Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4617–4621 (2001).
[Crossref]
[PubMed]
V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguiló, F. Díaz, and U. Grieber, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[Crossref]
M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]
S. Rivier, X. Mateos, V. Petrov, U. Griebner, Y. E. Romanyuk, C. N. Borca, F. Gardillou, and M. Pollnau, “Tm:KY(WO(4))(2) waveguide laser,” Opt. Express 15(9), 5885–5892 (2007).
[Crossref]
[PubMed]
Y. E. Romanyuk, C. N. Borca, M. Pollnau, S. Rivier, V. Petrov, and U. Griebner, “Yb-doped KY(WO4)2 planar waveguide laser,” Opt. Lett. 31(1), 53–55 (2006).
[Crossref]
[PubMed]
D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010).
[Crossref]
[PubMed]
D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[Crossref]
V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguiló, F. Díaz, and U. Grieber, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[Crossref]
F. Güell, Jna. Gavaldà, R. Solé, M. Aguiló, F. Díaz, M. Galan, and J. Massons, “1.48 and 1.84 μm thulium emissions in monoclinic KGd(WO4)2 single crystals,” J. Appl. Phys. 95, 919–923 (2004).
D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[Crossref]
D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[Crossref]
A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
[Crossref]
D. P. Shepherd, D. J. B. Brinck, J. Wang, A. C. Tropper, D. C. Hanna, G. Kakarantzas, and P. D. Townsend, “1.9-µm operation of a Tm:lead germanate glass waveguide laser,” Opt. Lett. 19(13), 954–956 (1994).
[Crossref]
[PubMed]
G. Rieker, J. Jeffries, and R. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 μm and implications on tunable diode laser sensor design,” Appl. Phys. B 94(1), 51–63 (2009).
[Crossref]
D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[Crossref]
W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Z. Subramanian, J. S. Wilkinson, E. Cantelar, D. Jaque, G. Lifante, M. Aguiló, and F. Díaz, “Mirrorless buried waveguide laser in monoclinic double tungstates fabricated by a novel combination of ion milling and liquid phase epitaxy,” Opt. Express 18(26), 26937–26945 (2010).
[Crossref]
G. Rieker, J. Jeffries, and R. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 μm and implications on tunable diode laser sensor design,” Appl. Phys. B 94(1), 51–63 (2009).
[Crossref]
A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, and A. A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86(2), 287–292 (2007).
[Crossref]
A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, and A. A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86(2), 287–292 (2007).
[Crossref]
A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, and A. A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86(2), 287–292 (2007).
[Crossref]
J. R. Salcedo, J. M. Sousa, and V. V. Kuzmin, “Theoretical treatment of relaxation oscillations in quasi-three-level systems,” Appl. Phys. B 62(1), 83–85 (1996).
[Crossref]
Y. Peng, W. Zhang, L. Li, and Q. Yu, “Tunable fiber laser and fiber amplifier based photoacoustic spectrometer for trace gas detection,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 74(4), 924–927 (2009).
[Crossref]
[PubMed]
W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Z. Subramanian, J. S. Wilkinson, E. Cantelar, D. Jaque, G. Lifante, M. Aguiló, and F. Díaz, “Mirrorless buried waveguide laser in monoclinic double tungstates fabricated by a novel combination of ion milling and liquid phase epitaxy,” Opt. Express 18(26), 26937–26945 (2010).
[Crossref]
E. Cantelar, J. A. Sanz-Garcia, G. Lifante, F. Cusso, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[Crossref]
J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped Tm:YAG waveguide laser at 2 µm,” Electron. Lett. 37(14), 898–899 (2001).
[Crossref]
V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguiló, F. Díaz, and U. Grieber, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[Crossref]
W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Z. Subramanian, J. S. Wilkinson, E. Cantelar, D. Jaque, G. Lifante, M. Aguiló, and F. Díaz, “Mirrorless buried waveguide laser in monoclinic double tungstates fabricated by a novel combination of ion milling and liquid phase epitaxy,” Opt. Express 18(26), 26937–26945 (2010).
[Crossref]
S. Rivier, X. Mateos, V. Petrov, U. Griebner, Y. E. Romanyuk, C. N. Borca, F. Gardillou, and M. Pollnau, “Tm:KY(WO(4))(2) waveguide laser,” Opt. Express 15(9), 5885–5892 (2007).
[Crossref]
[PubMed]
J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped Tm:YAG waveguide laser at 2 µm,” Electron. Lett. 37(14), 898–899 (2001).
[Crossref]
J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped Tm:YAG waveguide laser at 2 µm,” Electron. Lett. 37(14), 898–899 (2001).
[Crossref]
W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Z. Subramanian, J. S. Wilkinson, E. Cantelar, D. Jaque, G. Lifante, M. Aguiló, and F. Díaz, “Mirrorless buried waveguide laser in monoclinic double tungstates fabricated by a novel combination of ion milling and liquid phase epitaxy,” Opt. Express 18(26), 26937–26945 (2010).
[Crossref]
L. R. Narasimhan, W. Goodman, and N. Patel, “Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4617–4621 (2001).
[Crossref]
[PubMed]
R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, and F. Díaz, “Growth of β-KGd1‑xNdx(WO4)2 single crystals in K2W2O7 solvents,” J. Cryst. Growth 169(3), 600–603 (1996).
[Crossref]
B. Timmer, W. Olthuis, and A. van den Berg, “Ammonia sensors and their applications – a review,” Sens. Actuators B Chem. 107(2), 666–677 (2005).
[Crossref]
L. R. Narasimhan, W. Goodman, and N. Patel, “Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4617–4621 (2001).
[Crossref]
[PubMed]
A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, and A. A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86(2), 287–292 (2007).
[Crossref]
Y. Peng, W. Zhang, L. Li, and Q. Yu, “Tunable fiber laser and fiber amplifier based photoacoustic spectrometer for trace gas detection,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 74(4), 924–927 (2009).
[Crossref]
[PubMed]
E. Cantelar, J. A. Sanz-Garcia, G. Lifante, F. Cusso, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[Crossref]
M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]
S. Rivier, X. Mateos, V. Petrov, U. Griebner, Y. E. Romanyuk, C. N. Borca, F. Gardillou, and M. Pollnau, “Tm:KY(WO(4))(2) waveguide laser,” Opt. Express 15(9), 5885–5892 (2007).
[Crossref]
[PubMed]
Y. E. Romanyuk, C. N. Borca, M. Pollnau, S. Rivier, V. Petrov, and U. Griebner, “Yb-doped KY(WO4)2 planar waveguide laser,” Opt. Lett. 31(1), 53–55 (2006).
[Crossref]
[PubMed]
V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguiló, F. Díaz, and U. Grieber, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[Crossref]
D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010).
[Crossref]
[PubMed]
D. Geskus, S. Aravazhi, K. Wörhoff, and M. Pollnau, “High-power, broadly tunable, and low-quantum-defect KGd(1-x)Lu(x)(WO(4))(2):Yb(3+) channel waveguide lasers,” Opt. Express 18(25), 26107–26112 (2010).
[Crossref]
[PubMed]
D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[Crossref]
M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]
S. Rivier, X. Mateos, V. Petrov, U. Griebner, Y. E. Romanyuk, C. N. Borca, F. Gardillou, and M. Pollnau, “Tm:KY(WO(4))(2) waveguide laser,” Opt. Express 15(9), 5885–5892 (2007).
[Crossref]
[PubMed]
F. Gardillou, Y. E. Romanyuk, C. N. Borca, R.-P. Salathé, and M. Pollnau, “Lu, Gd codoped KY(WO(4))(2):Yb epitaxial layers: towards integrated optics based on KY(WO(4))(2).,” Opt. Lett. 32(5), 488–490 (2007).
[Crossref]
[PubMed]
Y. E. Romanyuk, C. N. Borca, M. Pollnau, S. Rivier, V. Petrov, and U. Griebner, “Yb-doped KY(WO4)2 planar waveguide laser,” Opt. Lett. 31(1), 53–55 (2006).
[Crossref]
[PubMed]
A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
[Crossref]
G. Rieker, J. Jeffries, and R. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 μm and implications on tunable diode laser sensor design,” Appl. Phys. B 94(1), 51–63 (2009).
[Crossref]
M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]
S. Rivier, X. Mateos, V. Petrov, U. Griebner, Y. E. Romanyuk, C. N. Borca, F. Gardillou, and M. Pollnau, “Tm:KY(WO(4))(2) waveguide laser,” Opt. Express 15(9), 5885–5892 (2007).
[Crossref]
[PubMed]
Y. E. Romanyuk, C. N. Borca, M. Pollnau, S. Rivier, V. Petrov, and U. Griebner, “Yb-doped KY(WO4)2 planar waveguide laser,” Opt. Lett. 31(1), 53–55 (2006).
[Crossref]
[PubMed]
J.-P. Besson, S. Schilt, E. Rochat, and L. Thévenaz, “Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy,” Appl. Phys. B 85(2-3), 323–328 (2006).
[Crossref]
M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]
F. Gardillou, Y. E. Romanyuk, C. N. Borca, R.-P. Salathé, and M. Pollnau, “Lu, Gd codoped KY(WO(4))(2):Yb epitaxial layers: towards integrated optics based on KY(WO(4))(2).,” Opt. Lett. 32(5), 488–490 (2007).
[Crossref]
[PubMed]
S. Rivier, X. Mateos, V. Petrov, U. Griebner, Y. E. Romanyuk, C. N. Borca, F. Gardillou, and M. Pollnau, “Tm:KY(WO(4))(2) waveguide laser,” Opt. Express 15(9), 5885–5892 (2007).
[Crossref]
[PubMed]
Y. E. Romanyuk, C. N. Borca, M. Pollnau, S. Rivier, V. Petrov, and U. Griebner, “Yb-doped KY(WO4)2 planar waveguide laser,” Opt. Lett. 31(1), 53–55 (2006).
[Crossref]
[PubMed]
R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, and F. Díaz, “Growth of β-KGd1‑xNdx(WO4)2 single crystals in K2W2O7 solvents,” J. Cryst. Growth 169(3), 600–603 (1996).
[Crossref]
J. R. Salcedo, J. M. Sousa, and V. V. Kuzmin, “Theoretical treatment of relaxation oscillations in quasi-three-level systems,” Appl. Phys. B 62(1), 83–85 (1996).
[Crossref]
E. Cantelar, J. A. Sanz-Garcia, G. Lifante, F. Cusso, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[Crossref]
J.-P. Besson, S. Schilt, E. Rochat, and L. Thévenaz, “Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy,” Appl. Phys. B 85(2-3), 323–328 (2006).
[Crossref]
J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped Tm:YAG waveguide laser at 2 µm,” Electron. Lett. 37(14), 898–899 (2001).
[Crossref]
A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
[Crossref]
D. P. Shepherd, D. J. B. Brinck, J. Wang, A. C. Tropper, D. C. Hanna, G. Kakarantzas, and P. D. Townsend, “1.9-µm operation of a Tm:lead germanate glass waveguide laser,” Opt. Lett. 19(13), 954–956 (1994).
[Crossref]
[PubMed]
R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, and F. Díaz, “Growth of β-KGd1‑xNdx(WO4)2 single crystals in K2W2O7 solvents,” J. Cryst. Growth 169(3), 600–603 (1996).
[Crossref]
V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguiló, F. Díaz, and U. Grieber, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[Crossref]
R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, and F. Díaz, “Growth of β-KGd1‑xNdx(WO4)2 single crystals in K2W2O7 solvents,” J. Cryst. Growth 169(3), 600–603 (1996).
[Crossref]
J. R. Salcedo, J. M. Sousa, and V. V. Kuzmin, “Theoretical treatment of relaxation oscillations in quasi-three-level systems,” Appl. Phys. B 62(1), 83–85 (1996).
[Crossref]
W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Z. Subramanian, J. S. Wilkinson, E. Cantelar, D. Jaque, G. Lifante, M. Aguiló, and F. Díaz, “Mirrorless buried waveguide laser in monoclinic double tungstates fabricated by a novel combination of ion milling and liquid phase epitaxy,” Opt. Express 18(26), 26937–26945 (2010).
[Crossref]
J.-P. Besson, S. Schilt, E. Rochat, and L. Thévenaz, “Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy,” Appl. Phys. B 85(2-3), 323–328 (2006).
[Crossref]
B. Timmer, W. Olthuis, and A. van den Berg, “Ammonia sensors and their applications – a review,” Sens. Actuators B Chem. 107(2), 666–677 (2005).
[Crossref]
A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
[Crossref]
D. P. Shepherd, D. J. B. Brinck, J. Wang, A. C. Tropper, D. C. Hanna, G. Kakarantzas, and P. D. Townsend, “1.9-µm operation of a Tm:lead germanate glass waveguide laser,” Opt. Lett. 19(13), 954–956 (1994).
[Crossref]
[PubMed]
A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, and A. A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86(2), 287–292 (2007).
[Crossref]
B. Timmer, W. Olthuis, and A. van den Berg, “Ammonia sensors and their applications – a review,” Sens. Actuators B Chem. 107(2), 666–677 (2005).
[Crossref]
A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
[Crossref]
M. E. Webber, M. Pushkarsky, and C. K. N. Patel, “Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers,” Appl. Opt. 42(12), 2119–2126 (2003).
[Crossref]
[PubMed]
M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, and R. K. Hanson, “Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 μm in bioreactor vent gases,” Appl. Opt. 40(24), 4395–4403 (2001).
[Crossref]
W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Z. Subramanian, J. S. Wilkinson, E. Cantelar, D. Jaque, G. Lifante, M. Aguiló, and F. Díaz, “Mirrorless buried waveguide laser in monoclinic double tungstates fabricated by a novel combination of ion milling and liquid phase epitaxy,” Opt. Express 18(26), 26937–26945 (2010).
[Crossref]
D. Geskus, S. Aravazhi, K. Wörhoff, and M. Pollnau, “High-power, broadly tunable, and low-quantum-defect KGd(1-x)Lu(x)(WO(4))(2):Yb(3+) channel waveguide lasers,” Opt. Express 18(25), 26107–26112 (2010).
[Crossref]
[PubMed]
D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010).
[Crossref]
[PubMed]
D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[Crossref]
A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, and A. A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86(2), 287–292 (2007).
[Crossref]
Y. Peng, W. Zhang, L. Li, and Q. Yu, “Tunable fiber laser and fiber amplifier based photoacoustic spectrometer for trace gas detection,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 74(4), 924–927 (2009).
[Crossref]
[PubMed]
Y. Peng, W. Zhang, L. Li, and Q. Yu, “Tunable fiber laser and fiber amplifier based photoacoustic spectrometer for trace gas detection,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 74(4), 924–927 (2009).
[Crossref]
[PubMed]
M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, and R. K. Hanson, “Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 μm in bioreactor vent gases,” Appl. Opt. 40(24), 4395–4403 (2001).
[Crossref]
M. E. Webber, M. Pushkarsky, and C. K. N. Patel, “Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers,” Appl. Opt. 42(12), 2119–2126 (2003).
[Crossref]
[PubMed]
J.-P. Besson, S. Schilt, E. Rochat, and L. Thévenaz, “Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy,” Appl. Phys. B 85(2-3), 323–328 (2006).
[Crossref]
G. Rieker, J. Jeffries, and R. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 μm and implications on tunable diode laser sensor design,” Appl. Phys. B 94(1), 51–63 (2009).
[Crossref]
A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, and A. A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86(2), 287–292 (2007).
[Crossref]
J. R. Salcedo, J. M. Sousa, and V. V. Kuzmin, “Theoretical treatment of relaxation oscillations in quasi-three-level systems,” Appl. Phys. B 62(1), 83–85 (1996).
[Crossref]
E. Cantelar, J. A. Sanz-Garcia, G. Lifante, F. Cusso, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[Crossref]
J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped Tm:YAG waveguide laser at 2 µm,” Electron. Lett. 37(14), 898–899 (2001).
[Crossref]
V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguiló, F. Díaz, and U. Grieber, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[Crossref]
M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]
F. Güell, Jna. Gavaldà, R. Solé, M. Aguiló, F. Díaz, M. Galan, and J. Massons, “1.48 and 1.84 μm thulium emissions in monoclinic KGd(WO4)2 single crystals,” J. Appl. Phys. 95, 919–923 (2004).
R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, and F. Díaz, “Growth of β-KGd1‑xNdx(WO4)2 single crystals in K2W2O7 solvents,” J. Cryst. Growth 169(3), 600–603 (1996).
[Crossref]
D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[Crossref]
A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
[Crossref]
Y. He, R. Kan, F. V. Englich, W. Liu, and B. J. Orr, “Simultaneous multi-laser, multi-species trace-level sensing of gas mixtures by rapidly swept continuous-wave cavity-ringdown spectroscopy,” Opt. Express 18(19), 20059–20071 (2010).
[Crossref]
[PubMed]
D. Geskus, S. Aravazhi, K. Wörhoff, and M. Pollnau, “High-power, broadly tunable, and low-quantum-defect KGd(1-x)Lu(x)(WO(4))(2):Yb(3+) channel waveguide lasers,” Opt. Express 18(25), 26107–26112 (2010).
[Crossref]
[PubMed]
S. Rivier, X. Mateos, V. Petrov, U. Griebner, Y. E. Romanyuk, C. N. Borca, F. Gardillou, and M. Pollnau, “Tm:KY(WO(4))(2) waveguide laser,” Opt. Express 15(9), 5885–5892 (2007).
[Crossref]
[PubMed]
W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Z. Subramanian, J. S. Wilkinson, E. Cantelar, D. Jaque, G. Lifante, M. Aguiló, and F. Díaz, “Mirrorless buried waveguide laser in monoclinic double tungstates fabricated by a novel combination of ion milling and liquid phase epitaxy,” Opt. Express 18(26), 26937–26945 (2010).
[Crossref]
D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010).
[Crossref]
[PubMed]
J. Wu, Z. Yao, J. Zong, and S. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32(6), 638–640 (2007).
[Crossref]
[PubMed]
Y. E. Romanyuk, C. N. Borca, M. Pollnau, S. Rivier, V. Petrov, and U. Griebner, “Yb-doped KY(WO4)2 planar waveguide laser,” Opt. Lett. 31(1), 53–55 (2006).
[Crossref]
[PubMed]
F. Gardillou, Y. E. Romanyuk, C. N. Borca, R.-P. Salathé, and M. Pollnau, “Lu, Gd codoped KY(WO(4))(2):Yb epitaxial layers: towards integrated optics based on KY(WO(4))(2).,” Opt. Lett. 32(5), 488–490 (2007).
[Crossref]
[PubMed]
D. P. Shepherd, D. J. B. Brinck, J. Wang, A. C. Tropper, D. C. Hanna, G. Kakarantzas, and P. D. Townsend, “1.9-µm operation of a Tm:lead germanate glass waveguide laser,” Opt. Lett. 19(13), 954–956 (1994).
[Crossref]
[PubMed]
L. R. Narasimhan, W. Goodman, and N. Patel, “Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4617–4621 (2001).
[Crossref]
[PubMed]
B. Timmer, W. Olthuis, and A. van den Berg, “Ammonia sensors and their applications – a review,” Sens. Actuators B Chem. 107(2), 666–677 (2005).
[Crossref]
Y. Peng, W. Zhang, L. Li, and Q. Yu, “Tunable fiber laser and fiber amplifier based photoacoustic spectrometer for trace gas detection,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 74(4), 924–927 (2009).
[Crossref]
[PubMed]
F. Fusari, R. R. Thomson, G. Jose, F. M. Bain, A. A. Lagatsky, N. D. Psaila, A. K. Kar, A. Jha, W. Sibbett, and C. T. A. Brown, “Ultrafast laser inscribed Tm3+:germanate glass waveguide laser at 1.9 μm,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Technical Digest (CD) (Optical Society of America, Washington DC, 2010), paper CTuU5.