Abstract

Telecommunication operators are investing significant resources in developing passive optical networks (PONs) to meet the increasing capacity requirements. Therefore, wireless transmission has become the bottleneck for the wireless broadband internet access due to the spectrum saturation. This issue can be solved taking advantage of the huge portions of unused spectrum at high-microwave / millimeter-wave (mm-wave) bands, but their generation is power consuming. Radio over fiber (RoF) is a cost-efficient solution for the distribution of high-frequency broadband signals to remote base stations. We present a novel photonic PON-to-RoF bridge based on heterodyning a PON signal with an unmodulated tone generated by an independent laser. The proposed scheme is transparent to modulation format and can generate RF signals in the entire microwave band. The feasibility of the bridge is experimentally shown converting a 2-Gbps orthogonal frequency division multiplexing PON signal using inexepensive distributed feedback lasers, whose phase noise is cancelled employing an envelope detection based mobile terminal.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Key Technologies of WDM-PON for Future Converged Optical Broadband Access Networks [Invited]

Gee-Kung Chang, Arshad Chowdhury, Zhensheng Jia, Hung-Chang Chien, Ming-Fang Huang, Jianjun Yu, and Georgios Ellinas
J. Opt. Commun. Netw. 1(4) C35-C50 (2009)

Spectrally efficient localized carrier distribution scheme for multiple-user DFT-S OFDM RoF- PON wireless access systems

Li Tao, Jianjun Yu, Qi Yang, Ming Luo, Zhixue He, Yufeng Shao, Junwen Zhang, and Nan Chi
Opt. Express 20(28) 29665-29672 (2012)

Multi-Wavelength WiMAX–PONs With Overlapping Cells

Milos Milosavljevic, Pandelis Kourtessis, and John M. Senior
J. Opt. Commun. Netw. 3(2) 172-177 (2011)

References

  • View by:
  • |
  • |
  • |

  1. T. Koonen, “Trends in optical access and in-building networks,” in Proceedings of European Conference on Optical Communcations (2008), paper We.2.A.1.
  2. C. H. Lee, W. Sorin, and B. Y. Kim, “Fiber to the home using a PON infrastructure,” J. Lightwave Technol. 24(12), 4568–4583 (2006).
    [Crossref]
  3. H. Kosek, Y. He, X. Gu, and X. N. Fernando, “All optical demultiplexing of closely spaced multimedia radio signals,” J. Lightwave Technol. 25(6), 1401–1409 (2007).
    [Crossref]
  4. W. Choi and J. C. Andrews, “Downlink performance and capacity of distributed antenna systems in a multicell environment,” IEEE Trans. Commun. 6(1), 69–73 (2007).
  5. Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” IEEE Commun. Mag. 49(6), 101–107 (2011).
    [Crossref]
  6. T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. L. de Bougrenet de La Tocnaye, B. Fracasso, P. Pajusco, C. Karnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1–2), 3–21 (2013).
    [Crossref]
  7. G. Chang, Z. Jia, H. C. Chien, A. Chowdhury, Y. T. Hsueh, and J. Yu, “Convergence of broadband optical and wireless access networks,” Proc. SPIE 7234, 723402 (2009).
  8. C.-S. Choi, Y. Shoji, and H. Ogawa, “Millimeter-wave fiber-fed wireless access systems based on dense wavelength-division-multiplexing networks,” IEEE Trans. Microwave Theory Technol. 56(1), 232–241 (2008).
    [Crossref]
  9. C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, and S. Chi, “Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity,” IEEE Photonics Technol. Lett. 18(23), 2481–2483 (2006).
    [Crossref]
  10. G. K. Chang, “Convergence of optical and wireless access networks,” Tutorial at OMC workshop on optical/wireless integration for enhanced broadband access and transmission, Optical Fiber Conference (2008).
  11. J. Yu, Z. Jia, G. Chang, and X. J. Xin, “Broadband convergence of 60-GHz RoF and WDM-PON systems with a single modulator for bidirectional access networks,” in Proceedings of European Conference on Optical Communications (2008), paper 6.5.2.
  12. L. Chen, J. Yu, S. Wen, J. Lu, Z. Dong, M. Huang, and G. K. Chang, “A novel scheme for seamless integration of ROF with centralized lightwave OFDM-WDM-PON system system,” J. Lightw. Technol. 27(14), 2786–2791 (2009).
    [Crossref]
  13. Z. Chunlei, G. Ling, and Z. Pengtu, “An overview of integration of RoF with PON,” in Proceedings of International Conference on Computer Applications and System Modeling (2010), Vol. 15, pp. 40–43.
  14. Y. Shao, N. Chi, J. Fan, and W. Fang, “Generation of 16-QAM-OFDM signals using selected mapping method and its application in optical millimeter-wave access system,” IEEE Photonics Technol. Lett. 24(5), 1301–1303 (2012).
    [Crossref]
  15. I. Gonzalez-Insua, D. Plettemeier, and C. Schaffer, “Simple remote heterodyne radio-over-fiber system for gigabit per second wireless access,” J. Lightwave Technol. 28(16), 2289–2295 (2010).
    [Crossref]
  16. A. Islam, “Experimental demonstration of heterodyned radio-over-fiber system using unlocked light sources and RF homodyning at the receiver,” in Proceedings of Optoelectronics and Communication Conference (2010), pp. 714–715, paper 9A2-1.
  17. I. Aldaya, G. Campuzano, C. Gosset, and G. Castañón, “Phase-insensitive RF envelope detection allows optical heterodyning of MHz-linewidth signals,” IEEE Photonics Technol. Lett. 25(22), 2193–2196 (2013).
    [Crossref]
  18. Z. Dong, X. Li, J. Yu, Z. Cao, and N. Chi, “8 × 9.95-Gb/s ultra-dense WDM-PON on a 12.5-GHz grid with digital pre-equalization,” IEEE Photonics Technol. Lett. 25(2), 194–197 (2013).
    [Crossref]
  19. M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Quantum Electron. 10(2), 312–320 (2004).
    [Crossref]
  20. J. M. Tang, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng, E. Giacoumidis, E. Hugues-Salas, Y. Hong, C. Shu, J. Groenewald, and K. Muthusamy, “Real-time optical OFDM transceivers for PON applications,” in Proceedings of Optical Fiber Communication Conference (2011), paper OTuK3.
  21. R. P. Braun, “Tutorial: fibre radio systems, applications and devices,” in Proceedings of European Conference on Optical Communication (1998), vol. 2, pp. 87–119.
  22. U. Gliese, S. Norskov, and T. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microwave Theory Technol. 44(10), 1716–1724 (1996).
    [Crossref]
  23. R. Daniels and R. Heath, “60 GHz wireless communications: emerging requirements and design recomendations,” IEEE Trans. Veh. Technol. pp. 41–50 (Sept.2007).
    [Crossref]
  24. S. Haykin and M. Moher, Introduction to Analog & Digital Communications, 2nd ed. (John Wiley and Sons, 2007).
  25. A. Poularikas, The Handbook of Formulas and Tables for Signal Processing (CRC Press LLC, 1999), chap. 15 The Hilbert Transform.
  26. E. Bedrosian, “Memorandum RM-3439-PR: A product theorem for Hilbert transform,” Tech. Rep., United States Air Force (project RAND) (1962).
  27. C. Palavicini, G. Campuzano, B. Thedrez, Y. Jaouen, and P. Gallion, “Analysis of optical-injected distributed feedback lasers using complex optical low-coherence reflectometry,” IEEE Photonics Technol. Lett. 15(12), 1683–1685 (2003).
    [Crossref]
  28. R. Wanner, R. Lachnert, G. R. Olbrich, and P. Russer, “A SiGe monolithically integrated 278 GHz push-push oscillator,” in Proceedings of IEEE International Microwave Simposium (2007), pp. 333–336.
  29. R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64GHz and data transmission using optical sideband injection locking,” IEEE Photonics Technol. Lett. 10(5), 728–730 (1998).
    [Crossref]
  30. R. Shafik, S. Rahman, and R. Islam, “On the Extended Relationships Among EVM, BER, and SNR as Performance Metrics,” in Proceedings of International Conference on Electrical and Computer Engineering (2006), pp. 408–411.
  31. C. T. Lin, J. Chen, W. J. Jiang, L. Y. He, P. T. Shih, C. H. Ho, and S. Chi, “Ultra-high data-rate 60 GHz radio-over-fiber systems employing optical frequency multiplication and adaptive OFDM formats,” in Proceedings of Optical Fiber Conference (2011), paper OThJ6.
  32. T. Walker, “Optical Transport Network (OTN) Tutorial,” Tech. Rep., International Telecommunication Union (2004).

2013 (3)

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. L. de Bougrenet de La Tocnaye, B. Fracasso, P. Pajusco, C. Karnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1–2), 3–21 (2013).
[Crossref]

I. Aldaya, G. Campuzano, C. Gosset, and G. Castañón, “Phase-insensitive RF envelope detection allows optical heterodyning of MHz-linewidth signals,” IEEE Photonics Technol. Lett. 25(22), 2193–2196 (2013).
[Crossref]

Z. Dong, X. Li, J. Yu, Z. Cao, and N. Chi, “8 × 9.95-Gb/s ultra-dense WDM-PON on a 12.5-GHz grid with digital pre-equalization,” IEEE Photonics Technol. Lett. 25(2), 194–197 (2013).
[Crossref]

2012 (1)

Y. Shao, N. Chi, J. Fan, and W. Fang, “Generation of 16-QAM-OFDM signals using selected mapping method and its application in optical millimeter-wave access system,” IEEE Photonics Technol. Lett. 24(5), 1301–1303 (2012).
[Crossref]

2011 (1)

Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” IEEE Commun. Mag. 49(6), 101–107 (2011).
[Crossref]

2010 (1)

2009 (2)

G. Chang, Z. Jia, H. C. Chien, A. Chowdhury, Y. T. Hsueh, and J. Yu, “Convergence of broadband optical and wireless access networks,” Proc. SPIE 7234, 723402 (2009).

L. Chen, J. Yu, S. Wen, J. Lu, Z. Dong, M. Huang, and G. K. Chang, “A novel scheme for seamless integration of ROF with centralized lightwave OFDM-WDM-PON system system,” J. Lightw. Technol. 27(14), 2786–2791 (2009).
[Crossref]

2008 (1)

C.-S. Choi, Y. Shoji, and H. Ogawa, “Millimeter-wave fiber-fed wireless access systems based on dense wavelength-division-multiplexing networks,” IEEE Trans. Microwave Theory Technol. 56(1), 232–241 (2008).
[Crossref]

2007 (3)

H. Kosek, Y. He, X. Gu, and X. N. Fernando, “All optical demultiplexing of closely spaced multimedia radio signals,” J. Lightwave Technol. 25(6), 1401–1409 (2007).
[Crossref]

W. Choi and J. C. Andrews, “Downlink performance and capacity of distributed antenna systems in a multicell environment,” IEEE Trans. Commun. 6(1), 69–73 (2007).

R. Daniels and R. Heath, “60 GHz wireless communications: emerging requirements and design recomendations,” IEEE Trans. Veh. Technol. pp. 41–50 (Sept.2007).
[Crossref]

2006 (2)

C. H. Lee, W. Sorin, and B. Y. Kim, “Fiber to the home using a PON infrastructure,” J. Lightwave Technol. 24(12), 4568–4583 (2006).
[Crossref]

C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, and S. Chi, “Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity,” IEEE Photonics Technol. Lett. 18(23), 2481–2483 (2006).
[Crossref]

2004 (1)

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Quantum Electron. 10(2), 312–320 (2004).
[Crossref]

2003 (1)

C. Palavicini, G. Campuzano, B. Thedrez, Y. Jaouen, and P. Gallion, “Analysis of optical-injected distributed feedback lasers using complex optical low-coherence reflectometry,” IEEE Photonics Technol. Lett. 15(12), 1683–1685 (2003).
[Crossref]

1998 (1)

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64GHz and data transmission using optical sideband injection locking,” IEEE Photonics Technol. Lett. 10(5), 728–730 (1998).
[Crossref]

1996 (1)

U. Gliese, S. Norskov, and T. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microwave Theory Technol. 44(10), 1716–1724 (1996).
[Crossref]

Abdul-Majid, S.

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. L. de Bougrenet de La Tocnaye, B. Fracasso, P. Pajusco, C. Karnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1–2), 3–21 (2013).
[Crossref]

Aldaya, I.

I. Aldaya, G. Campuzano, C. Gosset, and G. Castañón, “Phase-insensitive RF envelope detection allows optical heterodyning of MHz-linewidth signals,” IEEE Photonics Technol. Lett. 25(22), 2193–2196 (2013).
[Crossref]

Andrews, J. C.

W. Choi and J. C. Andrews, “Downlink performance and capacity of distributed antenna systems in a multicell environment,” IEEE Trans. Commun. 6(1), 69–73 (2007).

Antolín-Pérez, I.

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. L. de Bougrenet de La Tocnaye, B. Fracasso, P. Pajusco, C. Karnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1–2), 3–21 (2013).
[Crossref]

Bedrosian, E.

E. Bedrosian, “Memorandum RM-3439-PR: A product theorem for Hilbert transform,” Tech. Rep., United States Air Force (project RAND) (1962).

Bourreau, D.

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. L. de Bougrenet de La Tocnaye, B. Fracasso, P. Pajusco, C. Karnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1–2), 3–21 (2013).
[Crossref]

Braun, R. P.

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64GHz and data transmission using optical sideband injection locking,” IEEE Photonics Technol. Lett. 10(5), 728–730 (1998).
[Crossref]

R. P. Braun, “Tutorial: fibre radio systems, applications and devices,” in Proceedings of European Conference on Optical Communication (1998), vol. 2, pp. 87–119.

Campuzano, G.

I. Aldaya, G. Campuzano, C. Gosset, and G. Castañón, “Phase-insensitive RF envelope detection allows optical heterodyning of MHz-linewidth signals,” IEEE Photonics Technol. Lett. 25(22), 2193–2196 (2013).
[Crossref]

C. Palavicini, G. Campuzano, B. Thedrez, Y. Jaouen, and P. Gallion, “Analysis of optical-injected distributed feedback lasers using complex optical low-coherence reflectometry,” IEEE Photonics Technol. Lett. 15(12), 1683–1685 (2003).
[Crossref]

Cao, Z.

Z. Dong, X. Li, J. Yu, Z. Cao, and N. Chi, “8 × 9.95-Gb/s ultra-dense WDM-PON on a 12.5-GHz grid with digital pre-equalization,” IEEE Photonics Technol. Lett. 25(2), 194–197 (2013).
[Crossref]

Castañón, G.

I. Aldaya, G. Campuzano, C. Gosset, and G. Castañón, “Phase-insensitive RF envelope detection allows optical heterodyning of MHz-linewidth signals,” IEEE Photonics Technol. Lett. 25(22), 2193–2196 (2013).
[Crossref]

Chang, G.

G. Chang, Z. Jia, H. C. Chien, A. Chowdhury, Y. T. Hsueh, and J. Yu, “Convergence of broadband optical and wireless access networks,” Proc. SPIE 7234, 723402 (2009).

J. Yu, Z. Jia, G. Chang, and X. J. Xin, “Broadband convergence of 60-GHz RoF and WDM-PON systems with a single modulator for bidirectional access networks,” in Proceedings of European Conference on Optical Communications (2008), paper 6.5.2.

Chang, G. K.

L. Chen, J. Yu, S. Wen, J. Lu, Z. Dong, M. Huang, and G. K. Chang, “A novel scheme for seamless integration of ROF with centralized lightwave OFDM-WDM-PON system system,” J. Lightw. Technol. 27(14), 2786–2791 (2009).
[Crossref]

G. K. Chang, “Convergence of optical and wireless access networks,” Tutorial at OMC workshop on optical/wireless integration for enhanced broadband access and transmission, Optical Fiber Conference (2008).

Chen, J.

C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, and S. Chi, “Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity,” IEEE Photonics Technol. Lett. 18(23), 2481–2483 (2006).
[Crossref]

C. T. Lin, J. Chen, W. J. Jiang, L. Y. He, P. T. Shih, C. H. Ho, and S. Chi, “Ultra-high data-rate 60 GHz radio-over-fiber systems employing optical frequency multiplication and adaptive OFDM formats,” in Proceedings of Optical Fiber Conference (2011), paper OThJ6.

Chen, L.

L. Chen, J. Yu, S. Wen, J. Lu, Z. Dong, M. Huang, and G. K. Chang, “A novel scheme for seamless integration of ROF with centralized lightwave OFDM-WDM-PON system system,” J. Lightw. Technol. 27(14), 2786–2791 (2009).
[Crossref]

Chi, N.

Z. Dong, X. Li, J. Yu, Z. Cao, and N. Chi, “8 × 9.95-Gb/s ultra-dense WDM-PON on a 12.5-GHz grid with digital pre-equalization,” IEEE Photonics Technol. Lett. 25(2), 194–197 (2013).
[Crossref]

Y. Shao, N. Chi, J. Fan, and W. Fang, “Generation of 16-QAM-OFDM signals using selected mapping method and its application in optical millimeter-wave access system,” IEEE Photonics Technol. Lett. 24(5), 1301–1303 (2012).
[Crossref]

Chi, S.

C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, and S. Chi, “Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity,” IEEE Photonics Technol. Lett. 18(23), 2481–2483 (2006).
[Crossref]

C. T. Lin, J. Chen, W. J. Jiang, L. Y. He, P. T. Shih, C. H. Ho, and S. Chi, “Ultra-high data-rate 60 GHz radio-over-fiber systems employing optical frequency multiplication and adaptive OFDM formats,” in Proceedings of Optical Fiber Conference (2011), paper OThJ6.

Chien, H. C.

G. Chang, Z. Jia, H. C. Chien, A. Chowdhury, Y. T. Hsueh, and J. Yu, “Convergence of broadband optical and wireless access networks,” Proc. SPIE 7234, 723402 (2009).

Chiou, B. S.

C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, and S. Chi, “Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity,” IEEE Photonics Technol. Lett. 18(23), 2481–2483 (2006).
[Crossref]

Choi, C.-S.

C.-S. Choi, Y. Shoji, and H. Ogawa, “Millimeter-wave fiber-fed wireless access systems based on dense wavelength-division-multiplexing networks,” IEEE Trans. Microwave Theory Technol. 56(1), 232–241 (2008).
[Crossref]

Choi, W.

W. Choi and J. C. Andrews, “Downlink performance and capacity of distributed antenna systems in a multicell environment,” IEEE Trans. Commun. 6(1), 69–73 (2007).

Chowdhury, A.

G. Chang, Z. Jia, H. C. Chien, A. Chowdhury, Y. T. Hsueh, and J. Yu, “Convergence of broadband optical and wireless access networks,” Proc. SPIE 7234, 723402 (2009).

Chunlei, Z.

Z. Chunlei, G. Ling, and Z. Pengtu, “An overview of integration of RoF with PON,” in Proceedings of International Conference on Computer Applications and System Modeling (2010), Vol. 15, pp. 40–43.

Daniels, R.

R. Daniels and R. Heath, “60 GHz wireless communications: emerging requirements and design recomendations,” IEEE Trans. Veh. Technol. pp. 41–50 (Sept.2007).
[Crossref]

de La Tocnaye, J. L. de Bougrenet

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. L. de Bougrenet de La Tocnaye, B. Fracasso, P. Pajusco, C. Karnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1–2), 3–21 (2013).
[Crossref]

Dong, Z.

Z. Dong, X. Li, J. Yu, Z. Cao, and N. Chi, “8 × 9.95-Gb/s ultra-dense WDM-PON on a 12.5-GHz grid with digital pre-equalization,” IEEE Photonics Technol. Lett. 25(2), 194–197 (2013).
[Crossref]

L. Chen, J. Yu, S. Wen, J. Lu, Z. Dong, M. Huang, and G. K. Chang, “A novel scheme for seamless integration of ROF with centralized lightwave OFDM-WDM-PON system system,” J. Lightw. Technol. 27(14), 2786–2791 (2009).
[Crossref]

Fan, J.

Y. Shao, N. Chi, J. Fan, and W. Fang, “Generation of 16-QAM-OFDM signals using selected mapping method and its application in optical millimeter-wave access system,” IEEE Photonics Technol. Lett. 24(5), 1301–1303 (2012).
[Crossref]

Fang, W.

Y. Shao, N. Chi, J. Fan, and W. Fang, “Generation of 16-QAM-OFDM signals using selected mapping method and its application in optical millimeter-wave access system,” IEEE Photonics Technol. Lett. 24(5), 1301–1303 (2012).
[Crossref]

Fernando, X. N.

Fracasso, B.

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. L. de Bougrenet de La Tocnaye, B. Fracasso, P. Pajusco, C. Karnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1–2), 3–21 (2013).
[Crossref]

Funabashi, M.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Quantum Electron. 10(2), 312–320 (2004).
[Crossref]

Gallion, P.

C. Palavicini, G. Campuzano, B. Thedrez, Y. Jaouen, and P. Gallion, “Analysis of optical-injected distributed feedback lasers using complex optical low-coherence reflectometry,” IEEE Photonics Technol. Lett. 15(12), 1683–1685 (2003).
[Crossref]

Giacoumidis, E.

J. M. Tang, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng, E. Giacoumidis, E. Hugues-Salas, Y. Hong, C. Shu, J. Groenewald, and K. Muthusamy, “Real-time optical OFDM transceivers for PON applications,” in Proceedings of Optical Fiber Communication Conference (2011), paper OTuK3.

Giddings, R. P.

J. M. Tang, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng, E. Giacoumidis, E. Hugues-Salas, Y. Hong, C. Shu, J. Groenewald, and K. Muthusamy, “Real-time optical OFDM transceivers for PON applications,” in Proceedings of Optical Fiber Communication Conference (2011), paper OTuK3.

Gliese, U.

U. Gliese, S. Norskov, and T. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microwave Theory Technol. 44(10), 1716–1724 (1996).
[Crossref]

Gonzalez-Insua, I.

Gosset, C.

I. Aldaya, G. Campuzano, C. Gosset, and G. Castañón, “Phase-insensitive RF envelope detection allows optical heterodyning of MHz-linewidth signals,” IEEE Photonics Technol. Lett. 25(22), 2193–2196 (2013).
[Crossref]

Groenewald, J.

J. M. Tang, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng, E. Giacoumidis, E. Hugues-Salas, Y. Hong, C. Shu, J. Groenewald, and K. Muthusamy, “Real-time optical OFDM transceivers for PON applications,” in Proceedings of Optical Fiber Communication Conference (2011), paper OTuK3.

Grosskopf, G.

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64GHz and data transmission using optical sideband injection locking,” IEEE Photonics Technol. Lett. 10(5), 728–730 (1998).
[Crossref]

Gu, X.

Guemri, R.

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. L. de Bougrenet de La Tocnaye, B. Fracasso, P. Pajusco, C. Karnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1–2), 3–21 (2013).
[Crossref]

Hall, T. J.

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. L. de Bougrenet de La Tocnaye, B. Fracasso, P. Pajusco, C. Karnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1–2), 3–21 (2013).
[Crossref]

Haykin, S.

S. Haykin and M. Moher, Introduction to Analog & Digital Communications, 2nd ed. (John Wiley and Sons, 2007).

He, L. Y.

C. T. Lin, J. Chen, W. J. Jiang, L. Y. He, P. T. Shih, C. H. Ho, and S. Chi, “Ultra-high data-rate 60 GHz radio-over-fiber systems employing optical frequency multiplication and adaptive OFDM formats,” in Proceedings of Optical Fiber Conference (2011), paper OThJ6.

He, Y.

Heath, R.

R. Daniels and R. Heath, “60 GHz wireless communications: emerging requirements and design recomendations,” IEEE Trans. Veh. Technol. pp. 41–50 (Sept.2007).
[Crossref]

Ho, C. H.

C. T. Lin, J. Chen, W. J. Jiang, L. Y. He, P. T. Shih, C. H. Ho, and S. Chi, “Ultra-high data-rate 60 GHz radio-over-fiber systems employing optical frequency multiplication and adaptive OFDM formats,” in Proceedings of Optical Fiber Conference (2011), paper OThJ6.

Hong, Y.

J. M. Tang, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng, E. Giacoumidis, E. Hugues-Salas, Y. Hong, C. Shu, J. Groenewald, and K. Muthusamy, “Real-time optical OFDM transceivers for PON applications,” in Proceedings of Optical Fiber Communication Conference (2011), paper OTuK3.

Hsueh, Y. T.

G. Chang, Z. Jia, H. C. Chien, A. Chowdhury, Y. T. Hsueh, and J. Yu, “Convergence of broadband optical and wireless access networks,” Proc. SPIE 7234, 723402 (2009).

Huang, M.

L. Chen, J. Yu, S. Wen, J. Lu, Z. Dong, M. Huang, and G. K. Chang, “A novel scheme for seamless integration of ROF with centralized lightwave OFDM-WDM-PON system system,” J. Lightw. Technol. 27(14), 2786–2791 (2009).
[Crossref]

Hugues-Salas, E.

J. M. Tang, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng, E. Giacoumidis, E. Hugues-Salas, Y. Hong, C. Shu, J. Groenewald, and K. Muthusamy, “Real-time optical OFDM transceivers for PON applications,” in Proceedings of Optical Fiber Communication Conference (2011), paper OTuK3.

Islam, A.

A. Islam, “Experimental demonstration of heterodyned radio-over-fiber system using unlocked light sources and RF homodyning at the receiver,” in Proceedings of Optoelectronics and Communication Conference (2010), pp. 714–715, paper 9A2-1.

Islam, R.

R. Shafik, S. Rahman, and R. Islam, “On the Extended Relationships Among EVM, BER, and SNR as Performance Metrics,” in Proceedings of International Conference on Electrical and Computer Engineering (2006), pp. 408–411.

Jaouen, Y.

C. Palavicini, G. Campuzano, B. Thedrez, Y. Jaouen, and P. Gallion, “Analysis of optical-injected distributed feedback lasers using complex optical low-coherence reflectometry,” IEEE Photonics Technol. Lett. 15(12), 1683–1685 (2003).
[Crossref]

Jia, Z.

G. Chang, Z. Jia, H. C. Chien, A. Chowdhury, Y. T. Hsueh, and J. Yu, “Convergence of broadband optical and wireless access networks,” Proc. SPIE 7234, 723402 (2009).

J. Yu, Z. Jia, G. Chang, and X. J. Xin, “Broadband convergence of 60-GHz RoF and WDM-PON systems with a single modulator for bidirectional access networks,” in Proceedings of European Conference on Optical Communications (2008), paper 6.5.2.

Jiang, W. J.

C. T. Lin, J. Chen, W. J. Jiang, L. Y. He, P. T. Shih, C. H. Ho, and S. Chi, “Ultra-high data-rate 60 GHz radio-over-fiber systems employing optical frequency multiplication and adaptive OFDM formats,” in Proceedings of Optical Fiber Conference (2011), paper OThJ6.

Jin, X. Q.

J. M. Tang, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng, E. Giacoumidis, E. Hugues-Salas, Y. Hong, C. Shu, J. Groenewald, and K. Muthusamy, “Real-time optical OFDM transceivers for PON applications,” in Proceedings of Optical Fiber Communication Conference (2011), paper OTuK3.

Josse, Y.

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. L. de Bougrenet de La Tocnaye, B. Fracasso, P. Pajusco, C. Karnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1–2), 3–21 (2013).
[Crossref]

Karnfelt, C.

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. L. de Bougrenet de La Tocnaye, B. Fracasso, P. Pajusco, C. Karnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1–2), 3–21 (2013).
[Crossref]

Kasukawa, A.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Quantum Electron. 10(2), 312–320 (2004).
[Crossref]

Khan, F.

Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” IEEE Commun. Mag. 49(6), 101–107 (2011).
[Crossref]

Kim, B. Y.

Kimoto, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Quantum Electron. 10(2), 312–320 (2004).
[Crossref]

Kise, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Quantum Electron. 10(2), 312–320 (2004).
[Crossref]

Koonen, T.

T. Koonen, “Trends in optical access and in-building networks,” in Proceedings of European Conference on Optical Communcations (2008), paper We.2.A.1.

Kosek, H.

Lachnert, R.

R. Wanner, R. Lachnert, G. R. Olbrich, and P. Russer, “A SiGe monolithically integrated 278 GHz push-push oscillator,” in Proceedings of IEEE International Microwave Simposium (2007), pp. 333–336.

Lee, C. H.

Li, R.

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. L. de Bougrenet de La Tocnaye, B. Fracasso, P. Pajusco, C. Karnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1–2), 3–21 (2013).
[Crossref]

Li, X.

Z. Dong, X. Li, J. Yu, Z. Cao, and N. Chi, “8 × 9.95-Gb/s ultra-dense WDM-PON on a 12.5-GHz grid with digital pre-equalization,” IEEE Photonics Technol. Lett. 25(2), 194–197 (2013).
[Crossref]

Lin, C. T.

C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, and S. Chi, “Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity,” IEEE Photonics Technol. Lett. 18(23), 2481–2483 (2006).
[Crossref]

C. T. Lin, J. Chen, W. J. Jiang, L. Y. He, P. T. Shih, C. H. Ho, and S. Chi, “Ultra-high data-rate 60 GHz radio-over-fiber systems employing optical frequency multiplication and adaptive OFDM formats,” in Proceedings of Optical Fiber Conference (2011), paper OThJ6.

Ling, G.

Z. Chunlei, G. Ling, and Z. Pengtu, “An overview of integration of RoF with PON,” in Proceedings of International Conference on Computer Applications and System Modeling (2010), Vol. 15, pp. 40–43.

Liu, H.

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. L. de Bougrenet de La Tocnaye, B. Fracasso, P. Pajusco, C. Karnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1–2), 3–21 (2013).
[Crossref]

Lu, J.

L. Chen, J. Yu, S. Wen, J. Lu, Z. Dong, M. Huang, and G. K. Chang, “A novel scheme for seamless integration of ROF with centralized lightwave OFDM-WDM-PON system system,” J. Lightw. Technol. 27(14), 2786–2791 (2009).
[Crossref]

Lucarz, F.

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. L. de Bougrenet de La Tocnaye, B. Fracasso, P. Pajusco, C. Karnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1–2), 3–21 (2013).
[Crossref]

Maldonado-Basilio, R.

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. L. de Bougrenet de La Tocnaye, B. Fracasso, P. Pajusco, C. Karnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1–2), 3–21 (2013).
[Crossref]

Moher, M.

S. Haykin and M. Moher, Introduction to Analog & Digital Communications, 2nd ed. (John Wiley and Sons, 2007).

Mukaihara, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Quantum Electron. 10(2), 312–320 (2004).
[Crossref]

Muthusamy, K.

J. M. Tang, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng, E. Giacoumidis, E. Hugues-Salas, Y. Hong, C. Shu, J. Groenewald, and K. Muthusamy, “Real-time optical OFDM transceivers for PON applications,” in Proceedings of Optical Fiber Communication Conference (2011), paper OTuK3.

Nasu, H.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Quantum Electron. 10(2), 312–320 (2004).
[Crossref]

Ney, M.

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. L. de Bougrenet de La Tocnaye, B. Fracasso, P. Pajusco, C. Karnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1–2), 3–21 (2013).
[Crossref]

Nielsen, T.

U. Gliese, S. Norskov, and T. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microwave Theory Technol. 44(10), 1716–1724 (1996).
[Crossref]

Nikkhah, H.

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. L. de Bougrenet de La Tocnaye, B. Fracasso, P. Pajusco, C. Karnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1–2), 3–21 (2013).
[Crossref]

Nomura, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Quantum Electron. 10(2), 312–320 (2004).
[Crossref]

Norskov, S.

U. Gliese, S. Norskov, and T. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microwave Theory Technol. 44(10), 1716–1724 (1996).
[Crossref]

Ogawa, H.

C.-S. Choi, Y. Shoji, and H. Ogawa, “Millimeter-wave fiber-fed wireless access systems based on dense wavelength-division-multiplexing networks,” IEEE Trans. Microwave Theory Technol. 56(1), 232–241 (2008).
[Crossref]

Oike, M.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Quantum Electron. 10(2), 312–320 (2004).
[Crossref]

Olbrich, G. R.

R. Wanner, R. Lachnert, G. R. Olbrich, and P. Russer, “A SiGe monolithically integrated 278 GHz push-push oscillator,” in Proceedings of IEEE International Microwave Simposium (2007), pp. 333–336.

Pajusco, P.

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. L. de Bougrenet de La Tocnaye, B. Fracasso, P. Pajusco, C. Karnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1–2), 3–21 (2013).
[Crossref]

Palavicini, C.

C. Palavicini, G. Campuzano, B. Thedrez, Y. Jaouen, and P. Gallion, “Analysis of optical-injected distributed feedback lasers using complex optical low-coherence reflectometry,” IEEE Photonics Technol. Lett. 15(12), 1683–1685 (2003).
[Crossref]

Peng, C. F.

C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, and S. Chi, “Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity,” IEEE Photonics Technol. Lett. 18(23), 2481–2483 (2006).
[Crossref]

Peng, P. C.

C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, and S. Chi, “Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity,” IEEE Photonics Technol. Lett. 18(23), 2481–2483 (2006).
[Crossref]

Peng, W. R.

C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, and S. Chi, “Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity,” IEEE Photonics Technol. Lett. 18(23), 2481–2483 (2006).
[Crossref]

Pengtu, Z.

Z. Chunlei, G. Ling, and Z. Pengtu, “An overview of integration of RoF with PON,” in Proceedings of International Conference on Computer Applications and System Modeling (2010), Vol. 15, pp. 40–43.

Pi, Z.

Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” IEEE Commun. Mag. 49(6), 101–107 (2011).
[Crossref]

Plettemeier, D.

Poularikas, A.

A. Poularikas, The Handbook of Formulas and Tables for Signal Processing (CRC Press LLC, 1999), chap. 15 The Hilbert Transform.

Rahman, S.

R. Shafik, S. Rahman, and R. Islam, “On the Extended Relationships Among EVM, BER, and SNR as Performance Metrics,” in Proceedings of International Conference on Electrical and Computer Engineering (2006), pp. 408–411.

Rohde, D.

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64GHz and data transmission using optical sideband injection locking,” IEEE Photonics Technol. Lett. 10(5), 728–730 (1998).
[Crossref]

Russer, P.

R. Wanner, R. Lachnert, G. R. Olbrich, and P. Russer, “A SiGe monolithically integrated 278 GHz push-push oscillator,” in Proceedings of IEEE International Microwave Simposium (2007), pp. 333–336.

Schaffer, C.

Schmidt, F.

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64GHz and data transmission using optical sideband injection locking,” IEEE Photonics Technol. Lett. 10(5), 728–730 (1998).
[Crossref]

Seregelyi, J.

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. L. de Bougrenet de La Tocnaye, B. Fracasso, P. Pajusco, C. Karnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1–2), 3–21 (2013).
[Crossref]

Shafik, R.

R. Shafik, S. Rahman, and R. Islam, “On the Extended Relationships Among EVM, BER, and SNR as Performance Metrics,” in Proceedings of International Conference on Electrical and Computer Engineering (2006), pp. 408–411.

Shao, Y.

Y. Shao, N. Chi, J. Fan, and W. Fang, “Generation of 16-QAM-OFDM signals using selected mapping method and its application in optical millimeter-wave access system,” IEEE Photonics Technol. Lett. 24(5), 1301–1303 (2012).
[Crossref]

Shih, P. T.

C. T. Lin, J. Chen, W. J. Jiang, L. Y. He, P. T. Shih, C. H. Ho, and S. Chi, “Ultra-high data-rate 60 GHz radio-over-fiber systems employing optical frequency multiplication and adaptive OFDM formats,” in Proceedings of Optical Fiber Conference (2011), paper OThJ6.

Shinagawa, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Quantum Electron. 10(2), 312–320 (2004).
[Crossref]

Shoji, Y.

C.-S. Choi, Y. Shoji, and H. Ogawa, “Millimeter-wave fiber-fed wireless access systems based on dense wavelength-division-multiplexing networks,” IEEE Trans. Microwave Theory Technol. 56(1), 232–241 (2008).
[Crossref]

Shu, C.

J. M. Tang, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng, E. Giacoumidis, E. Hugues-Salas, Y. Hong, C. Shu, J. Groenewald, and K. Muthusamy, “Real-time optical OFDM transceivers for PON applications,” in Proceedings of Optical Fiber Communication Conference (2011), paper OTuK3.

Sorin, W.

Takagi, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Quantum Electron. 10(2), 312–320 (2004).
[Crossref]

Takaki, K.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Quantum Electron. 10(2), 312–320 (2004).
[Crossref]

Tang, J. M.

J. M. Tang, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng, E. Giacoumidis, E. Hugues-Salas, Y. Hong, C. Shu, J. Groenewald, and K. Muthusamy, “Real-time optical OFDM transceivers for PON applications,” in Proceedings of Optical Fiber Communication Conference (2011), paper OTuK3.

Thedrez, B.

C. Palavicini, G. Campuzano, B. Thedrez, Y. Jaouen, and P. Gallion, “Analysis of optical-injected distributed feedback lasers using complex optical low-coherence reflectometry,” IEEE Photonics Technol. Lett. 15(12), 1683–1685 (2003).
[Crossref]

Walker, T.

T. Walker, “Optical Transport Network (OTN) Tutorial,” Tech. Rep., International Telecommunication Union (2004).

Wanner, R.

R. Wanner, R. Lachnert, G. R. Olbrich, and P. Russer, “A SiGe monolithically integrated 278 GHz push-push oscillator,” in Proceedings of IEEE International Microwave Simposium (2007), pp. 333–336.

Wei, J. L.

J. M. Tang, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng, E. Giacoumidis, E. Hugues-Salas, Y. Hong, C. Shu, J. Groenewald, and K. Muthusamy, “Real-time optical OFDM transceivers for PON applications,” in Proceedings of Optical Fiber Communication Conference (2011), paper OTuK3.

Wen, S.

L. Chen, J. Yu, S. Wen, J. Lu, Z. Dong, M. Huang, and G. K. Chang, “A novel scheme for seamless integration of ROF with centralized lightwave OFDM-WDM-PON system system,” J. Lightw. Technol. 27(14), 2786–2791 (2009).
[Crossref]

Xin, X. J.

J. Yu, Z. Jia, G. Chang, and X. J. Xin, “Broadband convergence of 60-GHz RoF and WDM-PON systems with a single modulator for bidirectional access networks,” in Proceedings of European Conference on Optical Communications (2008), paper 6.5.2.

Yu, J.

Z. Dong, X. Li, J. Yu, Z. Cao, and N. Chi, “8 × 9.95-Gb/s ultra-dense WDM-PON on a 12.5-GHz grid with digital pre-equalization,” IEEE Photonics Technol. Lett. 25(2), 194–197 (2013).
[Crossref]

L. Chen, J. Yu, S. Wen, J. Lu, Z. Dong, M. Huang, and G. K. Chang, “A novel scheme for seamless integration of ROF with centralized lightwave OFDM-WDM-PON system system,” J. Lightw. Technol. 27(14), 2786–2791 (2009).
[Crossref]

G. Chang, Z. Jia, H. C. Chien, A. Chowdhury, Y. T. Hsueh, and J. Yu, “Convergence of broadband optical and wireless access networks,” Proc. SPIE 7234, 723402 (2009).

J. Yu, Z. Jia, G. Chang, and X. J. Xin, “Broadband convergence of 60-GHz RoF and WDM-PON systems with a single modulator for bidirectional access networks,” in Proceedings of European Conference on Optical Communications (2008), paper 6.5.2.

Zheng, X.

J. M. Tang, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng, E. Giacoumidis, E. Hugues-Salas, Y. Hong, C. Shu, J. Groenewald, and K. Muthusamy, “Real-time optical OFDM transceivers for PON applications,” in Proceedings of Optical Fiber Communication Conference (2011), paper OTuK3.

Ann. Telecommun. (1)

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. L. de Bougrenet de La Tocnaye, B. Fracasso, P. Pajusco, C. Karnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1–2), 3–21 (2013).
[Crossref]

IEEE Commun. Mag. (1)

Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” IEEE Commun. Mag. 49(6), 101–107 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Quantum Electron. 10(2), 312–320 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (6)

I. Aldaya, G. Campuzano, C. Gosset, and G. Castañón, “Phase-insensitive RF envelope detection allows optical heterodyning of MHz-linewidth signals,” IEEE Photonics Technol. Lett. 25(22), 2193–2196 (2013).
[Crossref]

Z. Dong, X. Li, J. Yu, Z. Cao, and N. Chi, “8 × 9.95-Gb/s ultra-dense WDM-PON on a 12.5-GHz grid with digital pre-equalization,” IEEE Photonics Technol. Lett. 25(2), 194–197 (2013).
[Crossref]

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64GHz and data transmission using optical sideband injection locking,” IEEE Photonics Technol. Lett. 10(5), 728–730 (1998).
[Crossref]

C. Palavicini, G. Campuzano, B. Thedrez, Y. Jaouen, and P. Gallion, “Analysis of optical-injected distributed feedback lasers using complex optical low-coherence reflectometry,” IEEE Photonics Technol. Lett. 15(12), 1683–1685 (2003).
[Crossref]

C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, and S. Chi, “Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity,” IEEE Photonics Technol. Lett. 18(23), 2481–2483 (2006).
[Crossref]

Y. Shao, N. Chi, J. Fan, and W. Fang, “Generation of 16-QAM-OFDM signals using selected mapping method and its application in optical millimeter-wave access system,” IEEE Photonics Technol. Lett. 24(5), 1301–1303 (2012).
[Crossref]

IEEE Trans. Commun. (1)

W. Choi and J. C. Andrews, “Downlink performance and capacity of distributed antenna systems in a multicell environment,” IEEE Trans. Commun. 6(1), 69–73 (2007).

IEEE Trans. Microwave Theory Technol. (2)

U. Gliese, S. Norskov, and T. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microwave Theory Technol. 44(10), 1716–1724 (1996).
[Crossref]

C.-S. Choi, Y. Shoji, and H. Ogawa, “Millimeter-wave fiber-fed wireless access systems based on dense wavelength-division-multiplexing networks,” IEEE Trans. Microwave Theory Technol. 56(1), 232–241 (2008).
[Crossref]

IEEE Trans. Veh. Technol. (1)

R. Daniels and R. Heath, “60 GHz wireless communications: emerging requirements and design recomendations,” IEEE Trans. Veh. Technol. pp. 41–50 (Sept.2007).
[Crossref]

J. Lightw. Technol. (1)

L. Chen, J. Yu, S. Wen, J. Lu, Z. Dong, M. Huang, and G. K. Chang, “A novel scheme for seamless integration of ROF with centralized lightwave OFDM-WDM-PON system system,” J. Lightw. Technol. 27(14), 2786–2791 (2009).
[Crossref]

J. Lightwave Technol. (3)

Proc. SPIE (1)

G. Chang, Z. Jia, H. C. Chien, A. Chowdhury, Y. T. Hsueh, and J. Yu, “Convergence of broadband optical and wireless access networks,” Proc. SPIE 7234, 723402 (2009).

Other (14)

Z. Chunlei, G. Ling, and Z. Pengtu, “An overview of integration of RoF with PON,” in Proceedings of International Conference on Computer Applications and System Modeling (2010), Vol. 15, pp. 40–43.

G. K. Chang, “Convergence of optical and wireless access networks,” Tutorial at OMC workshop on optical/wireless integration for enhanced broadband access and transmission, Optical Fiber Conference (2008).

J. Yu, Z. Jia, G. Chang, and X. J. Xin, “Broadband convergence of 60-GHz RoF and WDM-PON systems with a single modulator for bidirectional access networks,” in Proceedings of European Conference on Optical Communications (2008), paper 6.5.2.

T. Koonen, “Trends in optical access and in-building networks,” in Proceedings of European Conference on Optical Communcations (2008), paper We.2.A.1.

S. Haykin and M. Moher, Introduction to Analog & Digital Communications, 2nd ed. (John Wiley and Sons, 2007).

A. Poularikas, The Handbook of Formulas and Tables for Signal Processing (CRC Press LLC, 1999), chap. 15 The Hilbert Transform.

E. Bedrosian, “Memorandum RM-3439-PR: A product theorem for Hilbert transform,” Tech. Rep., United States Air Force (project RAND) (1962).

J. M. Tang, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng, E. Giacoumidis, E. Hugues-Salas, Y. Hong, C. Shu, J. Groenewald, and K. Muthusamy, “Real-time optical OFDM transceivers for PON applications,” in Proceedings of Optical Fiber Communication Conference (2011), paper OTuK3.

R. P. Braun, “Tutorial: fibre radio systems, applications and devices,” in Proceedings of European Conference on Optical Communication (1998), vol. 2, pp. 87–119.

A. Islam, “Experimental demonstration of heterodyned radio-over-fiber system using unlocked light sources and RF homodyning at the receiver,” in Proceedings of Optoelectronics and Communication Conference (2010), pp. 714–715, paper 9A2-1.

R. Wanner, R. Lachnert, G. R. Olbrich, and P. Russer, “A SiGe monolithically integrated 278 GHz push-push oscillator,” in Proceedings of IEEE International Microwave Simposium (2007), pp. 333–336.

R. Shafik, S. Rahman, and R. Islam, “On the Extended Relationships Among EVM, BER, and SNR as Performance Metrics,” in Proceedings of International Conference on Electrical and Computer Engineering (2006), pp. 408–411.

C. T. Lin, J. Chen, W. J. Jiang, L. Y. He, P. T. Shih, C. H. Ho, and S. Chi, “Ultra-high data-rate 60 GHz radio-over-fiber systems employing optical frequency multiplication and adaptive OFDM formats,” in Proceedings of Optical Fiber Conference (2011), paper OThJ6.

T. Walker, “Optical Transport Network (OTN) Tutorial,” Tech. Rep., International Telecommunication Union (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Different PON and RoF convergence schemes: (a) simultaneous transmission of PON and RoF signals. (b) Concatenation of PON and RoF networks. (c) photonic conversion scheme based on [7], (d) scheme based on [8], and (e) our proposal. OLT: optical link terminal, CS: central station, ONU: optical network unit, BS: base station, DEMUX: demultiplexer, OC: optical coupler, SOA: semiconductor optical amplifier, PD: photodetector, LPF: low-pass filter, BPF: band-pass filter.
Fig. 2
Fig. 2 Different MT frontends: (a) homodyning MT, (b) heterodyne MT, (c) SH-MT, and (d) ED-MT. LO: local oscillator, LPF: low-pass filter, BPF: band-pass filter, Amp: amplifier, ED: envelope detector.
Fig. 3
Fig. 3 Experimental setup. OFDM mod: OFDM modulator, AWG: arbitrary waveform generator, SSFM: standard single mode fiber, PC: polarization controller, OC: optical combiner, SOA: semiconductor optical amplifier, VOA: variable optical attenuator, HPF: high-pass filter, VEA: variable electrical amplifier, ED: envelope detector, LNA: low-noise amplifier, OFDM dem: OFDM demodulator.
Fig. 4
Fig. 4 Power spectral densities at different points of the system: (a) Optical power spectral density at the output of the OC. (b) Electrical power spectrum density after the PD. (c) Electrical power density of the filtered signal. (d) Electrical power density after down-conversion form RF to IF using an ED based MT.
Fig. 5
Fig. 5 (a) Long-term frequency fluctuations of the generated RF signal and (b) its phase-noise.
Fig. 6
Fig. 6 Error vector magnitude in terms of (a) received optical power and (b) distribution network losses.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

E i n ( t ) = ( 1 + m ( t ) ) E s exp j ( ω s t + ϕ s ( t ) ) ,
E o u t ( t ) = G S O A [ ( 1 + m ( t ) ) E s exp j ( ω s t + ϕ s ( t ) ) + E r exp j ( ω r t + ϕ r ( t ) ) ] + n S O A ( t )
E r e c ( t ) = E o u t ( t ) e α z .
E rec ( t ) = E out ( t ) e α l fiber = E out ( t ) L
i P D ( t ) = R P rec ( t ) + n P D = R E rec ( t ) E rec * ( t ) + n P D ( t ) ,
i P D ( t ) = R L { G S O A [ ( 1 + m ( t ) ) E s exp j ( ω s t + ϕ s ( t ) ) + E r exp j ( ω r t + ϕ r ( t ) ) ] + n S O A ( t ) } { G S O A [ ( 1 + m ( t ) ) * E s exp [ j ( ω s t + ϕ s ( t ) ) ] + E r exp [ j ( ω r t + ϕ r ( t ) ) ] ] } + n S O A * ( t ) + n P D ( t )
= R L G S O A [ ( 1 + m ( t ) ) 2 E s 2 + E r 2 ] + n B B ( t ) + R L G S O A ( 1 + m ( t ) ) E s E r cos ( ω R F t + Δ ϕ ( t ) ) + n P B ( t ) ,
i P O N ( t ) = R L G S O A [ ( 1 + m ( t ) ) 2 E s 2 + E r 2 ] + n B B ( t ) i R F ( t ) = R L G S O A ( 1 + m ( t ) ) E s E r cos ( ω R F t + Δ ϕ ( t ) ) + n P B ( t )
s S S B ( t ) = K S S B ( m I ( t ) cos ( ω R F t + Δ ϕ ( t ) ) + m Q ( t ) sin ( ω R F t + Δ ϕ ( t ) ) ) + n S S B ( t ) ,
s D S B ( t ) = K D S B ( 1 + m ( t ) ) cos ( ω R F t + Δ ϕ ( t ) ) + n D S B ( t ) ,
s I ( t ) = K m I ( t ) cos ( Δ ϕ ( t ) ) + n I ( t ) s Q ( t ) = K m Q ( t ) sin ( Δ ϕ ( t ) ) + n Q ( t )
s I F ( t ) = K ( m I ( t ) cos ( ω I F t + Δ ϕ ( t ) ) + m Q ( t ) sin ( ω I F t + Δ ϕ ( t ) ) ) + n ( t ) .
s mixer ( t ) s D S B 2 ( t ) = ( K D S B ( 1 + m ( t ) ) cos ( ω R F t + Δ ϕ ( t ) ) + n P B ( t ) ) 2 = K S H ( 1 + m ( t ) cos ( ω I F t ) ) 2 ( 1 + cos ( 2 ω R F t + 2 Δ ϕ ( t ) ) + n ( t ) )
s I F ( t ) = 2 K S H m ( t ) + n ( t ) .
s E D ( t ) = ( Re { s ˜ D S B ( t ) } ) 2 + ( Im { s ˜ D S B ( t ) } ) 2 with s ˜ D S B ( t ) = s D S B ( t ) + j H T { s D S B ( t ) } ,
s E D ( t ) = s D S B 2 ( t ) + ( H T { s D S B ( t ) } ) 2 ,
H T { s D S B ( t ) } = H T { K D S B ( 1 + m ( t ) ) cos ( ω R F t + Δ ϕ ( t ) ) + n D S B ( t ) } = K D S B H T { ( 1 + m ( t ) ) cos ( ω R F t + Δ ϕ ( t ) ) } + H T { n D S B ( t ) } .
H T { s D S B ( t ) } = K D S B ( 1 + m ( t ) ) H T { cos ( ω R F t | Δ ϕ ( t ) ) } + H T { n D S B ( t ) } = K D S B ( 1 + m ( t ) ) sin ( ω R F t + Δ ϕ ( t ) ) + H T { n D S B ( t ) } .
s E D ( t ) = ( ( K D S B ( 1 + m ( t ) ) cos ( ω R F t + Δ ϕ ( t ) ) + n D S B ( t ) ) 2 + ( K D S B ( 1 + m ( t ) ) sin ( ω R F t + Δ ϕ ( t ) + H T { n D S B ( t ) } ) 2 ) 1 2 = K D S B ( 1 + m ( t ) ) ( cos 2 ( ω R F t + Δ ϕ ( t ) ) sin 2 ( ω R F t + Δ ϕ ( t ) ) ) 1 2 + n e n v ( t ) = K D S B ( 1 + m ( t ) ) + n e n v ( t ) ,
s I F ( t ) = K E D m ( t ) + n E D ( t ) ,
Δ f ( Δ T , Δ I ) = δ f δ T Δ T + δ f δ I Δ I ,
Δ f R F max = 2 δ f δ T Δ T max .

Metrics