M. Trusiak, M. Wielgus, and K. Patorski, “Advanced processing of optical fringe patterns by automated selective reconstruction and enhanced fast empirical mode decomposition,” Opt. Lasers Eng. 52, 230–240 (2014).
[Crossref]
H. Wang, S. Berujon, I. Pape, S. Rutishauser, C. David, and K. Sawhney, “At-wavelength metrology using the moiré fringe analysis method based on a two-dimensional grating interferometer,” Nucl. Instrum. Methods Phys. Res. A 710, 78–81 (2013).
[Crossref]
J. L. Flores, B. Bravo-Medina, and J. A. Ferrari, “One-frame two-dimensional deflectometry for phase retrieval by addition of orthogonal fringe patterns,” Appl. Opt. 52(26), 6537–6542 (2013).
[Crossref]
[PubMed]
Y. Zhou, S.-T. Zhou, Z.-Y. Zhong, and H.-G. Li, “A de-illumination scheme for face recognition based on fast decomposition and detail feature fusion,” Opt. Express 21(9), 11294–11308 (2013).
[Crossref]
[PubMed]
Z. Yang, B. W.-K. Ling, and C. Bingham, “Trend extraction based on separations of consecutive empirical mode decomposition components in Hilbert marginal spectrum,” Measurement 46(8), 2481–2491 (2013).
[Crossref]
S. Osman and W. Wang, “An enhanced Hilbert-Huang transform technique for bearing condition monitoring,” Meas. Sci. Technol. 24(8), 085004 (2013).
[Crossref]
M. Trusiak, K. Patorski, and M. Wielgus, “Adaptive enhancement of optical fringe patterns by selective reconstruction using FABEMD algorithm and Hilbert spiral transform,” Opt. Express 20(21), 23463–23479 (2012).
[Crossref]
[PubMed]
X. Zhou, T. Yang, H. Zou, and H. Zhao, “Multivariate empirical mode decomposition approach for adaptive denoising of fringe patterns,” Opt. Lett. 37(11), 1904–1906 (2012).
[Crossref]
[PubMed]
X. Zhou, A. G. Podoleanu, Z. Yang, T. Yang, and H. Zhao, “Morphological operation-based bi-dimensional empirical mode decomposition for automatic background removal of fringe patterns,” Opt. Express 20(22), 24247–24262 (2012).
[Crossref]
[PubMed]
N. Sun, Y. Song, J. Wang, Z.-H. Li, and A.-Z. He, “Volume moiré tomography based on double cross gratings for real three-dimensional flow field diagnosis,” Appl. Opt. 51(34), 8081–8089 (2012).
[Crossref]
[PubMed]
S. Berujon, H. Wang, I. Pape, K. Sawhney, S. Rutishauser, and C. David, “X-ray submicrometer phase contrast imaging with a Fresnel zone plate and a two dimensional grating interferometer,” Opt. Lett. 37(10), 1622–1624 (2012).
[Crossref]
[PubMed]
K. Pokorski and K. Patorski, “Separation of complex fringe patterns using two-dimensional continuous wavelet transform,” Appl. Opt. 51(35), 8433–8439 (2012).
[Crossref]
[PubMed]
M. B. Bernini, A. Federico, and G. H. Kaufmann, “Phase measurement in temporal speckle pattern interferometry signals presenting low-modulated regions by means of the bidimensional empirical mode decomposition,” Appl. Opt. 50(5), 641–647 (2011).
[Crossref]
[PubMed]
M. Wielgus and K. Patorski, “Evaluation of amplitude encoded fringe patterns using the bidimensional empirical mode decomposition and the 2D Hilbert transform generalizations,” Appl. Opt. 50(28), 5513–5523 (2011).
[Crossref]
[PubMed]
Y. Zhou and H. Li, “Adaptive noise reduction method for DSPI fringes based on bi-dimensional ensemble empirical mode decomposition,” Opt. Express 19(19), 18207–18215 (2011).
[Crossref]
[PubMed]
H. Itoh, K. Nagai, G. Sato, K. Yamaguchi, T. Nakamura, T. Kondoh, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Two-dimensional grating-based X-ray phase-contrast imaging using Fourier transform phase retrieval,” Opt. Express 19(4), 3339–3346 (2011).
[Crossref]
[PubMed]
K. S. Morgan, D. M. Paganin, and K. K. Siu, “Quantitative single-exposure x-ray phase contrast imaging using a single attenuation grid,” Opt. Express 19(20), 19781–19789 (2011).
[Crossref]
[PubMed]
S. Rutishauser, I. Zanette, T. Weitkamp, T. Donath, and C. David, “At-wavelength characterization of refractive x-ray lenses using a two-dimensional grating interferometer,” Appl. Phys. Lett. 99(22), 221104 (2011).
[Crossref]
K. Patorski, K. Pokorski, and M. Trusiak, “Fourier domain interpretation of real and pseudo-moiré phenomena,” Opt. Express 19(27), 26065–26078 (2011).
[Crossref]
[PubMed]
H. H. Wen, E. E. Bennett, R. Kopace, A. F. Stein, and V. Pai, “Single-shot x-ray differential phase-contrast and diffraction imaging using two-dimensional transmission gratings,” Opt. Lett. 35(12), 1932–1934 (2010).
[Crossref]
[PubMed]
I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-dimensional x-ray grating interferometer,” Phys. Rev. Lett. 105(24), 248102 (2010).
[Crossref]
[PubMed]
I. Zanette, C. David, S. Rutishauser, T. Weitkamp, M. Denecke, and C. T. Walker, “2D grating simulation for X-ray phase-contrast and dark-field imaging with a Talbot interferometer,” AIP Conf. Proc. 1221, 73–79 (2010).
[Crossref]
S. M. A. Bhuiyan, N. O. Attoh-Okine, K. E. Barner, A. Y. Ayenu-Prah, and R. R. Adhami, “Bidimensional empirical mode decomposition using various interpolation techniques,” Adv. Adapt. Data Anal. 1(2), 309–338 (2009).
[Crossref]
M. B. Bernini, A. Federico, and G. H. Kaufmann, “Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform,” Appl. Opt. 48(36), 6862–6869 (2009).
[Crossref]
[PubMed]
X. Zhou, H. Zhao, and T. Jiang, “Adaptive analysis of optical fringe patterns using ensemble empirical mode decomposition algorithm,” Opt. Lett. 34(13), 2033–2035 (2009).
[Crossref]
[PubMed]
L. Xiong and S. Jia, “Phase-error analysis and elimination for nonsinusoidal waveforms in Hilbert transform digital-fringe projection profilometry,” Opt. Lett. 34(15), 2363–2365 (2009).
[Crossref]
[PubMed]
S. M. A. Bhuiyan, R. R. Adhami, and J. F. Khan, “Fast and adaptive bidimensional empirical mode decomposition using order-statistics filter based envelope estimation,” EURASIP J. Adv. Signal Process. 2008(21), 728356 (2008).
[Crossref]
G. Rilling and P. Flandrin, “One or two frequencies? The empirical mode decomposition answers,” IEEE Trans. Signal Process. 56(1), 85–95 (2008).
[Crossref]
M. B. Bernini, A. Federico, and G. H. Kaufmann, “Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition,” Appl. Opt. 47(14), 2592–2598 (2008).
[Crossref]
[PubMed]
Z. Wu, N. E. Huang, S. R. Long, and C. K. Peng, “On the trend, detrending, and variability of nonlinear and nonstationary time series,” Proc. Natl. Acad. Sci. U.S.A. 104(38), 14889–14894 (2007).
[Crossref]
[PubMed]
C. Damerval, S. Meignen, and V. Perrier, “A fast algorithm for bidimensional EMD,” IEEE Signal Process. Lett. 12(10), 701–704 (2005).
[Crossref]
J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and P. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vis. Comput. 21(12), 1019–1026 (2003).
[Crossref]
Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett. 9(3), 81–84 (2002).
[Crossref]
K. G. Larkin, D. J. Bone, and M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform,” J. Opt. Soc. Am. A 18(8), 1862–1870 (2001).
[Crossref]
[PubMed]
K. G. Larkin, D. J. Bone, and M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns. II. Stationary phase analysis of the spiral phase quadrature transform,” J. Opt. Soc. Am. A 18(8), 1871–1881 (2001).
[Crossref]
[PubMed]
J. A. Quiroga, D. Crespo, and E. Bernabeu, “Fourier transform method for automatic processing of moiré deflectograms,” Opt. Eng. 38(6), 974–982 (1999).
[Crossref]
H. Canabal and E. Bernabeu, “Phase extraction methods for analysis of crossed fringe patterns,” Proc. SPIE 3744, 231–240 (1999).
[Crossref]
C. Studholme, D. L. G. Hill, and D. J. Hawkes, “An overlap invariant entropy measure of 3D medical image alignment,” Pattern Recognit. 32(1), 71–86 (1999).
[Crossref]
H. Canabal, J. A. Quiroga, and E. Bernabeu, “Improved phase-shifting method for automatic processing of moiré deflectograms,” Appl. Opt. 37(26), 6227–6233 (1998).
[Crossref]
[PubMed]
N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[Crossref]
J. Schmit, K. Patorski, and K. Creath, “Simultaneous registration of in- and out-of-plane displacements in modified grating interferometry,” Opt. Eng. 36(8), 2240–2248 (1997).
[Crossref]
C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for convex hulls,” ACM Trans. Math. Softw. 22(4), 469–483 (1996).
[Crossref]
M. Pirga and M. Kujawinska, “Two directional spatial-carrier phase-shifting method for analysis of crossed and closed fringe patterns,” Opt. Eng. 34(8), 2459–2466 (1995).
[Crossref]
K. Patorski, “Diffraction effects in moiré deflectometry: comment,” J. Opt. Soc. Am. A 3(5), 667–668 (1986).
[Crossref]
E. Keren and O. Kafri, “Diffraction effects in moiré deflectometry: reply to comment,” J. Opt. Soc. Am. A 3(5), 669–670 (1986).
[Crossref]
K. Patorski, “Grating shearing interferometer with variable shear and fringe orientation,” Appl. Opt. 25(22), 4192–4198 (1986).
[Crossref]
[PubMed]
K. Patorski, “Conjugate lateral shear interferometry and its implementation,” J. Opt. Soc. Am. A 3(11), 1862–1870 (1986).
[Crossref]
S. M. A. Bhuiyan, N. O. Attoh-Okine, K. E. Barner, A. Y. Ayenu-Prah, and R. R. Adhami, “Bidimensional empirical mode decomposition using various interpolation techniques,” Adv. Adapt. Data Anal. 1(2), 309–338 (2009).
[Crossref]
S. M. A. Bhuiyan, R. R. Adhami, and J. F. Khan, “Fast and adaptive bidimensional empirical mode decomposition using order-statistics filter based envelope estimation,” EURASIP J. Adv. Signal Process. 2008(21), 728356 (2008).
[Crossref]
M. Wielgus, M. Bartys, A. Antoniewicz, and B. Putz, “Fast and adaptive bidimensional empirical mode decomposition for the real-time video fusion, ” in Proc. 15th Int. Conf. Inform. Fusion (FUSION,2012), 649–654.
S. M. A. Bhuiyan, N. O. Attoh-Okine, K. E. Barner, A. Y. Ayenu-Prah, and R. R. Adhami, “Bidimensional empirical mode decomposition using various interpolation techniques,” Adv. Adapt. Data Anal. 1(2), 309–338 (2009).
[Crossref]
S. M. A. Bhuiyan, N. O. Attoh-Okine, K. E. Barner, A. Y. Ayenu-Prah, and R. R. Adhami, “Bidimensional empirical mode decomposition using various interpolation techniques,” Adv. Adapt. Data Anal. 1(2), 309–338 (2009).
[Crossref]
C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for convex hulls,” ACM Trans. Math. Softw. 22(4), 469–483 (1996).
[Crossref]
S. M. A. Bhuiyan, N. O. Attoh-Okine, K. E. Barner, A. Y. Ayenu-Prah, and R. R. Adhami, “Bidimensional empirical mode decomposition using various interpolation techniques,” Adv. Adapt. Data Anal. 1(2), 309–338 (2009).
[Crossref]
M. Wielgus, M. Bartys, A. Antoniewicz, and B. Putz, “Fast and adaptive bidimensional empirical mode decomposition for the real-time video fusion, ” in Proc. 15th Int. Conf. Inform. Fusion (FUSION,2012), 649–654.
J. A. Quiroga, D. Crespo, and E. Bernabeu, “Fourier transform method for automatic processing of moiré deflectograms,” Opt. Eng. 38(6), 974–982 (1999).
[Crossref]
H. Canabal and E. Bernabeu, “Phase extraction methods for analysis of crossed fringe patterns,” Proc. SPIE 3744, 231–240 (1999).
[Crossref]
H. Canabal, J. A. Quiroga, and E. Bernabeu, “Improved phase-shifting method for automatic processing of moiré deflectograms,” Appl. Opt. 37(26), 6227–6233 (1998).
[Crossref]
[PubMed]
M. B. Bernini, A. Federico, and G. H. Kaufmann, “Phase measurement in temporal speckle pattern interferometry signals presenting low-modulated regions by means of the bidimensional empirical mode decomposition,” Appl. Opt. 50(5), 641–647 (2011).
[Crossref]
[PubMed]
M. B. Bernini, A. Federico, and G. H. Kaufmann, “Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform,” Appl. Opt. 48(36), 6862–6869 (2009).
[Crossref]
[PubMed]
M. B. Bernini, A. Federico, and G. H. Kaufmann, “Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition,” Appl. Opt. 47(14), 2592–2598 (2008).
[Crossref]
[PubMed]
H. Wang, S. Berujon, I. Pape, S. Rutishauser, C. David, and K. Sawhney, “At-wavelength metrology using the moiré fringe analysis method based on a two-dimensional grating interferometer,” Nucl. Instrum. Methods Phys. Res. A 710, 78–81 (2013).
[Crossref]
S. Berujon, H. Wang, I. Pape, K. Sawhney, S. Rutishauser, and C. David, “X-ray submicrometer phase contrast imaging with a Fresnel zone plate and a two dimensional grating interferometer,” Opt. Lett. 37(10), 1622–1624 (2012).
[Crossref]
[PubMed]
S. M. A. Bhuiyan, N. O. Attoh-Okine, K. E. Barner, A. Y. Ayenu-Prah, and R. R. Adhami, “Bidimensional empirical mode decomposition using various interpolation techniques,” Adv. Adapt. Data Anal. 1(2), 309–338 (2009).
[Crossref]
S. M. A. Bhuiyan, R. R. Adhami, and J. F. Khan, “Fast and adaptive bidimensional empirical mode decomposition using order-statistics filter based envelope estimation,” EURASIP J. Adv. Signal Process. 2008(21), 728356 (2008).
[Crossref]
Z. Yang, B. W.-K. Ling, and C. Bingham, “Trend extraction based on separations of consecutive empirical mode decomposition components in Hilbert marginal spectrum,” Measurement 46(8), 2481–2491 (2013).
[Crossref]
K. G. Larkin, D. J. Bone, and M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform,” J. Opt. Soc. Am. A 18(8), 1862–1870 (2001).
[Crossref]
[PubMed]
K. G. Larkin, D. J. Bone, and M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns. II. Stationary phase analysis of the spiral phase quadrature transform,” J. Opt. Soc. Am. A 18(8), 1871–1881 (2001).
[Crossref]
[PubMed]
J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and P. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vis. Comput. 21(12), 1019–1026 (2003).
[Crossref]
Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett. 9(3), 81–84 (2002).
[Crossref]
J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and P. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vis. Comput. 21(12), 1019–1026 (2003).
[Crossref]
J. Schmit, K. Patorski, and K. Creath, “Simultaneous registration of in- and out-of-plane displacements in modified grating interferometry,” Opt. Eng. 36(8), 2240–2248 (1997).
[Crossref]
J. A. Quiroga, D. Crespo, and E. Bernabeu, “Fourier transform method for automatic processing of moiré deflectograms,” Opt. Eng. 38(6), 974–982 (1999).
[Crossref]
C. Damerval, S. Meignen, and V. Perrier, “A fast algorithm for bidimensional EMD,” IEEE Signal Process. Lett. 12(10), 701–704 (2005).
[Crossref]
H. Wang, S. Berujon, I. Pape, S. Rutishauser, C. David, and K. Sawhney, “At-wavelength metrology using the moiré fringe analysis method based on a two-dimensional grating interferometer,” Nucl. Instrum. Methods Phys. Res. A 710, 78–81 (2013).
[Crossref]
S. Berujon, H. Wang, I. Pape, K. Sawhney, S. Rutishauser, and C. David, “X-ray submicrometer phase contrast imaging with a Fresnel zone plate and a two dimensional grating interferometer,” Opt. Lett. 37(10), 1622–1624 (2012).
[Crossref]
[PubMed]
S. Rutishauser, I. Zanette, T. Weitkamp, T. Donath, and C. David, “At-wavelength characterization of refractive x-ray lenses using a two-dimensional grating interferometer,” Appl. Phys. Lett. 99(22), 221104 (2011).
[Crossref]
I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-dimensional x-ray grating interferometer,” Phys. Rev. Lett. 105(24), 248102 (2010).
[Crossref]
[PubMed]
I. Zanette, C. David, S. Rutishauser, T. Weitkamp, M. Denecke, and C. T. Walker, “2D grating simulation for X-ray phase-contrast and dark-field imaging with a Talbot interferometer,” AIP Conf. Proc. 1221, 73–79 (2010).
[Crossref]
J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and P. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vis. Comput. 21(12), 1019–1026 (2003).
[Crossref]
H. Itoh, K. Nagai, G. Sato, K. Yamaguchi, T. Nakamura, T. Kondoh, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Two-dimensional grating-based X-ray phase-contrast imaging using Fourier transform phase retrieval,” Opt. Express 19(4), 3339–3346 (2011).
[Crossref]
[PubMed]
I. Zanette, C. David, S. Rutishauser, T. Weitkamp, M. Denecke, and C. T. Walker, “2D grating simulation for X-ray phase-contrast and dark-field imaging with a Talbot interferometer,” AIP Conf. Proc. 1221, 73–79 (2010).
[Crossref]
C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for convex hulls,” ACM Trans. Math. Softw. 22(4), 469–483 (1996).
[Crossref]
S. Rutishauser, I. Zanette, T. Weitkamp, T. Donath, and C. David, “At-wavelength characterization of refractive x-ray lenses using a two-dimensional grating interferometer,” Appl. Phys. Lett. 99(22), 221104 (2011).
[Crossref]
I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-dimensional x-ray grating interferometer,” Phys. Rev. Lett. 105(24), 248102 (2010).
[Crossref]
[PubMed]
M. B. Bernini, A. Federico, and G. H. Kaufmann, “Phase measurement in temporal speckle pattern interferometry signals presenting low-modulated regions by means of the bidimensional empirical mode decomposition,” Appl. Opt. 50(5), 641–647 (2011).
[Crossref]
[PubMed]
M. B. Bernini, A. Federico, and G. H. Kaufmann, “Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform,” Appl. Opt. 48(36), 6862–6869 (2009).
[Crossref]
[PubMed]
M. B. Bernini, A. Federico, and G. H. Kaufmann, “Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition,” Appl. Opt. 47(14), 2592–2598 (2008).
[Crossref]
[PubMed]
G. Rilling and P. Flandrin, “One or two frequencies? The empirical mode decomposition answers,” IEEE Trans. Signal Process. 56(1), 85–95 (2008).
[Crossref]
C. Studholme, D. L. G. Hill, and D. J. Hawkes, “An overlap invariant entropy measure of 3D medical image alignment,” Pattern Recognit. 32(1), 71–86 (1999).
[Crossref]
C. Studholme, D. L. G. Hill, and D. J. Hawkes, “An overlap invariant entropy measure of 3D medical image alignment,” Pattern Recognit. 32(1), 71–86 (1999).
[Crossref]
Z. Wu, N. E. Huang, S. R. Long, and C. K. Peng, “On the trend, detrending, and variability of nonlinear and nonstationary time series,” Proc. Natl. Acad. Sci. U.S.A. 104(38), 14889–14894 (2007).
[Crossref]
[PubMed]
N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[Crossref]
C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for convex hulls,” ACM Trans. Math. Softw. 22(4), 469–483 (1996).
[Crossref]
H. Itoh, K. Nagai, G. Sato, K. Yamaguchi, T. Nakamura, T. Kondoh, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Two-dimensional grating-based X-ray phase-contrast imaging using Fourier transform phase retrieval,” Opt. Express 19(4), 3339–3346 (2011).
[Crossref]
[PubMed]
E. Keren and O. Kafri, “Diffraction effects in moiré deflectometry: reply to comment,” J. Opt. Soc. Am. A 3(5), 669–670 (1986).
[Crossref]
E. Bar-Ziv, S. Sgulim, O. Kafri, and E. Keren, “Temperature mapping in flames by moire deflectometry,” Appl. Opt. 22(5), 698–705 (1983).
[Crossref]
[PubMed]
O. Kafri, “Noncoherent method for mapping phase objects,” Opt. Lett. 5(12), 555–557 (1980).
[Crossref]
[PubMed]
M. B. Bernini, A. Federico, and G. H. Kaufmann, “Phase measurement in temporal speckle pattern interferometry signals presenting low-modulated regions by means of the bidimensional empirical mode decomposition,” Appl. Opt. 50(5), 641–647 (2011).
[Crossref]
[PubMed]
M. B. Bernini, A. Federico, and G. H. Kaufmann, “Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform,” Appl. Opt. 48(36), 6862–6869 (2009).
[Crossref]
[PubMed]
M. B. Bernini, A. Federico, and G. H. Kaufmann, “Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition,” Appl. Opt. 47(14), 2592–2598 (2008).
[Crossref]
[PubMed]
S. M. A. Bhuiyan, R. R. Adhami, and J. F. Khan, “Fast and adaptive bidimensional empirical mode decomposition using order-statistics filter based envelope estimation,” EURASIP J. Adv. Signal Process. 2008(21), 728356 (2008).
[Crossref]
H. Itoh, K. Nagai, G. Sato, K. Yamaguchi, T. Nakamura, T. Kondoh, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Two-dimensional grating-based X-ray phase-contrast imaging using Fourier transform phase retrieval,” Opt. Express 19(4), 3339–3346 (2011).
[Crossref]
[PubMed]
M. Pirga and M. Kujawinska, “Two directional spatial-carrier phase-shifting method for analysis of crossed and closed fringe patterns,” Opt. Eng. 34(8), 2459–2466 (1995).
[Crossref]
K. G. Larkin, D. J. Bone, and M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform,” J. Opt. Soc. Am. A 18(8), 1862–1870 (2001).
[Crossref]
[PubMed]
K. G. Larkin, D. J. Bone, and M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns. II. Stationary phase analysis of the spiral phase quadrature transform,” J. Opt. Soc. Am. A 18(8), 1871–1881 (2001).
[Crossref]
[PubMed]
Z. Yang, B. W.-K. Ling, and C. Bingham, “Trend extraction based on separations of consecutive empirical mode decomposition components in Hilbert marginal spectrum,” Measurement 46(8), 2481–2491 (2013).
[Crossref]
N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[Crossref]
A. W. Lohmann and D. E. Silva, “A Talbot interferometer with circular gratings,” Opt. Commun. 4(5), 326–328 (1972).
[Crossref]
A. W. Lohmann and D. E. Silva, “An interferometer based on the Talbot effect,” Opt. Commun. 2(9), 413–415 (1971).
[Crossref]
Z. Wu, N. E. Huang, S. R. Long, and C. K. Peng, “On the trend, detrending, and variability of nonlinear and nonstationary time series,” Proc. Natl. Acad. Sci. U.S.A. 104(38), 14889–14894 (2007).
[Crossref]
[PubMed]
N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[Crossref]
C. Damerval, S. Meignen, and V. Perrier, “A fast algorithm for bidimensional EMD,” IEEE Signal Process. Lett. 12(10), 701–704 (2005).
[Crossref]
H. Itoh, K. Nagai, G. Sato, K. Yamaguchi, T. Nakamura, T. Kondoh, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Two-dimensional grating-based X-ray phase-contrast imaging using Fourier transform phase retrieval,” Opt. Express 19(4), 3339–3346 (2011).
[Crossref]
[PubMed]
H. Itoh, K. Nagai, G. Sato, K. Yamaguchi, T. Nakamura, T. Kondoh, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Two-dimensional grating-based X-ray phase-contrast imaging using Fourier transform phase retrieval,” Opt. Express 19(4), 3339–3346 (2011).
[Crossref]
[PubMed]
J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and P. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vis. Comput. 21(12), 1019–1026 (2003).
[Crossref]
J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and P. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vis. Comput. 21(12), 1019–1026 (2003).
[Crossref]
S. Osman and W. Wang, “An enhanced Hilbert-Huang transform technique for bearing condition monitoring,” Meas. Sci. Technol. 24(8), 085004 (2013).
[Crossref]
H. Itoh, K. Nagai, G. Sato, K. Yamaguchi, T. Nakamura, T. Kondoh, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Two-dimensional grating-based X-ray phase-contrast imaging using Fourier transform phase retrieval,” Opt. Express 19(4), 3339–3346 (2011).
[Crossref]
[PubMed]
H. Wang, S. Berujon, I. Pape, S. Rutishauser, C. David, and K. Sawhney, “At-wavelength metrology using the moiré fringe analysis method based on a two-dimensional grating interferometer,” Nucl. Instrum. Methods Phys. Res. A 710, 78–81 (2013).
[Crossref]
S. Berujon, H. Wang, I. Pape, K. Sawhney, S. Rutishauser, and C. David, “X-ray submicrometer phase contrast imaging with a Fresnel zone plate and a two dimensional grating interferometer,” Opt. Lett. 37(10), 1622–1624 (2012).
[Crossref]
[PubMed]
M. Trusiak, M. Wielgus, and K. Patorski, “Advanced processing of optical fringe patterns by automated selective reconstruction and enhanced fast empirical mode decomposition,” Opt. Lasers Eng. 52, 230–240 (2014).
[Crossref]
M. Trusiak, K. Patorski, and M. Wielgus, “Adaptive enhancement of optical fringe patterns by selective reconstruction using FABEMD algorithm and Hilbert spiral transform,” Opt. Express 20(21), 23463–23479 (2012).
[Crossref]
[PubMed]
K. Pokorski and K. Patorski, “Separation of complex fringe patterns using two-dimensional continuous wavelet transform,” Appl. Opt. 51(35), 8433–8439 (2012).
[Crossref]
[PubMed]
M. Wielgus and K. Patorski, “Evaluation of amplitude encoded fringe patterns using the bidimensional empirical mode decomposition and the 2D Hilbert transform generalizations,” Appl. Opt. 50(28), 5513–5523 (2011).
[Crossref]
[PubMed]
K. Patorski, K. Pokorski, and M. Trusiak, “Fourier domain interpretation of real and pseudo-moiré phenomena,” Opt. Express 19(27), 26065–26078 (2011).
[Crossref]
[PubMed]
J. Schmit, K. Patorski, and K. Creath, “Simultaneous registration of in- and out-of-plane displacements in modified grating interferometry,” Opt. Eng. 36(8), 2240–2248 (1997).
[Crossref]
K. Patorski, “Diffraction effects in moiré deflectometry: comment,” J. Opt. Soc. Am. A 3(5), 667–668 (1986).
[Crossref]
K. Patorski, “Grating shearing interferometer with variable shear and fringe orientation,” Appl. Opt. 25(22), 4192–4198 (1986).
[Crossref]
[PubMed]
K. Patorski, “Conjugate lateral shear interferometry and its implementation,” J. Opt. Soc. Am. A 3(11), 1862–1870 (1986).
[Crossref]
Z. Wu, N. E. Huang, S. R. Long, and C. K. Peng, “On the trend, detrending, and variability of nonlinear and nonstationary time series,” Proc. Natl. Acad. Sci. U.S.A. 104(38), 14889–14894 (2007).
[Crossref]
[PubMed]
C. Damerval, S. Meignen, and V. Perrier, “A fast algorithm for bidimensional EMD,” IEEE Signal Process. Lett. 12(10), 701–704 (2005).
[Crossref]
M. Pirga and M. Kujawinska, “Two directional spatial-carrier phase-shifting method for analysis of crossed and closed fringe patterns,” Opt. Eng. 34(8), 2459–2466 (1995).
[Crossref]
M. Wielgus, M. Bartys, A. Antoniewicz, and B. Putz, “Fast and adaptive bidimensional empirical mode decomposition for the real-time video fusion, ” in Proc. 15th Int. Conf. Inform. Fusion (FUSION,2012), 649–654.
J. Villa, J. A. Quiroga, and M. Servín, “Improved regularized phase-tracking technique for the processing of squared-grating deflectograms,” Appl. Opt. 39(4), 502–508 (2000).
[Crossref]
[PubMed]
J. A. Quiroga, D. Crespo, and E. Bernabeu, “Fourier transform method for automatic processing of moiré deflectograms,” Opt. Eng. 38(6), 974–982 (1999).
[Crossref]
H. Canabal, J. A. Quiroga, and E. Bernabeu, “Improved phase-shifting method for automatic processing of moiré deflectograms,” Appl. Opt. 37(26), 6227–6233 (1998).
[Crossref]
[PubMed]
G. Rilling and P. Flandrin, “One or two frequencies? The empirical mode decomposition answers,” IEEE Trans. Signal Process. 56(1), 85–95 (2008).
[Crossref]
H. Wang, S. Berujon, I. Pape, S. Rutishauser, C. David, and K. Sawhney, “At-wavelength metrology using the moiré fringe analysis method based on a two-dimensional grating interferometer,” Nucl. Instrum. Methods Phys. Res. A 710, 78–81 (2013).
[Crossref]
S. Berujon, H. Wang, I. Pape, K. Sawhney, S. Rutishauser, and C. David, “X-ray submicrometer phase contrast imaging with a Fresnel zone plate and a two dimensional grating interferometer,” Opt. Lett. 37(10), 1622–1624 (2012).
[Crossref]
[PubMed]
S. Rutishauser, I. Zanette, T. Weitkamp, T. Donath, and C. David, “At-wavelength characterization of refractive x-ray lenses using a two-dimensional grating interferometer,” Appl. Phys. Lett. 99(22), 221104 (2011).
[Crossref]
I. Zanette, C. David, S. Rutishauser, T. Weitkamp, M. Denecke, and C. T. Walker, “2D grating simulation for X-ray phase-contrast and dark-field imaging with a Talbot interferometer,” AIP Conf. Proc. 1221, 73–79 (2010).
[Crossref]
I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-dimensional x-ray grating interferometer,” Phys. Rev. Lett. 105(24), 248102 (2010).
[Crossref]
[PubMed]
H. Itoh, K. Nagai, G. Sato, K. Yamaguchi, T. Nakamura, T. Kondoh, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Two-dimensional grating-based X-ray phase-contrast imaging using Fourier transform phase retrieval,” Opt. Express 19(4), 3339–3346 (2011).
[Crossref]
[PubMed]
H. Wang, S. Berujon, I. Pape, S. Rutishauser, C. David, and K. Sawhney, “At-wavelength metrology using the moiré fringe analysis method based on a two-dimensional grating interferometer,” Nucl. Instrum. Methods Phys. Res. A 710, 78–81 (2013).
[Crossref]
S. Berujon, H. Wang, I. Pape, K. Sawhney, S. Rutishauser, and C. David, “X-ray submicrometer phase contrast imaging with a Fresnel zone plate and a two dimensional grating interferometer,” Opt. Lett. 37(10), 1622–1624 (2012).
[Crossref]
[PubMed]
J. Schmit, K. Patorski, and K. Creath, “Simultaneous registration of in- and out-of-plane displacements in modified grating interferometry,” Opt. Eng. 36(8), 2240–2248 (1997).
[Crossref]
H. Itoh, K. Nagai, G. Sato, K. Yamaguchi, T. Nakamura, T. Kondoh, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Two-dimensional grating-based X-ray phase-contrast imaging using Fourier transform phase retrieval,” Opt. Express 19(4), 3339–3346 (2011).
[Crossref]
[PubMed]
N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[Crossref]
N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[Crossref]
C. Studholme, D. L. G. Hill, and D. J. Hawkes, “An overlap invariant entropy measure of 3D medical image alignment,” Pattern Recognit. 32(1), 71–86 (1999).
[Crossref]
H. Itoh, K. Nagai, G. Sato, K. Yamaguchi, T. Nakamura, T. Kondoh, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Two-dimensional grating-based X-ray phase-contrast imaging using Fourier transform phase retrieval,” Opt. Express 19(4), 3339–3346 (2011).
[Crossref]
[PubMed]
M. Trusiak, M. Wielgus, and K. Patorski, “Advanced processing of optical fringe patterns by automated selective reconstruction and enhanced fast empirical mode decomposition,” Opt. Lasers Eng. 52, 230–240 (2014).
[Crossref]
M. Trusiak, K. Patorski, and M. Wielgus, “Adaptive enhancement of optical fringe patterns by selective reconstruction using FABEMD algorithm and Hilbert spiral transform,” Opt. Express 20(21), 23463–23479 (2012).
[Crossref]
[PubMed]
K. Patorski, K. Pokorski, and M. Trusiak, “Fourier domain interpretation of real and pseudo-moiré phenomena,” Opt. Express 19(27), 26065–26078 (2011).
[Crossref]
[PubMed]
N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[Crossref]
I. Zanette, C. David, S. Rutishauser, T. Weitkamp, M. Denecke, and C. T. Walker, “2D grating simulation for X-ray phase-contrast and dark-field imaging with a Talbot interferometer,” AIP Conf. Proc. 1221, 73–79 (2010).
[Crossref]
H. Wang, S. Berujon, I. Pape, S. Rutishauser, C. David, and K. Sawhney, “At-wavelength metrology using the moiré fringe analysis method based on a two-dimensional grating interferometer,” Nucl. Instrum. Methods Phys. Res. A 710, 78–81 (2013).
[Crossref]
S. Berujon, H. Wang, I. Pape, K. Sawhney, S. Rutishauser, and C. David, “X-ray submicrometer phase contrast imaging with a Fresnel zone plate and a two dimensional grating interferometer,” Opt. Lett. 37(10), 1622–1624 (2012).
[Crossref]
[PubMed]
S. Osman and W. Wang, “An enhanced Hilbert-Huang transform technique for bearing condition monitoring,” Meas. Sci. Technol. 24(8), 085004 (2013).
[Crossref]
Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett. 9(3), 81–84 (2002).
[Crossref]
S. Rutishauser, I. Zanette, T. Weitkamp, T. Donath, and C. David, “At-wavelength characterization of refractive x-ray lenses using a two-dimensional grating interferometer,” Appl. Phys. Lett. 99(22), 221104 (2011).
[Crossref]
I. Zanette, C. David, S. Rutishauser, T. Weitkamp, M. Denecke, and C. T. Walker, “2D grating simulation for X-ray phase-contrast and dark-field imaging with a Talbot interferometer,” AIP Conf. Proc. 1221, 73–79 (2010).
[Crossref]
I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-dimensional x-ray grating interferometer,” Phys. Rev. Lett. 105(24), 248102 (2010).
[Crossref]
[PubMed]
M. Trusiak, M. Wielgus, and K. Patorski, “Advanced processing of optical fringe patterns by automated selective reconstruction and enhanced fast empirical mode decomposition,” Opt. Lasers Eng. 52, 230–240 (2014).
[Crossref]
M. Trusiak, K. Patorski, and M. Wielgus, “Adaptive enhancement of optical fringe patterns by selective reconstruction using FABEMD algorithm and Hilbert spiral transform,” Opt. Express 20(21), 23463–23479 (2012).
[Crossref]
[PubMed]
M. Wielgus and K. Patorski, “Evaluation of amplitude encoded fringe patterns using the bidimensional empirical mode decomposition and the 2D Hilbert transform generalizations,” Appl. Opt. 50(28), 5513–5523 (2011).
[Crossref]
[PubMed]
M. Wielgus, M. Bartys, A. Antoniewicz, and B. Putz, “Fast and adaptive bidimensional empirical mode decomposition for the real-time video fusion, ” in Proc. 15th Int. Conf. Inform. Fusion (FUSION,2012), 649–654.
N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[Crossref]
Z. Wu, N. E. Huang, S. R. Long, and C. K. Peng, “On the trend, detrending, and variability of nonlinear and nonstationary time series,” Proc. Natl. Acad. Sci. U.S.A. 104(38), 14889–14894 (2007).
[Crossref]
[PubMed]
H. Itoh, K. Nagai, G. Sato, K. Yamaguchi, T. Nakamura, T. Kondoh, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Two-dimensional grating-based X-ray phase-contrast imaging using Fourier transform phase retrieval,” Opt. Express 19(4), 3339–3346 (2011).
[Crossref]
[PubMed]
X. Zhou, A. G. Podoleanu, Z. Yang, T. Yang, and H. Zhao, “Morphological operation-based bi-dimensional empirical mode decomposition for automatic background removal of fringe patterns,” Opt. Express 20(22), 24247–24262 (2012).
[Crossref]
[PubMed]
X. Zhou, T. Yang, H. Zou, and H. Zhao, “Multivariate empirical mode decomposition approach for adaptive denoising of fringe patterns,” Opt. Lett. 37(11), 1904–1906 (2012).
[Crossref]
[PubMed]
Z. Yang, B. W.-K. Ling, and C. Bingham, “Trend extraction based on separations of consecutive empirical mode decomposition components in Hilbert marginal spectrum,” Measurement 46(8), 2481–2491 (2013).
[Crossref]
X. Zhou, A. G. Podoleanu, Z. Yang, T. Yang, and H. Zhao, “Morphological operation-based bi-dimensional empirical mode decomposition for automatic background removal of fringe patterns,” Opt. Express 20(22), 24247–24262 (2012).
[Crossref]
[PubMed]
N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[Crossref]
S. Rutishauser, I. Zanette, T. Weitkamp, T. Donath, and C. David, “At-wavelength characterization of refractive x-ray lenses using a two-dimensional grating interferometer,” Appl. Phys. Lett. 99(22), 221104 (2011).
[Crossref]
I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-dimensional x-ray grating interferometer,” Phys. Rev. Lett. 105(24), 248102 (2010).
[Crossref]
[PubMed]
I. Zanette, C. David, S. Rutishauser, T. Weitkamp, M. Denecke, and C. T. Walker, “2D grating simulation for X-ray phase-contrast and dark-field imaging with a Talbot interferometer,” AIP Conf. Proc. 1221, 73–79 (2010).
[Crossref]
X. Zhou, A. G. Podoleanu, Z. Yang, T. Yang, and H. Zhao, “Morphological operation-based bi-dimensional empirical mode decomposition for automatic background removal of fringe patterns,” Opt. Express 20(22), 24247–24262 (2012).
[Crossref]
[PubMed]
X. Zhou, T. Yang, H. Zou, and H. Zhao, “Multivariate empirical mode decomposition approach for adaptive denoising of fringe patterns,” Opt. Lett. 37(11), 1904–1906 (2012).
[Crossref]
[PubMed]
X. Zhou, H. Zhao, and T. Jiang, “Adaptive analysis of optical fringe patterns using ensemble empirical mode decomposition algorithm,” Opt. Lett. 34(13), 2033–2035 (2009).
[Crossref]
[PubMed]
N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[Crossref]
X. Zhou, T. Yang, H. Zou, and H. Zhao, “Multivariate empirical mode decomposition approach for adaptive denoising of fringe patterns,” Opt. Lett. 37(11), 1904–1906 (2012).
[Crossref]
[PubMed]
X. Zhou, A. G. Podoleanu, Z. Yang, T. Yang, and H. Zhao, “Morphological operation-based bi-dimensional empirical mode decomposition for automatic background removal of fringe patterns,” Opt. Express 20(22), 24247–24262 (2012).
[Crossref]
[PubMed]
X. Zhou, H. Zhao, and T. Jiang, “Adaptive analysis of optical fringe patterns using ensemble empirical mode decomposition algorithm,” Opt. Lett. 34(13), 2033–2035 (2009).
[Crossref]
[PubMed]
C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for convex hulls,” ACM Trans. Math. Softw. 22(4), 469–483 (1996).
[Crossref]
S. M. A. Bhuiyan, N. O. Attoh-Okine, K. E. Barner, A. Y. Ayenu-Prah, and R. R. Adhami, “Bidimensional empirical mode decomposition using various interpolation techniques,” Adv. Adapt. Data Anal. 1(2), 309–338 (2009).
[Crossref]
I. Zanette, C. David, S. Rutishauser, T. Weitkamp, M. Denecke, and C. T. Walker, “2D grating simulation for X-ray phase-contrast and dark-field imaging with a Talbot interferometer,” AIP Conf. Proc. 1221, 73–79 (2010).
[Crossref]
J. Villa, J. A. Quiroga, and M. Servín, “Improved regularized phase-tracking technique for the processing of squared-grating deflectograms,” Appl. Opt. 39(4), 502–508 (2000).
[Crossref]
[PubMed]
J. L. Flores, B. Bravo-Medina, and J. A. Ferrari, “One-frame two-dimensional deflectometry for phase retrieval by addition of orthogonal fringe patterns,” Appl. Opt. 52(26), 6537–6542 (2013).
[Crossref]
[PubMed]
K. Pokorski and K. Patorski, “Separation of complex fringe patterns using two-dimensional continuous wavelet transform,” Appl. Opt. 51(35), 8433–8439 (2012).
[Crossref]
[PubMed]
S. Yokozeki and T. Suzuki, “Shearing interferometer using the grating as the beam splitter,” Appl. Opt. 10(7), 1575–1580 (1971).
[Crossref]
[PubMed]
S. Yokozeki and T. Suzuki, “Shearing interferometer using the grating as the beam splitter. Part 2,” Appl. Opt. 10(7), 1690–1693 (1971).
[Crossref]
[PubMed]
D. E. Silva, “Talbot interferometer for radial and lateral derivatives,” Appl. Opt. 11(11), 2613–2624 (1972).
[Crossref]
[PubMed]
E. Bar-Ziv, S. Sgulim, O. Kafri, and E. Keren, “Temperature mapping in flames by moire deflectometry,” Appl. Opt. 22(5), 698–705 (1983).
[Crossref]
[PubMed]
H. Canabal, J. A. Quiroga, and E. Bernabeu, “Improved phase-shifting method for automatic processing of moiré deflectograms,” Appl. Opt. 37(26), 6227–6233 (1998).
[Crossref]
[PubMed]
M. B. Bernini, A. Federico, and G. H. Kaufmann, “Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition,” Appl. Opt. 47(14), 2592–2598 (2008).
[Crossref]
[PubMed]
M. B. Bernini, A. Federico, and G. H. Kaufmann, “Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform,” Appl. Opt. 48(36), 6862–6869 (2009).
[Crossref]
[PubMed]
M. B. Bernini, A. Federico, and G. H. Kaufmann, “Phase measurement in temporal speckle pattern interferometry signals presenting low-modulated regions by means of the bidimensional empirical mode decomposition,” Appl. Opt. 50(5), 641–647 (2011).
[Crossref]
[PubMed]
M. Wielgus and K. Patorski, “Evaluation of amplitude encoded fringe patterns using the bidimensional empirical mode decomposition and the 2D Hilbert transform generalizations,” Appl. Opt. 50(28), 5513–5523 (2011).
[Crossref]
[PubMed]
N. Sun, Y. Song, J. Wang, Z.-H. Li, and A.-Z. He, “Volume moiré tomography based on double cross gratings for real three-dimensional flow field diagnosis,” Appl. Opt. 51(34), 8081–8089 (2012).
[Crossref]
[PubMed]
K. Patorski, “Grating shearing interferometer with variable shear and fringe orientation,” Appl. Opt. 25(22), 4192–4198 (1986).
[Crossref]
[PubMed]
S. Rutishauser, I. Zanette, T. Weitkamp, T. Donath, and C. David, “At-wavelength characterization of refractive x-ray lenses using a two-dimensional grating interferometer,” Appl. Phys. Lett. 99(22), 221104 (2011).
[Crossref]
S. M. A. Bhuiyan, R. R. Adhami, and J. F. Khan, “Fast and adaptive bidimensional empirical mode decomposition using order-statistics filter based envelope estimation,” EURASIP J. Adv. Signal Process. 2008(21), 728356 (2008).
[Crossref]
Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett. 9(3), 81–84 (2002).
[Crossref]
C. Damerval, S. Meignen, and V. Perrier, “A fast algorithm for bidimensional EMD,” IEEE Signal Process. Lett. 12(10), 701–704 (2005).
[Crossref]
G. Rilling and P. Flandrin, “One or two frequencies? The empirical mode decomposition answers,” IEEE Trans. Signal Process. 56(1), 85–95 (2008).
[Crossref]
J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and P. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vis. Comput. 21(12), 1019–1026 (2003).
[Crossref]
K. Patorski, “Diffraction effects in moiré deflectometry: comment,” J. Opt. Soc. Am. A 3(5), 667–668 (1986).
[Crossref]
E. Keren and O. Kafri, “Diffraction effects in moiré deflectometry: reply to comment,” J. Opt. Soc. Am. A 3(5), 669–670 (1986).
[Crossref]
K. G. Larkin, D. J. Bone, and M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform,” J. Opt. Soc. Am. A 18(8), 1862–1870 (2001).
[Crossref]
[PubMed]
K. G. Larkin, D. J. Bone, and M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns. II. Stationary phase analysis of the spiral phase quadrature transform,” J. Opt. Soc. Am. A 18(8), 1871–1881 (2001).
[Crossref]
[PubMed]
K. Patorski, “Conjugate lateral shear interferometry and its implementation,” J. Opt. Soc. Am. A 3(11), 1862–1870 (1986).
[Crossref]
S. Osman and W. Wang, “An enhanced Hilbert-Huang transform technique for bearing condition monitoring,” Meas. Sci. Technol. 24(8), 085004 (2013).
[Crossref]
Z. Yang, B. W.-K. Ling, and C. Bingham, “Trend extraction based on separations of consecutive empirical mode decomposition components in Hilbert marginal spectrum,” Measurement 46(8), 2481–2491 (2013).
[Crossref]
H. Wang, S. Berujon, I. Pape, S. Rutishauser, C. David, and K. Sawhney, “At-wavelength metrology using the moiré fringe analysis method based on a two-dimensional grating interferometer,” Nucl. Instrum. Methods Phys. Res. A 710, 78–81 (2013).
[Crossref]
A. W. Lohmann and D. E. Silva, “An interferometer based on the Talbot effect,” Opt. Commun. 2(9), 413–415 (1971).
[Crossref]
A. W. Lohmann and D. E. Silva, “A Talbot interferometer with circular gratings,” Opt. Commun. 4(5), 326–328 (1972).
[Crossref]
J. A. Quiroga, D. Crespo, and E. Bernabeu, “Fourier transform method for automatic processing of moiré deflectograms,” Opt. Eng. 38(6), 974–982 (1999).
[Crossref]
M. Pirga and M. Kujawinska, “Two directional spatial-carrier phase-shifting method for analysis of crossed and closed fringe patterns,” Opt. Eng. 34(8), 2459–2466 (1995).
[Crossref]
J. Schmit, K. Patorski, and K. Creath, “Simultaneous registration of in- and out-of-plane displacements in modified grating interferometry,” Opt. Eng. 36(8), 2240–2248 (1997).
[Crossref]
K. Patorski, K. Pokorski, and M. Trusiak, “Fourier domain interpretation of real and pseudo-moiré phenomena,” Opt. Express 19(27), 26065–26078 (2011).
[Crossref]
[PubMed]
X. Zhou, A. G. Podoleanu, Z. Yang, T. Yang, and H. Zhao, “Morphological operation-based bi-dimensional empirical mode decomposition for automatic background removal of fringe patterns,” Opt. Express 20(22), 24247–24262 (2012).
[Crossref]
[PubMed]
M. Trusiak, K. Patorski, and M. Wielgus, “Adaptive enhancement of optical fringe patterns by selective reconstruction using FABEMD algorithm and Hilbert spiral transform,” Opt. Express 20(21), 23463–23479 (2012).
[Crossref]
[PubMed]
Y. Zhou, S.-T. Zhou, Z.-Y. Zhong, and H.-G. Li, “A de-illumination scheme for face recognition based on fast decomposition and detail feature fusion,” Opt. Express 21(9), 11294–11308 (2013).
[Crossref]
[PubMed]
Y. Zhou and H. Li, “Adaptive noise reduction method for DSPI fringes based on bi-dimensional ensemble empirical mode decomposition,” Opt. Express 19(19), 18207–18215 (2011).
[Crossref]
[PubMed]
H. Itoh, K. Nagai, G. Sato, K. Yamaguchi, T. Nakamura, T. Kondoh, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Two-dimensional grating-based X-ray phase-contrast imaging using Fourier transform phase retrieval,” Opt. Express 19(4), 3339–3346 (2011).
[Crossref]
[PubMed]
K. S. Morgan, D. M. Paganin, and K. K. Siu, “Quantitative single-exposure x-ray phase contrast imaging using a single attenuation grid,” Opt. Express 19(20), 19781–19789 (2011).
[Crossref]
[PubMed]
M. Trusiak, M. Wielgus, and K. Patorski, “Advanced processing of optical fringe patterns by automated selective reconstruction and enhanced fast empirical mode decomposition,” Opt. Lasers Eng. 52, 230–240 (2014).
[Crossref]
S. Berujon, H. Wang, I. Pape, K. Sawhney, S. Rutishauser, and C. David, “X-ray submicrometer phase contrast imaging with a Fresnel zone plate and a two dimensional grating interferometer,” Opt. Lett. 37(10), 1622–1624 (2012).
[Crossref]
[PubMed]
H. H. Wen, E. E. Bennett, R. Kopace, A. F. Stein, and V. Pai, “Single-shot x-ray differential phase-contrast and diffraction imaging using two-dimensional transmission gratings,” Opt. Lett. 35(12), 1932–1934 (2010).
[Crossref]
[PubMed]
O. Kafri, “Noncoherent method for mapping phase objects,” Opt. Lett. 5(12), 555–557 (1980).
[Crossref]
[PubMed]
X. Zhou, T. Yang, H. Zou, and H. Zhao, “Multivariate empirical mode decomposition approach for adaptive denoising of fringe patterns,” Opt. Lett. 37(11), 1904–1906 (2012).
[Crossref]
[PubMed]
X. Zhou, H. Zhao, and T. Jiang, “Adaptive analysis of optical fringe patterns using ensemble empirical mode decomposition algorithm,” Opt. Lett. 34(13), 2033–2035 (2009).
[Crossref]
[PubMed]
L. Xiong and S. Jia, “Phase-error analysis and elimination for nonsinusoidal waveforms in Hilbert transform digital-fringe projection profilometry,” Opt. Lett. 34(15), 2363–2365 (2009).
[Crossref]
[PubMed]
C. Studholme, D. L. G. Hill, and D. J. Hawkes, “An overlap invariant entropy measure of 3D medical image alignment,” Pattern Recognit. 32(1), 71–86 (1999).
[Crossref]
I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-dimensional x-ray grating interferometer,” Phys. Rev. Lett. 105(24), 248102 (2010).
[Crossref]
[PubMed]
Z. Wu, N. E. Huang, S. R. Long, and C. K. Peng, “On the trend, detrending, and variability of nonlinear and nonstationary time series,” Proc. Natl. Acad. Sci. U.S.A. 104(38), 14889–14894 (2007).
[Crossref]
[PubMed]
N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[Crossref]
H. Canabal and E. Bernabeu, “Phase extraction methods for analysis of crossed fringe patterns,” Proc. SPIE 3744, 231–240 (1999).
[Crossref]
K. Patorski, “The self-imaging phenomenon and its applications,” in Progress in Optics, E. Wolf ed., vol. 27, 1–108 (Elsevier, 1989).
D. W. Robinson and G. Reid, Interferogram Analysis: Digital Fringe Pattern Measurement (Institute of Physics Publishing, 1993).
D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis for Optical Testing (Marcel Dekker, 1998).
D. Malacara, ed., Optical Shop Testing (John Wiley, 2007).
D. Post, B. Han, and P. Ifju, High Sensitivity Moirè (Springer, 1994).
K. Patorski, Handbook of the Moirè Fringe Technique (Elsevier, 1993).
L. Salbut, “Multichannel system for automatic analysis of u,v,w displacements in grating interferometry,” in Physical Research, W. Juptner and W. Osten, eds. 19, 282–287 (Akademie, 1993).
M. Kujawinska and M. Pirga, “Fringe pattern analysis for the investigation of dynamic processes in experimental mechanics,” in Physical Research, W. Juptner and W. Osten, eds. 19, 391–394 (Akademie, 1993).
P. Flandrin, P. Goncalves, and G. Rilling, “Detrending and denoising with empirical mode decomposition,” In EUSIPCO 2004. September 6–10, Vienna, Austria (2004)
G. Rilling, P. Flandrin, and P. Goncalves, “On empirical mode decomposition and its algorithms,” IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03, Grado (I), 2003.
M. Wielgus, M. Bartys, A. Antoniewicz, and B. Putz, “Fast and adaptive bidimensional empirical mode decomposition for the real-time video fusion, ” in Proc. 15th Int. Conf. Inform. Fusion (FUSION,2012), 649–654.
S. M. A. Bhuiyan, R. R. Adhami, and J. F. Khan, “A novel approach of fast and adaptive bidimensional empirical mode decomposition,” in Proc. IEEE Int. Conf. Acoustic, Speech and Signal Process. (Institute of Electrical and Electronics Engineers, 2008), 1313–1316.
[Crossref]
M. Trusiak and K. Patorski, “Space domain interpetation of incoherent moiré superimpositions using FABEMD,” Proc. SPIE 8697, 18th Czech-Polish-Slovak Optical Conference on Wave and Quantum Aspects of Contemporary Optics, 869704 (December 18, 2012).
[Crossref]