I. Iorsh, M. Glauser, G. Rossbach, J. Levrat, M. Cobet, R. Butté, N. Grandjean, M. A. Kaliteevski, R. A. Abram, and A. V. Kavokin, “Generic picture of the emission properties of III-nitride polariton laser diodes: Steady state and current modulation response,” Phys. Rev. B 86,125308 (2012).
[Crossref]
T. A. Fisher, A. A. Afshar, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts., “Vacuum Rabi coupling enhancement and Zeeman splitting in semiconductor quantum microcavity structures in a high magnetic field,” Phys. Rev. B 53, R10469 (1996).
[Crossref]
T. A. Fisher, A. M. Afshar, D. M. Whittaker, M. S. Skolnick, J. S. Roberts, G. Hill, and M. A. Pate, “Electric-field and temperature tuning of exciton-photon coupling in quantum microcavity structures,” Phys. Rev. B 51, 2600–2603 (1995).
[Crossref]
C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton
laser,” Nature 497, 348–352 (2013).
[Crossref]
J.-S. Tempel, F. Veit, M. Aßmann, L. E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, and M. Bayer, “Temperature dependence of pulsed polariton lasing in a GaAs microcavity,” New J. Phys. 14,083013 (2012).
[Crossref]
O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut., R. Idrissi Kaitouni, J. L. Staehli, F. Morier-Genoud, and B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett. 88,061105 (2006).
[Crossref]
D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, and J. Bloch, “Polariton light-emitting diode in a GaAs-based microcavity,” Phys. Rev. B 77,113303 (2008).
[Crossref]
J.-S. Tempel, F. Veit, M. Aßmann, L. E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, and M. Bayer, “Temperature dependence of pulsed polariton lasing in a GaAs microcavity,” New J. Phys. 14,083013 (2012).
[Crossref]
G. Dasbach, M. Bayer, M. Schwab, and A. Forchel, “Spatial photon trapping: tailoring the optical properties of semiconductor microcavities,” Semicond. Sci. Technol. 18,S339 (2003).
[Crossref]
P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid State Electrically Injected Exciton-Polariton Laser,” Phys. Rev. Lett. 110,206403 (2013).
[Crossref]
P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid State Electrically Injected Exciton-Polariton Laser,” Phys. Rev. Lett. 110,206403 (2013).
[Crossref]
D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, and J. Bloch, “Polariton light-emitting diode in a GaAs-based microcavity,” Phys. Rev. B 77,113303 (2008).
[Crossref]
M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, Le Si Dang, S. Kundermann, S. Mura, G. Bongiovanni, J. L. Steehli, and B. Deveaud, “High-temperature ultrafast polariton parametric
amplification in semiconductor microcavities,” Nature 414, 731–735 (2001).
[Crossref]
J. Bloch, T. Freixanet, J. Y. Marzin, V. Thierry-Mieg, and R. Planel, “Giant Rabi splitting in a microcavity containing distributed quantum wells,” Appl. Phys. Lett. 73, 1694–1696 (1998).
[Crossref]
M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, Le Si Dang, S. Kundermann, S. Mura, G. Bongiovanni, J. L. Steehli, and B. Deveaud, “High-temperature ultrafast polariton parametric
amplification in semiconductor microcavities,” Nature 414, 731–735 (2001).
[Crossref]
D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, and J. Bloch, “Polariton light-emitting diode in a GaAs-based microcavity,” Phys. Rev. B 77,113303 (2008).
[Crossref]
O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut., R. Idrissi Kaitouni, J. L. Staehli, F. Morier-Genoud, and B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett. 88,061105 (2006).
[Crossref]
D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B 32,1043 (1985).
[Crossref]
I. Iorsh, M. Glauser, G. Rossbach, J. Levrat, M. Cobet, R. Butté, N. Grandjean, M. A. Kaliteevski, R. A. Abram, and A. V. Kavokin, “Generic picture of the emission properties of III-nitride polariton laser diodes: Steady state and current modulation response,” Phys. Rev. B 86,125308 (2012).
[Crossref]
G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity,” Appl. Phys. Lett. 93,051102 (2008).
[Crossref]
C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an
exciton-polariton condensate array,” Nature 450, 529–532 (2007).
[Crossref]
G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity,” Appl. Phys. Lett. 93,051102 (2008).
[Crossref]
D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B 32,1043 (1985).
[Crossref]
G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity,” Appl. Phys. Lett. 93,051102 (2008).
[Crossref]
M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, Le Si Dang, S. Kundermann, S. Mura, G. Bongiovanni, J. L. Steehli, and B. Deveaud, “High-temperature ultrafast polariton parametric
amplification in semiconductor microcavities,” Nature 414, 731–735 (2001).
[Crossref]
I. Iorsh, M. Glauser, G. Rossbach, J. Levrat, M. Cobet, R. Butté, N. Grandjean, M. A. Kaliteevski, R. A. Abram, and A. V. Kavokin, “Generic picture of the emission properties of III-nitride polariton laser diodes: Steady state and current modulation response,” Phys. Rev. B 86,125308 (2012).
[Crossref]
D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B 32,1043 (1985).
[Crossref]
P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid State Electrically Injected Exciton-Polariton Laser,” Phys. Rev. Lett. 110,206403 (2013).
[Crossref]
G. Dasbach, M. Bayer, M. Schwab, and A. Forchel, “Spatial photon trapping: tailoring the optical properties of semiconductor microcavities,” Semicond. Sci. Technol. 18,S339 (2003).
[Crossref]
A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92,053502 (2008).
[Crossref]
T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis, “Polariton condensate transistor switch,” Phys. Rev. B 85,235102 (2012).
[Crossref]
S. I. Tsintzos, P. G. Savvidis, G. Deligeorgis, Z. Hatzopoulos, and N. T. Pelekanos, “Room temperature GaAs exciton-polariton light emitting diode,” Appl. Phys. Lett. 94,071109 (2009).
[Crossref]
H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys. 82, 1489–1537 (2010).
[Crossref]
C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an
exciton-polariton condensate array,” Nature 450, 529–532 (2007).
[Crossref]
G. C. DeSalvo, “Ultrathin delta doped GaAs and AlAs tunnel junctions as interdevice ohmic contacts,” J. Appl. Phys. 74, 4207–4212 (1993).
[Crossref]
O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut., R. Idrissi Kaitouni, J. L. Staehli, F. Morier-Genoud, and B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett. 88,061105 (2006).
[Crossref]
M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, Le Si Dang, S. Kundermann, S. Mura, G. Bongiovanni, J. L. Steehli, and B. Deveaud, “High-temperature ultrafast polariton parametric
amplification in semiconductor microcavities,” Nature 414, 731–735 (2001).
[Crossref]
T. J. Drummond, W. G. Lyons, R. Fischer, R. E. Thorne, and H. Morkoc, “Si incorporation in Alx Ga1−x As grown by molecular beam epitaxy,” J. Vac. Sci. Technol. 21,957 (1982).
[Crossref]
T. Knödl, M. Golling, A. Straub, R. Jäger, R. Michalzik, and K. J. Ebeling, “Multistage bipolar cascade vertical-cavity surface-emitting lasers: Theory and experiment,” Sel. Top. in Quantum Electron. 9, 1406–1414 (2003).
[Crossref]
O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut., R. Idrissi Kaitouni, J. L. Staehli, F. Morier-Genoud, and B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett. 88,061105 (2006).
[Crossref]
T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis, “Polariton condensate transistor switch,” Phys. Rev. B 85,235102 (2012).
[Crossref]
P. Tsotsis, P. S. Eldridge, T. Gao, S. I. Tsintzos, Z. Hatzopoulos, and P. G. Savvidis, “Lasing threshold doubling at the crossover from strong to weak coupling regime in GaAs microcavity,” New J. Phys. 14,023060 (2012).
[Crossref]
L. Esaki, “New phenomenon in narrow germanium pn junctions,” Phys. Rev. 109,603 (1958).
[Crossref]
T. Espinosa-Ortega and T. C. H. Liew, “Complete architecture of integrated photonic circuits based on and and not logic gates of exciton polaritons in semiconductor microcavities,” Phys. Rev. B 87,195305 (2013).
[Crossref]
G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity,” Appl. Phys. Lett. 93,051102 (2008).
[Crossref]
C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton
laser,” Nature 497, 348–352 (2013).
[Crossref]
T. J. Drummond, W. G. Lyons, R. Fischer, R. E. Thorne, and H. Morkoc, “Si incorporation in Alx Ga1−x As grown by molecular beam epitaxy,” J. Vac. Sci. Technol. 21,957 (1982).
[Crossref]
M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong coupling phenomena in quantum microcavity structures,” Semicond. Sci. Technol. 13, 645–669 (1998).
[Crossref]
T. A. Fisher, A. A. Afshar, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts., “Vacuum Rabi coupling enhancement and Zeeman splitting in semiconductor quantum microcavity structures in a high magnetic field,” Phys. Rev. B 53, R10469 (1996).
[Crossref]
T. A. Fisher, A. M. Afshar, D. M. Whittaker, M. S. Skolnick, J. S. Roberts, G. Hill, and M. A. Pate, “Electric-field and temperature tuning of exciton-photon coupling in quantum microcavity structures,” Phys. Rev. B 51, 2600–2603 (1995).
[Crossref]
C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton
laser,” Nature 497, 348–352 (2013).
[Crossref]
J.-S. Tempel, F. Veit, M. Aßmann, L. E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, and M. Bayer, “Temperature dependence of pulsed polariton lasing in a GaAs microcavity,” New J. Phys. 14,083013 (2012).
[Crossref]
A. V. Larionov, V. D. Kulakovskii, S. Höfling, C. Schneider, L. Worschech, and A. Forchel, “Polarized Nonequilibrium Bose-Einstein Condensates of Spinor Exciton Polaritons in a Magnetic Field,” Phys. Rev. Lett. 105,256401 (2010).
[Crossref]
G. Dasbach, M. Bayer, M. Schwab, and A. Forchel, “Spatial photon trapping: tailoring the optical properties of semiconductor microcavities,” Semicond. Sci. Technol. 18,S339 (2003).
[Crossref]
C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an
exciton-polariton condensate array,” Nature 450, 529–532 (2007).
[Crossref]
J. Bloch, T. Freixanet, J. Y. Marzin, V. Thierry-Mieg, and R. Planel, “Giant Rabi splitting in a microcavity containing distributed quantum wells,” Appl. Phys. Lett. 73, 1694–1696 (1998).
[Crossref]
C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an
exciton-polariton condensate array,” Nature 450, 529–532 (2007).
[Crossref]
T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis, “Polariton condensate transistor switch,” Phys. Rev. B 85,235102 (2012).
[Crossref]
P. Tsotsis, P. S. Eldridge, T. Gao, S. I. Tsintzos, Z. Hatzopoulos, and P. G. Savvidis, “Lasing threshold doubling at the crossover from strong to weak coupling regime in GaAs microcavity,” New J. Phys. 14,023060 (2012).
[Crossref]
A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92,053502 (2008).
[Crossref]
I. Iorsh, M. Glauser, G. Rossbach, J. Levrat, M. Cobet, R. Butté, N. Grandjean, M. A. Kaliteevski, R. A. Abram, and A. V. Kavokin, “Generic picture of the emission properties of III-nitride polariton laser diodes: Steady state and current modulation response,” Phys. Rev. B 86,125308 (2012).
[Crossref]
T. Knödl, M. Golling, A. Straub, R. Jäger, R. Michalzik, and K. J. Ebeling, “Multistage bipolar cascade vertical-cavity surface-emitting lasers: Theory and experiment,” Sel. Top. in Quantum Electron. 9, 1406–1414 (2003).
[Crossref]
D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B 32,1043 (1985).
[Crossref]
I. Iorsh, M. Glauser, G. Rossbach, J. Levrat, M. Cobet, R. Butté, N. Grandjean, M. A. Kaliteevski, R. A. Abram, and A. V. Kavokin, “Generic picture of the emission properties of III-nitride polariton laser diodes: Steady state and current modulation response,” Phys. Rev. B 86,125308 (2012).
[Crossref]
G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity,” Appl. Phys. Lett. 93,051102 (2008).
[Crossref]
A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92,053502 (2008).
[Crossref]
O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut., R. Idrissi Kaitouni, J. L. Staehli, F. Morier-Genoud, and B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett. 88,061105 (2006).
[Crossref]
P. Tsotsis, P. S. Eldridge, T. Gao, S. I. Tsintzos, Z. Hatzopoulos, and P. G. Savvidis, “Lasing threshold doubling at the crossover from strong to weak coupling regime in GaAs microcavity,” New J. Phys. 14,023060 (2012).
[Crossref]
T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis, “Polariton condensate transistor switch,” Phys. Rev. B 85,235102 (2012).
[Crossref]
S. I. Tsintzos, P. G. Savvidis, G. Deligeorgis, Z. Hatzopoulos, and N. T. Pelekanos, “Room temperature GaAs exciton-polariton light emitting diode,” Appl. Phys. Lett. 94,071109 (2009).
[Crossref]
S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room
temperature,” Nature 453, 372–375 (2008).
[Crossref]
H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys. 82, 1489–1537 (2010).
[Crossref]
P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid State Electrically Injected Exciton-Polariton Laser,” Phys. Rev. Lett. 110,206403 (2013).
[Crossref]
T. A. Fisher, A. M. Afshar, D. M. Whittaker, M. S. Skolnick, J. S. Roberts, G. Hill, and M. A. Pate, “Electric-field and temperature tuning of exciton-photon coupling in quantum microcavity structures,” Phys. Rev. B 51, 2600–2603 (1995).
[Crossref]
C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton
laser,” Nature 497, 348–352 (2013).
[Crossref]
J.-S. Tempel, F. Veit, M. Aßmann, L. E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, and M. Bayer, “Temperature dependence of pulsed polariton lasing in a GaAs microcavity,” New J. Phys. 14,083013 (2012).
[Crossref]
A. V. Larionov, V. D. Kulakovskii, S. Höfling, C. Schneider, L. Worschech, and A. Forchel, “Polarized Nonequilibrium Bose-Einstein Condensates of Spinor Exciton Polaritons in a Magnetic Field,” Phys. Rev. Lett. 105,256401 (2010).
[Crossref]
O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut., R. Idrissi Kaitouni, J. L. Staehli, F. Morier-Genoud, and B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett. 88,061105 (2006).
[Crossref]
I. Iorsh, M. Glauser, G. Rossbach, J. Levrat, M. Cobet, R. Butté, N. Grandjean, M. A. Kaliteevski, R. A. Abram, and A. V. Kavokin, “Generic picture of the emission properties of III-nitride polariton laser diodes: Steady state and current modulation response,” Phys. Rev. B 86,125308 (2012).
[Crossref]
T. Knödl, M. Golling, A. Straub, R. Jäger, R. Michalzik, and K. J. Ebeling, “Multistage bipolar cascade vertical-cavity surface-emitting lasers: Theory and experiment,” Sel. Top. in Quantum Electron. 9, 1406–1414 (2003).
[Crossref]
A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92,053502 (2008).
[Crossref]
I. Iorsh, M. Glauser, G. Rossbach, J. Levrat, M. Cobet, R. Butté, N. Grandjean, M. A. Kaliteevski, R. A. Abram, and A. V. Kavokin, “Generic picture of the emission properties of III-nitride polariton laser diodes: Steady state and current modulation response,” Phys. Rev. B 86,125308 (2012).
[Crossref]
C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton
laser,” Nature 497, 348–352 (2013).
[Crossref]
J.-S. Tempel, F. Veit, M. Aßmann, L. E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, and M. Bayer, “Temperature dependence of pulsed polariton lasing in a GaAs microcavity,” New J. Phys. 14,083013 (2012).
[Crossref]
I. Iorsh, M. Glauser, G. Rossbach, J. Levrat, M. Cobet, R. Butté, N. Grandjean, M. A. Kaliteevski, R. A. Abram, and A. V. Kavokin, “Generic picture of the emission properties of III-nitride polariton laser diodes: Steady state and current modulation response,” Phys. Rev. B 86,125308 (2012).
[Crossref]
A. A. Khalifa, A. P. D. Love, D. N. Krizhanovskii, M. S. Skolnick, and J. S. Roberts, “Electroluminescence emission from polariton states in GaAs-based semiconductor microcavities,” Appl. Phys. Lett. 92,061107 (2008).
[Crossref]
C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton
laser,” Nature 497, 348–352 (2013).
[Crossref]
H. Zhang, N. Y. Kim, Y. Yamamoto, and N. Na, “Very strong coupling in GaAs-based optical microcavities,” Phys. Rev. B 87,115303 (2013).
[Crossref]
C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an
exciton-polariton condensate array,” Nature 450, 529–532 (2007).
[Crossref]
T. Knödl, M. Golling, A. Straub, R. Jäger, R. Michalzik, and K. J. Ebeling, “Multistage bipolar cascade vertical-cavity surface-emitting lasers: Theory and experiment,” Sel. Top. in Quantum Electron. 9, 1406–1414 (2003).
[Crossref]
S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room
temperature,” Nature 453, 372–375 (2008).
[Crossref]
A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92,053502 (2008).
[Crossref]
J.-S. Tempel, F. Veit, M. Aßmann, L. E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, and M. Bayer, “Temperature dependence of pulsed polariton lasing in a GaAs microcavity,” New J. Phys. 14,083013 (2012).
[Crossref]
A. A. Khalifa, A. P. D. Love, D. N. Krizhanovskii, M. S. Skolnick, and J. S. Roberts, “Electroluminescence emission from polariton states in GaAs-based semiconductor microcavities,” Appl. Phys. Lett. 92,061107 (2008).
[Crossref]
C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton
laser,” Nature 497, 348–352 (2013).
[Crossref]
A. V. Larionov, V. D. Kulakovskii, S. Höfling, C. Schneider, L. Worschech, and A. Forchel, “Polarized Nonequilibrium Bose-Einstein Condensates of Spinor Exciton Polaritons in a Magnetic Field,” Phys. Rev. Lett. 105,256401 (2010).
[Crossref]
C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an
exciton-polariton condensate array,” Nature 450, 529–532 (2007).
[Crossref]
M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, Le Si Dang, S. Kundermann, S. Mura, G. Bongiovanni, J. L. Steehli, and B. Deveaud, “High-temperature ultrafast polariton parametric
amplification in semiconductor microcavities,” Nature 414, 731–735 (2001).
[Crossref]
C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an
exciton-polariton condensate array,” Nature 450, 529–532 (2007).
[Crossref]
A. V. Larionov, V. D. Kulakovskii, S. Höfling, C. Schneider, L. Worschech, and A. Forchel, “Polarized Nonequilibrium Bose-Einstein Condensates of Spinor Exciton Polaritons in a Magnetic Field,” Phys. Rev. Lett. 105,256401 (2010).
[Crossref]
D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, and J. Bloch, “Polariton light-emitting diode in a GaAs-based microcavity,” Phys. Rev. B 77,113303 (2008).
[Crossref]
C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton
laser,” Nature 497, 348–352 (2013).
[Crossref]
I. Iorsh, M. Glauser, G. Rossbach, J. Levrat, M. Cobet, R. Butté, N. Grandjean, M. A. Kaliteevski, R. A. Abram, and A. V. Kavokin, “Generic picture of the emission properties of III-nitride polariton laser diodes: Steady state and current modulation response,” Phys. Rev. B 86,125308 (2012).
[Crossref]
T. Espinosa-Ortega and T. C. H. Liew, “Complete architecture of integrated photonic circuits based on and and not logic gates of exciton polaritons in semiconductor microcavities,” Phys. Rev. B 87,195305 (2013).
[Crossref]
T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis, “Polariton condensate transistor switch,” Phys. Rev. B 85,235102 (2012).
[Crossref]
T. C. H. Liew, I. A. Shelykh, and G. Malpuech, “Polaritonic devices,” Phys. E Low-dimensional Syst. Nanostructures 43, 1543–1568 (2011).
[Crossref]
A. A. Khalifa, A. P. D. Love, D. N. Krizhanovskii, M. S. Skolnick, and J. S. Roberts, “Electroluminescence emission from polariton states in GaAs-based semiconductor microcavities,” Appl. Phys. Lett. 92,061107 (2008).
[Crossref]
T. J. Drummond, W. G. Lyons, R. Fischer, R. E. Thorne, and H. Morkoc, “Si incorporation in Alx Ga1−x As grown by molecular beam epitaxy,” J. Vac. Sci. Technol. 21,957 (1982).
[Crossref]
T. C. H. Liew, I. A. Shelykh, and G. Malpuech, “Polaritonic devices,” Phys. E Low-dimensional Syst. Nanostructures 43, 1543–1568 (2011).
[Crossref]
J. Bloch, T. Freixanet, J. Y. Marzin, V. Thierry-Mieg, and R. Planel, “Giant Rabi splitting in a microcavity containing distributed quantum wells,” Appl. Phys. Lett. 73, 1694–1696 (1998).
[Crossref]
T. Knödl, M. Golling, A. Straub, R. Jäger, R. Michalzik, and K. J. Ebeling, “Multistage bipolar cascade vertical-cavity surface-emitting lasers: Theory and experiment,” Sel. Top. in Quantum Electron. 9, 1406–1414 (2003).
[Crossref]
A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92,053502 (2008).
[Crossref]
D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B 32,1043 (1985).
[Crossref]
O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut., R. Idrissi Kaitouni, J. L. Staehli, F. Morier-Genoud, and B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett. 88,061105 (2006).
[Crossref]
T. J. Drummond, W. G. Lyons, R. Fischer, R. E. Thorne, and H. Morkoc, “Si incorporation in Alx Ga1−x As grown by molecular beam epitaxy,” J. Vac. Sci. Technol. 21,957 (1982).
[Crossref]
M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, Le Si Dang, S. Kundermann, S. Mura, G. Bongiovanni, J. L. Steehli, and B. Deveaud, “High-temperature ultrafast polariton parametric
amplification in semiconductor microcavities,” Nature 414, 731–735 (2001).
[Crossref]
H. Zhang, N. Y. Kim, Y. Yamamoto, and N. Na, “Very strong coupling in GaAs-based optical microcavities,” Phys. Rev. B 87,115303 (2013).
[Crossref]
T. A. Fisher, A. M. Afshar, D. M. Whittaker, M. S. Skolnick, J. S. Roberts, G. Hill, and M. A. Pate, “Electric-field and temperature tuning of exciton-photon coupling in quantum microcavity structures,” Phys. Rev. B 51, 2600–2603 (1995).
[Crossref]
S. I. Tsintzos, P. G. Savvidis, G. Deligeorgis, Z. Hatzopoulos, and N. T. Pelekanos, “Room temperature GaAs exciton-polariton light emitting diode,” Appl. Phys. Lett. 94,071109 (2009).
[Crossref]
S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room
temperature,” Nature 453, 372–375 (2008).
[Crossref]
S. I. Tsintzos, N. T. Pelekanos, and P. G. Savvidis, ”Electrically Driven Polariton Light Emitting Devices,” in Exciton Polaritons in Microcavities, V. Timofeev and D. Sanvitto, eds. (Springer, Berlin, Heidelberg2012) pp. 377–395.
[Crossref]
J. Bloch, T. Freixanet, J. Y. Marzin, V. Thierry-Mieg, and R. Planel, “Giant Rabi splitting in a microcavity containing distributed quantum wells,” Appl. Phys. Lett. 73, 1694–1696 (1998).
[Crossref]
C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton
laser,” Nature 497, 348–352 (2013).
[Crossref]
C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an
exciton-polariton condensate array,” Nature 450, 529–532 (2007).
[Crossref]
C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton
laser,” Nature 497, 348–352 (2013).
[Crossref]
A. A. Khalifa, A. P. D. Love, D. N. Krizhanovskii, M. S. Skolnick, and J. S. Roberts, “Electroluminescence emission from polariton states in GaAs-based semiconductor microcavities,” Appl. Phys. Lett. 92,061107 (2008).
[Crossref]
T. A. Fisher, A. M. Afshar, D. M. Whittaker, M. S. Skolnick, J. S. Roberts, G. Hill, and M. A. Pate, “Electric-field and temperature tuning of exciton-photon coupling in quantum microcavity structures,” Phys. Rev. B 51, 2600–2603 (1995).
[Crossref]
T. A. Fisher, A. A. Afshar, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts., “Vacuum Rabi coupling enhancement and Zeeman splitting in semiconductor quantum microcavity structures in a high magnetic field,” Phys. Rev. B 53, R10469 (1996).
[Crossref]
I. Iorsh, M. Glauser, G. Rossbach, J. Levrat, M. Cobet, R. Butté, N. Grandjean, M. A. Kaliteevski, R. A. Abram, and A. V. Kavokin, “Generic picture of the emission properties of III-nitride polariton laser diodes: Steady state and current modulation response,” Phys. Rev. B 86,125308 (2012).
[Crossref]
C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an
exciton-polariton condensate array,” Nature 450, 529–532 (2007).
[Crossref]
M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, Le Si Dang, S. Kundermann, S. Mura, G. Bongiovanni, J. L. Steehli, and B. Deveaud, “High-temperature ultrafast polariton parametric
amplification in semiconductor microcavities,” Nature 414, 731–735 (2001).
[Crossref]
C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton
laser,” Nature 497, 348–352 (2013).
[Crossref]
P. Tsotsis, P. S. Eldridge, T. Gao, S. I. Tsintzos, Z. Hatzopoulos, and P. G. Savvidis, “Lasing threshold doubling at the crossover from strong to weak coupling regime in GaAs microcavity,” New J. Phys. 14,023060 (2012).
[Crossref]
T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis, “Polariton condensate transistor switch,” Phys. Rev. B 85,235102 (2012).
[Crossref]
S. I. Tsintzos, P. G. Savvidis, G. Deligeorgis, Z. Hatzopoulos, and N. T. Pelekanos, “Room temperature GaAs exciton-polariton light emitting diode,” Appl. Phys. Lett. 94,071109 (2009).
[Crossref]
S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room
temperature,” Nature 453, 372–375 (2008).
[Crossref]
S. I. Tsintzos, N. T. Pelekanos, and P. G. Savvidis, ”Electrically Driven Polariton Light Emitting Devices,” in Exciton Polaritons in Microcavities, V. Timofeev and D. Sanvitto, eds. (Springer, Berlin, Heidelberg2012) pp. 377–395.
[Crossref]
C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton
laser,” Nature 497, 348–352 (2013).
[Crossref]
A. V. Larionov, V. D. Kulakovskii, S. Höfling, C. Schneider, L. Worschech, and A. Forchel, “Polarized Nonequilibrium Bose-Einstein Condensates of Spinor Exciton Polaritons in a Magnetic Field,” Phys. Rev. Lett. 105,256401 (2010).
[Crossref]
G. Dasbach, M. Bayer, M. Schwab, and A. Forchel, “Spatial photon trapping: tailoring the optical properties of semiconductor microcavities,” Semicond. Sci. Technol. 18,S339 (2003).
[Crossref]
D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, and J. Bloch, “Polariton light-emitting diode in a GaAs-based microcavity,” Phys. Rev. B 77,113303 (2008).
[Crossref]
D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, and J. Bloch, “Polariton light-emitting diode in a GaAs-based microcavity,” Phys. Rev. B 77,113303 (2008).
[Crossref]
C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton
laser,” Nature 497, 348–352 (2013).
[Crossref]
T. C. H. Liew, I. A. Shelykh, and G. Malpuech, “Polaritonic devices,” Phys. E Low-dimensional Syst. Nanostructures 43, 1543–1568 (2011).
[Crossref]
M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, Le Si Dang, S. Kundermann, S. Mura, G. Bongiovanni, J. L. Steehli, and B. Deveaud, “High-temperature ultrafast polariton parametric
amplification in semiconductor microcavities,” Nature 414, 731–735 (2001).
[Crossref]
A. A. Khalifa, A. P. D. Love, D. N. Krizhanovskii, M. S. Skolnick, and J. S. Roberts, “Electroluminescence emission from polariton states in GaAs-based semiconductor microcavities,” Appl. Phys. Lett. 92,061107 (2008).
[Crossref]
M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong coupling phenomena in quantum microcavity structures,” Semicond. Sci. Technol. 13, 645–669 (1998).
[Crossref]
T. A. Fisher, A. A. Afshar, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts., “Vacuum Rabi coupling enhancement and Zeeman splitting in semiconductor quantum microcavity structures in a high magnetic field,” Phys. Rev. B 53, R10469 (1996).
[Crossref]
T. A. Fisher, A. M. Afshar, D. M. Whittaker, M. S. Skolnick, J. S. Roberts, G. Hill, and M. A. Pate, “Electric-field and temperature tuning of exciton-photon coupling in quantum microcavity structures,” Phys. Rev. B 51, 2600–2603 (1995).
[Crossref]
O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut., R. Idrissi Kaitouni, J. L. Staehli, F. Morier-Genoud, and B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett. 88,061105 (2006).
[Crossref]
T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis, “Polariton condensate transistor switch,” Phys. Rev. B 85,235102 (2012).
[Crossref]
M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, Le Si Dang, S. Kundermann, S. Mura, G. Bongiovanni, J. L. Steehli, and B. Deveaud, “High-temperature ultrafast polariton parametric
amplification in semiconductor microcavities,” Nature 414, 731–735 (2001).
[Crossref]
T. Knödl, M. Golling, A. Straub, R. Jäger, R. Michalzik, and K. J. Ebeling, “Multistage bipolar cascade vertical-cavity surface-emitting lasers: Theory and experiment,” Sel. Top. in Quantum Electron. 9, 1406–1414 (2003).
[Crossref]
J.-S. Tempel, F. Veit, M. Aßmann, L. E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, and M. Bayer, “Temperature dependence of pulsed polariton lasing in a GaAs microcavity,” New J. Phys. 14,083013 (2012).
[Crossref]
M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, Le Si Dang, S. Kundermann, S. Mura, G. Bongiovanni, J. L. Steehli, and B. Deveaud, “High-temperature ultrafast polariton parametric
amplification in semiconductor microcavities,” Nature 414, 731–735 (2001).
[Crossref]
J. Bloch, T. Freixanet, J. Y. Marzin, V. Thierry-Mieg, and R. Planel, “Giant Rabi splitting in a microcavity containing distributed quantum wells,” Appl. Phys. Lett. 73, 1694–1696 (1998).
[Crossref]
T. J. Drummond, W. G. Lyons, R. Fischer, R. E. Thorne, and H. Morkoc, “Si incorporation in Alx Ga1−x As grown by molecular beam epitaxy,” J. Vac. Sci. Technol. 21,957 (1982).
[Crossref]
P. Tsotsis, P. S. Eldridge, T. Gao, S. I. Tsintzos, Z. Hatzopoulos, and P. G. Savvidis, “Lasing threshold doubling at the crossover from strong to weak coupling regime in GaAs microcavity,” New J. Phys. 14,023060 (2012).
[Crossref]
T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis, “Polariton condensate transistor switch,” Phys. Rev. B 85,235102 (2012).
[Crossref]
S. I. Tsintzos, P. G. Savvidis, G. Deligeorgis, Z. Hatzopoulos, and N. T. Pelekanos, “Room temperature GaAs exciton-polariton light emitting diode,” Appl. Phys. Lett. 94,071109 (2009).
[Crossref]
S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room
temperature,” Nature 453, 372–375 (2008).
[Crossref]
S. I. Tsintzos, N. T. Pelekanos, and P. G. Savvidis, ”Electrically Driven Polariton Light Emitting Devices,” in Exciton Polaritons in Microcavities, V. Timofeev and D. Sanvitto, eds. (Springer, Berlin, Heidelberg2012) pp. 377–395.
[Crossref]
P. Tsotsis, P. S. Eldridge, T. Gao, S. I. Tsintzos, Z. Hatzopoulos, and P. G. Savvidis, “Lasing threshold doubling at the crossover from strong to weak coupling regime in GaAs microcavity,” New J. Phys. 14,023060 (2012).
[Crossref]
C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an
exciton-polariton condensate array,” Nature 450, 529–532 (2007).
[Crossref]
Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[Crossref]
J.-S. Tempel, F. Veit, M. Aßmann, L. E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, and M. Bayer, “Temperature dependence of pulsed polariton lasing in a GaAs microcavity,” New J. Phys. 14,083013 (2012).
[Crossref]
D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, and J. Bloch, “Polariton light-emitting diode in a GaAs-based microcavity,” Phys. Rev. B 77,113303 (2008).
[Crossref]
M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong coupling phenomena in quantum microcavity structures,” Semicond. Sci. Technol. 13, 645–669 (1998).
[Crossref]
T. A. Fisher, A. A. Afshar, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts., “Vacuum Rabi coupling enhancement and Zeeman splitting in semiconductor quantum microcavity structures in a high magnetic field,” Phys. Rev. B 53, R10469 (1996).
[Crossref]
T. A. Fisher, A. M. Afshar, D. M. Whittaker, M. S. Skolnick, J. S. Roberts, G. Hill, and M. A. Pate, “Electric-field and temperature tuning of exciton-photon coupling in quantum microcavity structures,” Phys. Rev. B 51, 2600–2603 (1995).
[Crossref]
D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B 32,1043 (1985).
[Crossref]
C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton
laser,” Nature 497, 348–352 (2013).
[Crossref]
D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B 32,1043 (1985).
[Crossref]
C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton
laser,” Nature 497, 348–352 (2013).
[Crossref]
A. V. Larionov, V. D. Kulakovskii, S. Höfling, C. Schneider, L. Worschech, and A. Forchel, “Polarized Nonequilibrium Bose-Einstein Condensates of Spinor Exciton Polaritons in a Magnetic Field,” Phys. Rev. Lett. 105,256401 (2010).
[Crossref]
P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid State Electrically Injected Exciton-Polariton Laser,” Phys. Rev. Lett. 110,206403 (2013).
[Crossref]
H. Zhang, N. Y. Kim, Y. Yamamoto, and N. Na, “Very strong coupling in GaAs-based optical microcavities,” Phys. Rev. B 87,115303 (2013).
[Crossref]
H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys. 82, 1489–1537 (2010).
[Crossref]
C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an
exciton-polariton condensate array,” Nature 450, 529–532 (2007).
[Crossref]
C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton
laser,” Nature 497, 348–352 (2013).
[Crossref]
H. Zhang, N. Y. Kim, Y. Yamamoto, and N. Na, “Very strong coupling in GaAs-based optical microcavities,” Phys. Rev. B 87,115303 (2013).
[Crossref]