Abstract

We report on the nonlinear transmission limits of various super-channel configurations in a flex-grid network upgrade scenario. In particular, we consider flexible data-rates ranging from 180Gb/s to 1.2Tb/s, employing either single-carrier, dual-carrier, or penta-carrier polarization multiplexed m-state quadrature amplitude modulation (PM-8QAM/PM-16QAM) –termed as super-channels, and establish transmission performance margins for each configuration, both with and without super-channel fiber nonlinearity compensation. Our results show that the benefit of intra super-channel nonlinearity mitigation (nonlinear compensation addressing full super-channel bandwidth) reduces with increasing sub-carrier count within the super-channel, and that single-carrier super-channel achieves the maximum improvement from nonlinearity mitigation (up to ~4.5dB, in Q-factor), better than dual-carrier (up to ~3.5dB) and penta-carrier (up to ~2dB) configurations. Moreover, the maximum reach improvement, compared to linear compensation only, is found to be ~170% (180Gb/s, PM-8QAM), ~150% (240Gb/s, PM-16QAM), ~100% (360Gb/s, PM-8QAM), ~100% (480Gb/s, PM-16QAM), and ~65% (1.2Tb/s, PM-16QAM).

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Flex-grid optical networks: spectrum allocation and nonlinear dynamics of super-channels

Danish Rafique, Talha Rahman, Antonio Napoli, Maxim Kuschnerov, Gottfried Lehmann, and Bernhard Spinnler
Opt. Express 21(26) 32184-32191 (2013)

Fiber nonlinearity compensation for OFDM super-channels using optical phase conjugation

Liang B. Du, Mohammad Monir Morshed, and Arthur J. Lowery
Opt. Express 20(18) 19921-19927 (2012)

Intra-channel nonlinearity compensation for PM-16QAM traffic co-propagating with 28Gbaud m-ary QAM neighbours

Danish Rafique, Stylianos Sygletos, and Andrew D. Ellis
Opt. Express 21(4) 4174-4182 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. S. Tucker, K. Hinton, and R. Ayre, “Energy efficiency in cloud computing and optical networking,” in Proceedings of ECOC’12, paper Th.1.G.1, (2012).
  2. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  3. V. A. J. M. Sleiffer, Y. Jung, V. Veljanovski, R. G. H. van Uden, M. Kuschnerov, H. Chen, B. Inan, L. G. Nielsen, Y. Sun, D. J. Richardson, S. U. Alam, F. Poletti, J. K. Sahu, A. Dhar, A. M. J. Koonen, B. Corbett, R. Winfield, A. D. Ellis, and H. de Waardt, “73.7 Tb/s (96 x 3 x 256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA,” Opt. Express 20(26), B428–B438 (2012).
    [Crossref] [PubMed]
  4. G. Li, E. Mateo, and L. Zhu, “Compensation of Nonlinear Effects Using Digital Coherent Receivers,” in Proceedings of OFC 11, OWW1 (2011).
  5. M. Jinno, T. Ohara, Y. Sone, A. Hirano, O. Ishida, and M. Tomizawa, “Elastic and Adaptive Optical Networks : Possible Adoption Scenarios and Future Standardization Aspects,” Commun. Mag., 164–172 (2011).
  6. S. L. Woodward and M. D. Feuer, “Benefits and Requirements of Flexible-Grid ROADMs and Networks [Invited],” J. Opt. Commun. Netw. 5(10), A19–A27 (2013).
    [Crossref]
  7. J. Elbers and A. Autenrieth, “From Static to Software-Defined Optical Networks,” Opt. Netw. Design Mod. 12, 1–4 (2012).
  8. D. Rafique and A. D. Ellis, “Nonlinear penalties in long-haul optical networks employing dynamic transponders,” Opt. Express 19(10), 9044–9049 (2011).
    [Crossref] [PubMed]
  9. M. Tahon, S. Verbrugge, D. Colle, M. Pickavet, P. Wright, and A. Lord, “Valuing Flexibility in the Migration to Flexgrid Networks,” in Proceedings of OFC’13, paper NTh1I.6, (2013).
  10. D. Rafique and A. D. Ellis, “Nonlinear Penalties in Dynamic Optical Networks Employing Autonomous Transponders,” IEEE Photon. Technol. Lett. 23(17), 1213–1215 (2011).
    [Crossref]
  11. E. Ip, “Nonlinear Compensation Using Backpropagation for Polarization-Multiplexed Transmission,” J. Lightwave Technol. 28(6), 939–951 (2010).
    [Crossref]
  12. D. Rafique, M. Mussolin, J. Mårtensson, M. Forzati, J. K. Fischer, L. Molle, M. Nölle, C. Schubert, and A. D. Ellis, “Polarization multiplexed 16QAM transmission employing modified digital back-propagation,” Opt. Express 19, B805–B810 (2011).
  13. E. Yamazaki, A. Sano, T. Kobayashi, E. Yoshida, and Y. Miyamoto, “Mitigation of Nonlinearities in Optical Transmission Systems,” in Proceedings of OFC’11, OThF1, (2011).
  14. D. Rafique, J. Zhao, and A. D. Ellis, “Compensation of Nonlinear Fibre Impairments in Coherent Systems Employing Spectrally Efficient Modulation Formats,” IEICE Trans. Commun. E94-B(7), 1815–1822 (2011).
    [Crossref]
  15. L. B. Du, M. M. Morshed, and A. J. Lowery, “Fiber nonlinearity compensation for OFDM super-channels using optical phase conjugation,” Opt. Express 20(18), 19921–19927 (2012).
    [Crossref] [PubMed]
  16. E. F. Mateo, X. Zhou, and G. Li, “Electronic phase conjugation for nonlinearity compensation in fiber communication systems,” in Proceedings of OFC’11, JWA025 (2011).
  17. L. Zong, G. N. Liu, A. Lord, Y. R. Zhou, and T. Ma, “40/100/400 Gb/s Mixed Line Rate Transmission Performance in Flexgrid Optical Networks,” in Proceedings of OFC’13, OTu2A.2, (2013).
  18. H. C. Lim, F. Futami, and K. Kikuchi, “Polarization-independent, wavelength-shift-free optical phase conjugator using a nonlinear fiber Sagnac interferometer,” IEEE Photon. Technol. Lett. 11(5), 578–580 (1999).
    [Crossref]
  19. D. Rafique and A. D. Ellis, “Various nonlinearity mitigation techniques employing optical and electronic approaches,” IEEE Photon. Technol. Lett. 23(23), 1838–1840 (2011).
    [Crossref]
  20. M. Kuschnerov, F. N. Hauske, K. Piyawanno, B. Spinnler, M. S. Alfiad, A. Napoli, and B. Lankl, “DSP for Coherent Single-Carrier Receivers,” J. Lightwave Technol. 27(16), 3614–3622 (2009).
    [Crossref]
  21. D. Rafique and A. D. Ellis, “Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems,” Opt. Express 19(4), 3449–3454 (2011).
    [Crossref] [PubMed]
  22. R. Ding, Z. Zheng, Z. Huang, F. Zhang, Z. Chen, and C. Yang, “Nonlinear Compensation for 1.76Tbit/s PDM-16QAM Nyquist-SCFDE Superchannel Transmission,” in Proceedings of ECOC’13, P.4.8, (2013).
  23. N. K. Fontaine, X. Liu, S. Chandrasekhar, R. Ryf, S. Randel, P. Winzer, R. Delbue, P. Pupalaikis, and A. Sureka, “Fiber Nonlinearity Compensation by Digital Backpropagation of an Entire 1.2-Tb/s Superchannel Using a Full-Field Spectrally-Sliced Receiver,” in Proceedings of ECOC’13, Mo.3.D.5, (2013).
  24. D. Rafique, S. Sygletos, and A. D. Ellis, “Intra-channel nonlinearity compensation for PM-16QAM traffic co-propagating with 28Gbaud m-ary QAM neighbours,” Opt. Express 21, 4174–4182 (2013).
  25. S. Ma, B. Guo, Y. Zhao, X. Chen, J. Li, Z. Chen, and Y. He, “An Investigation on Power Allocation between Subcarriers with Mixed Formats in Spectrum-flexible Optical Networks,” in Proceedings of ACP’12, AS4C.3, (2012).
  26. J. Augé, “Can we use Flexible Transponders to Reduce Margins? ” in Proceedings of OFC’13, OTu2A.1, (2013).

2013 (3)

2012 (3)

2011 (6)

D. Rafique and A. D. Ellis, “Nonlinear penalties in long-haul optical networks employing dynamic transponders,” Opt. Express 19(10), 9044–9049 (2011).
[Crossref] [PubMed]

D. Rafique and A. D. Ellis, “Nonlinear Penalties in Dynamic Optical Networks Employing Autonomous Transponders,” IEEE Photon. Technol. Lett. 23(17), 1213–1215 (2011).
[Crossref]

D. Rafique, M. Mussolin, J. Mårtensson, M. Forzati, J. K. Fischer, L. Molle, M. Nölle, C. Schubert, and A. D. Ellis, “Polarization multiplexed 16QAM transmission employing modified digital back-propagation,” Opt. Express 19, B805–B810 (2011).

D. Rafique, J. Zhao, and A. D. Ellis, “Compensation of Nonlinear Fibre Impairments in Coherent Systems Employing Spectrally Efficient Modulation Formats,” IEICE Trans. Commun. E94-B(7), 1815–1822 (2011).
[Crossref]

D. Rafique and A. D. Ellis, “Various nonlinearity mitigation techniques employing optical and electronic approaches,” IEEE Photon. Technol. Lett. 23(23), 1838–1840 (2011).
[Crossref]

D. Rafique and A. D. Ellis, “Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems,” Opt. Express 19(4), 3449–3454 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

1999 (1)

H. C. Lim, F. Futami, and K. Kikuchi, “Polarization-independent, wavelength-shift-free optical phase conjugator using a nonlinear fiber Sagnac interferometer,” IEEE Photon. Technol. Lett. 11(5), 578–580 (1999).
[Crossref]

Alam, S. U.

Alfiad, M. S.

Autenrieth, A.

J. Elbers and A. Autenrieth, “From Static to Software-Defined Optical Networks,” Opt. Netw. Design Mod. 12, 1–4 (2012).

Chen, H.

Chen, Z.

R. Ding, Z. Zheng, Z. Huang, F. Zhang, Z. Chen, and C. Yang, “Nonlinear Compensation for 1.76Tbit/s PDM-16QAM Nyquist-SCFDE Superchannel Transmission,” in Proceedings of ECOC’13, P.4.8, (2013).

Corbett, B.

de Waardt, H.

Dhar, A.

Ding, R.

R. Ding, Z. Zheng, Z. Huang, F. Zhang, Z. Chen, and C. Yang, “Nonlinear Compensation for 1.76Tbit/s PDM-16QAM Nyquist-SCFDE Superchannel Transmission,” in Proceedings of ECOC’13, P.4.8, (2013).

Du, L. B.

Elbers, J.

J. Elbers and A. Autenrieth, “From Static to Software-Defined Optical Networks,” Opt. Netw. Design Mod. 12, 1–4 (2012).

Ellis, A. D.

D. Rafique, S. Sygletos, and A. D. Ellis, “Intra-channel nonlinearity compensation for PM-16QAM traffic co-propagating with 28Gbaud m-ary QAM neighbours,” Opt. Express 21, 4174–4182 (2013).

V. A. J. M. Sleiffer, Y. Jung, V. Veljanovski, R. G. H. van Uden, M. Kuschnerov, H. Chen, B. Inan, L. G. Nielsen, Y. Sun, D. J. Richardson, S. U. Alam, F. Poletti, J. K. Sahu, A. Dhar, A. M. J. Koonen, B. Corbett, R. Winfield, A. D. Ellis, and H. de Waardt, “73.7 Tb/s (96 x 3 x 256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA,” Opt. Express 20(26), B428–B438 (2012).
[Crossref] [PubMed]

D. Rafique, M. Mussolin, J. Mårtensson, M. Forzati, J. K. Fischer, L. Molle, M. Nölle, C. Schubert, and A. D. Ellis, “Polarization multiplexed 16QAM transmission employing modified digital back-propagation,” Opt. Express 19, B805–B810 (2011).

D. Rafique and A. D. Ellis, “Various nonlinearity mitigation techniques employing optical and electronic approaches,” IEEE Photon. Technol. Lett. 23(23), 1838–1840 (2011).
[Crossref]

D. Rafique, J. Zhao, and A. D. Ellis, “Compensation of Nonlinear Fibre Impairments in Coherent Systems Employing Spectrally Efficient Modulation Formats,” IEICE Trans. Commun. E94-B(7), 1815–1822 (2011).
[Crossref]

D. Rafique and A. D. Ellis, “Nonlinear Penalties in Dynamic Optical Networks Employing Autonomous Transponders,” IEEE Photon. Technol. Lett. 23(17), 1213–1215 (2011).
[Crossref]

D. Rafique and A. D. Ellis, “Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems,” Opt. Express 19(4), 3449–3454 (2011).
[Crossref] [PubMed]

D. Rafique and A. D. Ellis, “Nonlinear penalties in long-haul optical networks employing dynamic transponders,” Opt. Express 19(10), 9044–9049 (2011).
[Crossref] [PubMed]

Feuer, M. D.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Fischer, J. K.

Forzati, M.

Futami, F.

H. C. Lim, F. Futami, and K. Kikuchi, “Polarization-independent, wavelength-shift-free optical phase conjugator using a nonlinear fiber Sagnac interferometer,” IEEE Photon. Technol. Lett. 11(5), 578–580 (1999).
[Crossref]

Hauske, F. N.

Huang, Z.

R. Ding, Z. Zheng, Z. Huang, F. Zhang, Z. Chen, and C. Yang, “Nonlinear Compensation for 1.76Tbit/s PDM-16QAM Nyquist-SCFDE Superchannel Transmission,” in Proceedings of ECOC’13, P.4.8, (2013).

Inan, B.

Ip, E.

Jung, Y.

Kikuchi, K.

H. C. Lim, F. Futami, and K. Kikuchi, “Polarization-independent, wavelength-shift-free optical phase conjugator using a nonlinear fiber Sagnac interferometer,” IEEE Photon. Technol. Lett. 11(5), 578–580 (1999).
[Crossref]

Koonen, A. M. J.

Kuschnerov, M.

Lankl, B.

Lim, H. C.

H. C. Lim, F. Futami, and K. Kikuchi, “Polarization-independent, wavelength-shift-free optical phase conjugator using a nonlinear fiber Sagnac interferometer,” IEEE Photon. Technol. Lett. 11(5), 578–580 (1999).
[Crossref]

Lowery, A. J.

Mårtensson, J.

Molle, L.

Morshed, M. M.

Mussolin, M.

Napoli, A.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Nielsen, L. G.

Nölle, M.

Piyawanno, K.

Poletti, F.

Rafique, D.

Richardson, D. J.

Sahu, J. K.

Schubert, C.

Sleiffer, V. A. J. M.

Spinnler, B.

Sun, Y.

Sygletos, S.

van Uden, R. G. H.

Veljanovski, V.

Winfield, R.

Woodward, S. L.

Yang, C.

R. Ding, Z. Zheng, Z. Huang, F. Zhang, Z. Chen, and C. Yang, “Nonlinear Compensation for 1.76Tbit/s PDM-16QAM Nyquist-SCFDE Superchannel Transmission,” in Proceedings of ECOC’13, P.4.8, (2013).

Zhang, F.

R. Ding, Z. Zheng, Z. Huang, F. Zhang, Z. Chen, and C. Yang, “Nonlinear Compensation for 1.76Tbit/s PDM-16QAM Nyquist-SCFDE Superchannel Transmission,” in Proceedings of ECOC’13, P.4.8, (2013).

Zhao, J.

D. Rafique, J. Zhao, and A. D. Ellis, “Compensation of Nonlinear Fibre Impairments in Coherent Systems Employing Spectrally Efficient Modulation Formats,” IEICE Trans. Commun. E94-B(7), 1815–1822 (2011).
[Crossref]

Zheng, Z.

R. Ding, Z. Zheng, Z. Huang, F. Zhang, Z. Chen, and C. Yang, “Nonlinear Compensation for 1.76Tbit/s PDM-16QAM Nyquist-SCFDE Superchannel Transmission,” in Proceedings of ECOC’13, P.4.8, (2013).

IEEE Photon. Technol. Lett. (3)

D. Rafique and A. D. Ellis, “Nonlinear Penalties in Dynamic Optical Networks Employing Autonomous Transponders,” IEEE Photon. Technol. Lett. 23(17), 1213–1215 (2011).
[Crossref]

H. C. Lim, F. Futami, and K. Kikuchi, “Polarization-independent, wavelength-shift-free optical phase conjugator using a nonlinear fiber Sagnac interferometer,” IEEE Photon. Technol. Lett. 11(5), 578–580 (1999).
[Crossref]

D. Rafique and A. D. Ellis, “Various nonlinearity mitigation techniques employing optical and electronic approaches,” IEEE Photon. Technol. Lett. 23(23), 1838–1840 (2011).
[Crossref]

IEICE Trans. Commun. (1)

D. Rafique, J. Zhao, and A. D. Ellis, “Compensation of Nonlinear Fibre Impairments in Coherent Systems Employing Spectrally Efficient Modulation Formats,” IEICE Trans. Commun. E94-B(7), 1815–1822 (2011).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Commun. Netw. (1)

Nat. Photonics (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Opt. Express (6)

Opt. Netw. Design Mod. (1)

J. Elbers and A. Autenrieth, “From Static to Software-Defined Optical Networks,” Opt. Netw. Design Mod. 12, 1–4 (2012).

Other (11)

M. Tahon, S. Verbrugge, D. Colle, M. Pickavet, P. Wright, and A. Lord, “Valuing Flexibility in the Migration to Flexgrid Networks,” in Proceedings of OFC’13, paper NTh1I.6, (2013).

G. Li, E. Mateo, and L. Zhu, “Compensation of Nonlinear Effects Using Digital Coherent Receivers,” in Proceedings of OFC 11, OWW1 (2011).

M. Jinno, T. Ohara, Y. Sone, A. Hirano, O. Ishida, and M. Tomizawa, “Elastic and Adaptive Optical Networks : Possible Adoption Scenarios and Future Standardization Aspects,” Commun. Mag., 164–172 (2011).

E. F. Mateo, X. Zhou, and G. Li, “Electronic phase conjugation for nonlinearity compensation in fiber communication systems,” in Proceedings of OFC’11, JWA025 (2011).

L. Zong, G. N. Liu, A. Lord, Y. R. Zhou, and T. Ma, “40/100/400 Gb/s Mixed Line Rate Transmission Performance in Flexgrid Optical Networks,” in Proceedings of OFC’13, OTu2A.2, (2013).

E. Yamazaki, A. Sano, T. Kobayashi, E. Yoshida, and Y. Miyamoto, “Mitigation of Nonlinearities in Optical Transmission Systems,” in Proceedings of OFC’11, OThF1, (2011).

S. Ma, B. Guo, Y. Zhao, X. Chen, J. Li, Z. Chen, and Y. He, “An Investigation on Power Allocation between Subcarriers with Mixed Formats in Spectrum-flexible Optical Networks,” in Proceedings of ACP’12, AS4C.3, (2012).

J. Augé, “Can we use Flexible Transponders to Reduce Margins? ” in Proceedings of OFC’13, OTu2A.1, (2013).

R. S. Tucker, K. Hinton, and R. Ayre, “Energy efficiency in cloud computing and optical networking,” in Proceedings of ECOC’12, paper Th.1.G.1, (2012).

R. Ding, Z. Zheng, Z. Huang, F. Zhang, Z. Chen, and C. Yang, “Nonlinear Compensation for 1.76Tbit/s PDM-16QAM Nyquist-SCFDE Superchannel Transmission,” in Proceedings of ECOC’13, P.4.8, (2013).

N. K. Fontaine, X. Liu, S. Chandrasekhar, R. Ryf, S. Randel, P. Winzer, R. Delbue, P. Pupalaikis, and A. Sureka, “Fiber Nonlinearity Compensation by Digital Backpropagation of an Entire 1.2-Tb/s Superchannel Using a Full-Field Spectrally-Sliced Receiver,” in Proceedings of ECOC’13, Mo.3.D.5, (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 a) Simulation setup for 30Gbaud PM-8QAM and PM-16QAM super-channels, employing 1-carrier (180Gb/s, 240Gb/s), 2-carrier (360Gb/s, 480Gb/s), and 5-carrier (1.2Tb/s) transmission, respectively. The neighboring traffic is 120Gb/s PM-QPSK. b) Optical spectra for various configurations. c) Schematic diagram for intra super-channel nonlinearity compensation for single, dual and penta-carrier transmitter configurations. N: Total spans.
Fig. 2
Fig. 2 a) Q-factor as a function of launch power per sub-carrier after 2400km, employing PM-8QAM 180Gb/s 1-carrier (square), and 360Gb/s 2-carrier (circle). Linear compensation (LC): Open, Intra super-channel nonlinear compensation (INLC): Solid. Constellation plots b) 180Gb/s 1-carrier, LC, c) 180Gb/s 1-carrier, INLC.
Fig. 3
Fig. 3 a) Q-factor as a function of launch power per sub-carrier after 1280km, employing PM-16QAM 240Gb/s 1-carrier (square), 480Gb/s 2-carrier (circle), and 1.2Tb/s 5-carrier (up-triangle). Linear compensation (LC): Open, Intra super-channel nonlinear compensation (INLC): Solid. Constellation plots b) 240Gb/s 1-carrier, LC, c) 240Gb/s 1-carrier, INLC.
Fig. 4
Fig. 4 Q-factor as a function of transmission reach at optimum launch powers. a) Linear compensation (LC), b) Intra super-channel nonlinearity compensation (INLC). PM-8QAM: 1 sub-carrier 180Gb/s (square), 2 sub-carriers 360Gb/s (circle), PM-16QAM: 1 sub-carrier 240Gb/s (up-triangle), 2 sub-carriers 480Gb/s (down triangle), 5 sub-carriers 1.2Tb/s (left triangle). H-FEC: hard-decision forward error correction.

Metrics