Abstract

We experimentally investigate various methods for reducing cross-phase modulation in hybrid networks with mixed 100G and 10G traffic. The experimental results over standard single-mode and non-zero dispersion-shifted fiber types demonstrate the effectiveness of several different XPM reduction techniques as well as the interplay between them. Nonlinear transmission performance is quantified using the Nonlinear Threshold metric as a function of key system features, including DCM type, dispersion map, spectral guard bands, and carrier phase estimation window size. Fiber Bragg grating-based DCMs are shown to offer a distinct advantage over fiber-based DCMs under certain conditions, particularly in dispersion-managed systems with very strong XPM. The average walk-off per span is introduced as a simple yet effective metric to compare different methods of XPM mitigation.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
XPM reduction in hybrid 10G/40G transmission using 10-Gb/s narrow-filtered DPSK modulation

Marco Bertolini, Paolo Serena, Nicola Rossi, and Alberto Bononi
Opt. Express 17(8) 5919-5924 (2009)

Influence of polarization state, baud rate and PMD on non-linear impairments in WDM systems with mixed PM (D)QPSK and OOK channels

Mohsan Niaz Chughtai, Marco Forzati, Jonas Mårtensson, and Danish Rafique
Opt. Express 20(7) 8155-8160 (2012)

Analytical modeling of cross-phase modulation in coherent fiber-optic system

Sina Naderi Shahi, Shiva Kumar, and Xiaojun Liang
Opt. Express 22(2) 1426-1439 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Z. Tao, W. Yan, L. Liu, L. Li, S. Oda, T. Hoshida, and J. C. Rasmussen, “Simple fiber model for determination of XPM effects,” J. Lightwave Technol. 29(7), 974–986 (2011).
    [Crossref]
  2. X. Liu and S. Chandrasekhar, “Suppression of XPM penalty on 40-Gb/s DQPSK resulting from 10-Gb/s OOK channels by dispersion management,” in Proceedings of Optical Fiber Communications Conference (San Diego, Calif., 2008), paper OMQ6.
    [Crossref]
  3. C. Xia, J. F. Pina, A. G. Striegler, and D. van den Borne, “On the nonlinear threshold of polarization-multiplexed QPSK transmission with different dispersion maps,” in Proceedings of European Conference on Optical Communications (Geneva, Switzerland, 2011), paper We.10.P1.72.
    [Crossref]
  4. S. Searcy and S. Tibuleac, “System design tradeoffs for XPM mitigation in hybrid 100G-10G networks,” in Proceedings of Optical Fiber Communications Conference (Anaheim, Calif., 2013), paper NW4E.3.
    [Crossref]
  5. O. Bertran-Pardo, J. Renaudier, G. Charlet, H. Mardoyan, P. Tran, M. Salsi, and S. Bigo, “Overlaying 10 Gb/s legacy optical networks with 40 and 100 Gb/s coherent terminals,” J. Lightwave Technol. 30(14), 2367–2375 (2012).
    [Crossref]
  6. C. Xie, “Suppression of interchannel nonlinearities in WDM coherent PDM-QPSK systems using periodic-group-delay dispersion compensators,” in Proceedings of European Conference on Optical Communications (Vienna, Austria, 2009), paper P4.08.
  7. D. Sperti, P. Serena, and A. Bononi, “Optical solutions to improve PDM-QPSK resilience against cross-channel nonlinearities: a comparison,” IEEE Photonics Technol. Lett. 23(11), 667–669 (2011).
    [Crossref]
  8. O. Vassilieva, T. Hoshida, K. Croussore, I. Kim, and T. Naito, “Suppression of XPM penalty in dispersion managed hybrid 10G/40G/100G DWDM networks using group delay management,” in Proceedings of European Conference on Optical Communications (Vienna, Austria, 2009), paper P4.04.
  9. G. Brochu, M. Morin, F. Trépanier, B. Maheux-Lacroix, C. Paquet, A. Patel, M. Filer, C. Meyer, and S. Tibuleac, “Channelized fiber Bragg gratings for inline chromatic dispersion compensation of 40 Gb/s links on ITU-50 grid,” in Proceedings of European Conference on Optical Communications (Geneva, Switzerland, 2011), paper Th.12.B.3.
    [Crossref]
  10. M. S. Alfiad, D. van den Borne, T. Wuth, M. Kuschnerov, B. Lankl, C. Weiske, E. de Man, A. Napoli, and H. de Waardt, “111-Gb/s POLMUX-RZ-DQPSK transmission over 1140 km of SSMF with 10.7-Gb/s NRZ-OOK neighbours,” in Proceedings of European Conference on Optical Communications (Brussels, Belgium, 2008), paper Mo.4.E.2.
    [Crossref]
  11. L. E. Nelson, G. Zhang, M. Birk, C. Skolnick, R. Isaac, Y. Pan, C. Rasmussen, G. Pendock, and B. Mikkelsen, “A robust real-time 100G transceiver with soft-decision forward error correction,” J. Opt. Commun. Networking 4(11), B131–B141 (2012).
    [Crossref]
  12. E. Tipsuwannakul, J. Li, T. A. Eriksson, F. Sjöström, J. Pejnefors, P. A. Andrekson, and M. Karlsson, “Mitigation of fiber Bragg grating-induced group-delay ripple in 112 Gbit/s DP-QPSK coherent systems,” in Proceedings of Optical Fiber Communications Conference (Los Angeles, Calif., 2013), paper JW2A.69.
  13. X. Liu, X. Wei, J. Ying, and D. A. Fishman, “Scalable dispersion management for hybrid 10-Gb/s and 40-Gb/s DWDM transmissions with high nonlinear tolerance,” IEEE Photonics Technol. Lett. 17(9), 1980–1982 (2005).
    [Crossref]

2012 (2)

O. Bertran-Pardo, J. Renaudier, G. Charlet, H. Mardoyan, P. Tran, M. Salsi, and S. Bigo, “Overlaying 10 Gb/s legacy optical networks with 40 and 100 Gb/s coherent terminals,” J. Lightwave Technol. 30(14), 2367–2375 (2012).
[Crossref]

L. E. Nelson, G. Zhang, M. Birk, C. Skolnick, R. Isaac, Y. Pan, C. Rasmussen, G. Pendock, and B. Mikkelsen, “A robust real-time 100G transceiver with soft-decision forward error correction,” J. Opt. Commun. Networking 4(11), B131–B141 (2012).
[Crossref]

2011 (2)

D. Sperti, P. Serena, and A. Bononi, “Optical solutions to improve PDM-QPSK resilience against cross-channel nonlinearities: a comparison,” IEEE Photonics Technol. Lett. 23(11), 667–669 (2011).
[Crossref]

Z. Tao, W. Yan, L. Liu, L. Li, S. Oda, T. Hoshida, and J. C. Rasmussen, “Simple fiber model for determination of XPM effects,” J. Lightwave Technol. 29(7), 974–986 (2011).
[Crossref]

2005 (1)

X. Liu, X. Wei, J. Ying, and D. A. Fishman, “Scalable dispersion management for hybrid 10-Gb/s and 40-Gb/s DWDM transmissions with high nonlinear tolerance,” IEEE Photonics Technol. Lett. 17(9), 1980–1982 (2005).
[Crossref]

Bertran-Pardo, O.

Bigo, S.

Birk, M.

L. E. Nelson, G. Zhang, M. Birk, C. Skolnick, R. Isaac, Y. Pan, C. Rasmussen, G. Pendock, and B. Mikkelsen, “A robust real-time 100G transceiver with soft-decision forward error correction,” J. Opt. Commun. Networking 4(11), B131–B141 (2012).
[Crossref]

Bononi, A.

D. Sperti, P. Serena, and A. Bononi, “Optical solutions to improve PDM-QPSK resilience against cross-channel nonlinearities: a comparison,” IEEE Photonics Technol. Lett. 23(11), 667–669 (2011).
[Crossref]

Charlet, G.

Fishman, D. A.

X. Liu, X. Wei, J. Ying, and D. A. Fishman, “Scalable dispersion management for hybrid 10-Gb/s and 40-Gb/s DWDM transmissions with high nonlinear tolerance,” IEEE Photonics Technol. Lett. 17(9), 1980–1982 (2005).
[Crossref]

Hoshida, T.

Isaac, R.

L. E. Nelson, G. Zhang, M. Birk, C. Skolnick, R. Isaac, Y. Pan, C. Rasmussen, G. Pendock, and B. Mikkelsen, “A robust real-time 100G transceiver with soft-decision forward error correction,” J. Opt. Commun. Networking 4(11), B131–B141 (2012).
[Crossref]

Li, L.

Liu, L.

Liu, X.

X. Liu, X. Wei, J. Ying, and D. A. Fishman, “Scalable dispersion management for hybrid 10-Gb/s and 40-Gb/s DWDM transmissions with high nonlinear tolerance,” IEEE Photonics Technol. Lett. 17(9), 1980–1982 (2005).
[Crossref]

Mardoyan, H.

Mikkelsen, B.

L. E. Nelson, G. Zhang, M. Birk, C. Skolnick, R. Isaac, Y. Pan, C. Rasmussen, G. Pendock, and B. Mikkelsen, “A robust real-time 100G transceiver with soft-decision forward error correction,” J. Opt. Commun. Networking 4(11), B131–B141 (2012).
[Crossref]

Nelson, L. E.

L. E. Nelson, G. Zhang, M. Birk, C. Skolnick, R. Isaac, Y. Pan, C. Rasmussen, G. Pendock, and B. Mikkelsen, “A robust real-time 100G transceiver with soft-decision forward error correction,” J. Opt. Commun. Networking 4(11), B131–B141 (2012).
[Crossref]

Oda, S.

Pan, Y.

L. E. Nelson, G. Zhang, M. Birk, C. Skolnick, R. Isaac, Y. Pan, C. Rasmussen, G. Pendock, and B. Mikkelsen, “A robust real-time 100G transceiver with soft-decision forward error correction,” J. Opt. Commun. Networking 4(11), B131–B141 (2012).
[Crossref]

Pendock, G.

L. E. Nelson, G. Zhang, M. Birk, C. Skolnick, R. Isaac, Y. Pan, C. Rasmussen, G. Pendock, and B. Mikkelsen, “A robust real-time 100G transceiver with soft-decision forward error correction,” J. Opt. Commun. Networking 4(11), B131–B141 (2012).
[Crossref]

Rasmussen, C.

L. E. Nelson, G. Zhang, M. Birk, C. Skolnick, R. Isaac, Y. Pan, C. Rasmussen, G. Pendock, and B. Mikkelsen, “A robust real-time 100G transceiver with soft-decision forward error correction,” J. Opt. Commun. Networking 4(11), B131–B141 (2012).
[Crossref]

Rasmussen, J. C.

Renaudier, J.

Salsi, M.

Serena, P.

D. Sperti, P. Serena, and A. Bononi, “Optical solutions to improve PDM-QPSK resilience against cross-channel nonlinearities: a comparison,” IEEE Photonics Technol. Lett. 23(11), 667–669 (2011).
[Crossref]

Skolnick, C.

L. E. Nelson, G. Zhang, M. Birk, C. Skolnick, R. Isaac, Y. Pan, C. Rasmussen, G. Pendock, and B. Mikkelsen, “A robust real-time 100G transceiver with soft-decision forward error correction,” J. Opt. Commun. Networking 4(11), B131–B141 (2012).
[Crossref]

Sperti, D.

D. Sperti, P. Serena, and A. Bononi, “Optical solutions to improve PDM-QPSK resilience against cross-channel nonlinearities: a comparison,” IEEE Photonics Technol. Lett. 23(11), 667–669 (2011).
[Crossref]

Tao, Z.

Tran, P.

Wei, X.

X. Liu, X. Wei, J. Ying, and D. A. Fishman, “Scalable dispersion management for hybrid 10-Gb/s and 40-Gb/s DWDM transmissions with high nonlinear tolerance,” IEEE Photonics Technol. Lett. 17(9), 1980–1982 (2005).
[Crossref]

Yan, W.

Ying, J.

X. Liu, X. Wei, J. Ying, and D. A. Fishman, “Scalable dispersion management for hybrid 10-Gb/s and 40-Gb/s DWDM transmissions with high nonlinear tolerance,” IEEE Photonics Technol. Lett. 17(9), 1980–1982 (2005).
[Crossref]

Zhang, G.

L. E. Nelson, G. Zhang, M. Birk, C. Skolnick, R. Isaac, Y. Pan, C. Rasmussen, G. Pendock, and B. Mikkelsen, “A robust real-time 100G transceiver with soft-decision forward error correction,” J. Opt. Commun. Networking 4(11), B131–B141 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (2)

D. Sperti, P. Serena, and A. Bononi, “Optical solutions to improve PDM-QPSK resilience against cross-channel nonlinearities: a comparison,” IEEE Photonics Technol. Lett. 23(11), 667–669 (2011).
[Crossref]

X. Liu, X. Wei, J. Ying, and D. A. Fishman, “Scalable dispersion management for hybrid 10-Gb/s and 40-Gb/s DWDM transmissions with high nonlinear tolerance,” IEEE Photonics Technol. Lett. 17(9), 1980–1982 (2005).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Commun. Networking (1)

L. E. Nelson, G. Zhang, M. Birk, C. Skolnick, R. Isaac, Y. Pan, C. Rasmussen, G. Pendock, and B. Mikkelsen, “A robust real-time 100G transceiver with soft-decision forward error correction,” J. Opt. Commun. Networking 4(11), B131–B141 (2012).
[Crossref]

Other (8)

E. Tipsuwannakul, J. Li, T. A. Eriksson, F. Sjöström, J. Pejnefors, P. A. Andrekson, and M. Karlsson, “Mitigation of fiber Bragg grating-induced group-delay ripple in 112 Gbit/s DP-QPSK coherent systems,” in Proceedings of Optical Fiber Communications Conference (Los Angeles, Calif., 2013), paper JW2A.69.

C. Xie, “Suppression of interchannel nonlinearities in WDM coherent PDM-QPSK systems using periodic-group-delay dispersion compensators,” in Proceedings of European Conference on Optical Communications (Vienna, Austria, 2009), paper P4.08.

X. Liu and S. Chandrasekhar, “Suppression of XPM penalty on 40-Gb/s DQPSK resulting from 10-Gb/s OOK channels by dispersion management,” in Proceedings of Optical Fiber Communications Conference (San Diego, Calif., 2008), paper OMQ6.
[Crossref]

C. Xia, J. F. Pina, A. G. Striegler, and D. van den Borne, “On the nonlinear threshold of polarization-multiplexed QPSK transmission with different dispersion maps,” in Proceedings of European Conference on Optical Communications (Geneva, Switzerland, 2011), paper We.10.P1.72.
[Crossref]

S. Searcy and S. Tibuleac, “System design tradeoffs for XPM mitigation in hybrid 100G-10G networks,” in Proceedings of Optical Fiber Communications Conference (Anaheim, Calif., 2013), paper NW4E.3.
[Crossref]

O. Vassilieva, T. Hoshida, K. Croussore, I. Kim, and T. Naito, “Suppression of XPM penalty in dispersion managed hybrid 10G/40G/100G DWDM networks using group delay management,” in Proceedings of European Conference on Optical Communications (Vienna, Austria, 2009), paper P4.04.

G. Brochu, M. Morin, F. Trépanier, B. Maheux-Lacroix, C. Paquet, A. Patel, M. Filer, C. Meyer, and S. Tibuleac, “Channelized fiber Bragg gratings for inline chromatic dispersion compensation of 40 Gb/s links on ITU-50 grid,” in Proceedings of European Conference on Optical Communications (Geneva, Switzerland, 2011), paper Th.12.B.3.
[Crossref]

M. S. Alfiad, D. van den Borne, T. Wuth, M. Kuschnerov, B. Lankl, C. Weiske, E. de Man, A. Napoli, and H. de Waardt, “111-Gb/s POLMUX-RZ-DQPSK transmission over 1140 km of SSMF with 10.7-Gb/s NRZ-OOK neighbours,” in Proceedings of European Conference on Optical Communications (Brussels, Belgium, 2008), paper Mo.4.E.2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental configuration of 12 span recirculating loop system and illustrative example of two different TWRS dispersion maps used in the study.
Fig. 2
Fig. 2 100G Nonlinear Threshold for 12 spans TWRS system, (a) with in-line DCMs every 2 spans, and (b) with added 50 GHz guard band. CPE window size = 8.
Fig. 3
Fig. 3 100G Nonlinear Threshold for 12 spans TWRS system, (a) with in-line DCMs every 4 spans, and (b) with added 50 GHz guard band. CPE window size = 8.
Fig. 4
Fig. 4 100G Nonlinear Threshold for 12 spans TWRS system, (a) with in-line DCMs every 2 spans, and (b) with added 50 GHz guard band. CPE window size = 32.
Fig. 5
Fig. 5 100G Nonlinear Threshold for 12 spans SSMF system, (a) with in-line DCMs every span and CPE windows size = 8, (b) with added 50 GHz guard band, (c) with in-line DCMs every span and CPE window size = 32, (d) with added 50 GHz guard band.
Fig. 6
Fig. 6 100G Nonlinear Threshold versus average walk-off per span, DinΔλ.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

H m,n (ω)= 8 γ n 9 1exp( α n L n +jΔ β m,n ω L n ) α n jΔ β m,n ω =IFT[ h m,n (t) ],
w yx/xy = m=2 M n=1 N j u m,x/y,n (0,t τ m,n ) u m,y/x,n * (0,t τ m,n ) h m,n (t)
ϕ x/y = m=2 M n=1 N ( 2 | u m,x/y,n (0,t τ m,n ) | 2 + | u m,y/x,n (0,t τ m,n ) | 2 ) h m,n (t)

Metrics