Abstract

Flex-grid optical networks have evolved as a near-future deployment option to facilitate dynamic and bandwidth intense traffic demands. These networks enable capacity gains by operating on a flexible spectrum, allocating minimum required bandwidth, for a given channel configuration. It is thus important to understand the nonlinear dynamics of various high bit-rate super-channel configurations, and whether such channels should propagate homogenously (uniform channel configuration) or heterogeneously (non-uniform channel configuration), when upgrading the current static network structure to a flex-grid network. In this paper, we report on the spectrum allocation strategies based on the impact of inter-channel fiber nonlinearities, for PM-16QAM channels (240Gb/s, 480Gb/s and 1.2Tb/s) –termed as super-channels, propagating both homogenously, and heterogeneously with 120Gb/s PM-QPSK, 43Gb/s PM-QPSK, and 43Gb/s DPSK traffic. In particular, we show that for high dispersion fibers, both homogenous and heterogeneous spectrum allocation enable similar performance, i.e. the nonlinear impact of hybrid traffic is found to be minimal (less than 0.5dB relative penalties). We further report that in low dispersion fibers, the impact of spectrum allocation is more pronounced, and heterogeneous traffic employing 120Gb/s PM-QPSK neighbors enables the best performance, ~0.5dB better than homogenous transmission. However, the absolute nonlinear impact of co-propagating traffic is more significant, compared to high dispersion fibers, with maximum performance penalties up to 1.5dB.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Intra super-channel fiber nonlinearity compensation in flex-grid optical networks

Danish Rafique, Talha Rahman, Antonio Napoli, and Bernhard Spinnler
Opt. Express 21(26) 32063-32070 (2013)

Quantifying Spectrum, Cost, and Energy Efficiency in Fixed-Grid and Flex-Grid Networks [Invited]

E. Palkopoulou, M. Angelou, D. Klonidis, K. Christodoulopoulos, A. Klekamp, F. Buchali, E. Varvarigos, and I. Tomkos
J. Opt. Commun. Netw. 4(11) B42-B51 (2012)

References

  • View by:
  • |
  • |
  • |

  1. B. Mukherjee, “Issues and challenges in optical network design telecom network hierarchy,” in ECOC’11 (2011), Mo.1.K.
  2. S. L. Woodward, “ROADM options in optical networks: flexible grid or not?,” in OFC’13 (2013), OTh3B.1.
  3. M. Jinno, T. Ohara, Y. Sone, A. Hirano, O. Ishida, and M. Tomizawa, “Elastic and adaptive optical networks: Possible adoption scenarios and future standardization aspects,” IEEE Commun. Mag. 49(10), 164–172 (2011).
    [Crossref]
  4. J. Elbers and A. Autenrieth, “From static to software-defined optical networks,” Opt. Network Design Model. 12, 1–4 (2012).
  5. D. Rafique and A. D. Ellis, “Nonlinear penalties in long-haul optical networks employing dynamic transponders,” Opt. Express 19(10), 9044–9049 (2011).
    [Crossref] [PubMed]
  6. C. Meusburger, D. A. Schupke, and A. Lord, “Optimizing the migration of channels with higher bitrates,” J. Lightwave Technol. 28(4), 608–615 (2010).
    [Crossref]
  7. D. Rafique and A. D. Ellis, “Nonlinear penalties in dynamic optical networks employing autonomous transponders,” IEEE Photonics Technol. Lett. 23(17), 1213–1215 (2011).
    [Crossref]
  8. Y. Huang, E. Ip, P. N. Ji, Y. Shao, T. Wang, Y. Aono, Y. Yano, and T. Tajima, “Terabit/s optical superchannel with flexible modulation format for dynamic distance/route transmission,” in OFC’12 (2012), OM3H.4.
  9. N. Amaya, M. Irfan, G. Zervas, K. Banias, M. Garrich, I. Henning, D. Simeonidou, Y. R. Zhou, A. Lord, K. Smith, V. J. F. Rancano, S. Liu, P. Petropoulos, and D. J. Richardson, “Gridless optical networking field trial: flexible spectrum switching, defragmentation and transport of 10G/40G/100G/555G over 620-km field fiber,” Opt. Express 19(26), B277–B282 (2011).
    [Crossref] [PubMed]
  10. L. Zong, G. N. Liu, A. Lord, Y. R. Zhou, and T. Ma, “40/100/400 Gb/s mixed line rate transmission performance in flexgrid optical networks,” in OFC’13 (2013), OTu2A.2.
  11. M. Zhang, Y. Yin, R. Proietti, Z. Zhu, and S. J. B. Yoo, “Spectrum defragmentation algorithms for elastic optical networks using hitless spectrum retuning techniques,” in OFC’13 (2013), OW3A.4.
  12. H. Y. Choi, T. Tsuritani, and I. Morita, “Feasibility demonstration of flexible Tx/Rx for spectrum defragmentation in elastic optical networks,” in OFC’13 (2013), OW3A.2.
  13. J. G. Proakis and M. Salehi, Digital Communications, 5th ed. (McGraw-Hill, 2008), pp. 296–304.
  14. C. Xia and D. van den Borne, “Impact of the channel count on the nonlinear tolerance in coherently-detected POLMUX-QPSK modulation,” in OFC’11 (2011), OWO1.
  15. J. Renaudier, O. Bertran-Pardo, G. Charlet, M. Salsi, M. Bertolini, P. Tran, H. Mardoyan, and S. Bigo, “Investigation on WDM nonlinear impairments arising from the insertion of 100-Gb / s coherent PDM-QPSK over legacy optical networks,” IEEE Photonics Technol. Lett. 21(24), 1816–1818 (2009).
    [Crossref]
  16. E. Tsardinakis, A. Lord, P. Wright, G. N. Liu, and P. Bayvel, “Should like demands be grouped in mixed line rate networks?,” in OFC’13 (2013), JW2A.65.
  17. D. Rafique, S. Sygletos, and A. D. Ellis, “Intra-channel nonlinearity compensation for PM-16 QAM traffic co-propagating with 28 Gbaud m-ary QAM neighbours,” Opt. Express 21(4), 4174–4182 (2013).
    [Crossref] [PubMed]
  18. S. Ma, B. Guo, Y. Zhao, X. Chen, J. Li, Z. Chen, and Y. He, “An investigation on power allocation between subcarriers with mixed formats in spectrum-flexible optical networks,” in ACP (2012), AS4C.3.

2013 (1)

2012 (1)

J. Elbers and A. Autenrieth, “From static to software-defined optical networks,” Opt. Network Design Model. 12, 1–4 (2012).

2011 (4)

D. Rafique and A. D. Ellis, “Nonlinear penalties in long-haul optical networks employing dynamic transponders,” Opt. Express 19(10), 9044–9049 (2011).
[Crossref] [PubMed]

D. Rafique and A. D. Ellis, “Nonlinear penalties in dynamic optical networks employing autonomous transponders,” IEEE Photonics Technol. Lett. 23(17), 1213–1215 (2011).
[Crossref]

N. Amaya, M. Irfan, G. Zervas, K. Banias, M. Garrich, I. Henning, D. Simeonidou, Y. R. Zhou, A. Lord, K. Smith, V. J. F. Rancano, S. Liu, P. Petropoulos, and D. J. Richardson, “Gridless optical networking field trial: flexible spectrum switching, defragmentation and transport of 10G/40G/100G/555G over 620-km field fiber,” Opt. Express 19(26), B277–B282 (2011).
[Crossref] [PubMed]

M. Jinno, T. Ohara, Y. Sone, A. Hirano, O. Ishida, and M. Tomizawa, “Elastic and adaptive optical networks: Possible adoption scenarios and future standardization aspects,” IEEE Commun. Mag. 49(10), 164–172 (2011).
[Crossref]

2010 (1)

2009 (1)

J. Renaudier, O. Bertran-Pardo, G. Charlet, M. Salsi, M. Bertolini, P. Tran, H. Mardoyan, and S. Bigo, “Investigation on WDM nonlinear impairments arising from the insertion of 100-Gb / s coherent PDM-QPSK over legacy optical networks,” IEEE Photonics Technol. Lett. 21(24), 1816–1818 (2009).
[Crossref]

Amaya, N.

Autenrieth, A.

J. Elbers and A. Autenrieth, “From static to software-defined optical networks,” Opt. Network Design Model. 12, 1–4 (2012).

Banias, K.

Bertolini, M.

J. Renaudier, O. Bertran-Pardo, G. Charlet, M. Salsi, M. Bertolini, P. Tran, H. Mardoyan, and S. Bigo, “Investigation on WDM nonlinear impairments arising from the insertion of 100-Gb / s coherent PDM-QPSK over legacy optical networks,” IEEE Photonics Technol. Lett. 21(24), 1816–1818 (2009).
[Crossref]

Bertran-Pardo, O.

J. Renaudier, O. Bertran-Pardo, G. Charlet, M. Salsi, M. Bertolini, P. Tran, H. Mardoyan, and S. Bigo, “Investigation on WDM nonlinear impairments arising from the insertion of 100-Gb / s coherent PDM-QPSK over legacy optical networks,” IEEE Photonics Technol. Lett. 21(24), 1816–1818 (2009).
[Crossref]

Bigo, S.

J. Renaudier, O. Bertran-Pardo, G. Charlet, M. Salsi, M. Bertolini, P. Tran, H. Mardoyan, and S. Bigo, “Investigation on WDM nonlinear impairments arising from the insertion of 100-Gb / s coherent PDM-QPSK over legacy optical networks,” IEEE Photonics Technol. Lett. 21(24), 1816–1818 (2009).
[Crossref]

Charlet, G.

J. Renaudier, O. Bertran-Pardo, G. Charlet, M. Salsi, M. Bertolini, P. Tran, H. Mardoyan, and S. Bigo, “Investigation on WDM nonlinear impairments arising from the insertion of 100-Gb / s coherent PDM-QPSK over legacy optical networks,” IEEE Photonics Technol. Lett. 21(24), 1816–1818 (2009).
[Crossref]

Elbers, J.

J. Elbers and A. Autenrieth, “From static to software-defined optical networks,” Opt. Network Design Model. 12, 1–4 (2012).

Ellis, A. D.

Garrich, M.

Henning, I.

Hirano, A.

M. Jinno, T. Ohara, Y. Sone, A. Hirano, O. Ishida, and M. Tomizawa, “Elastic and adaptive optical networks: Possible adoption scenarios and future standardization aspects,” IEEE Commun. Mag. 49(10), 164–172 (2011).
[Crossref]

Irfan, M.

Ishida, O.

M. Jinno, T. Ohara, Y. Sone, A. Hirano, O. Ishida, and M. Tomizawa, “Elastic and adaptive optical networks: Possible adoption scenarios and future standardization aspects,” IEEE Commun. Mag. 49(10), 164–172 (2011).
[Crossref]

Jinno, M.

M. Jinno, T. Ohara, Y. Sone, A. Hirano, O. Ishida, and M. Tomizawa, “Elastic and adaptive optical networks: Possible adoption scenarios and future standardization aspects,” IEEE Commun. Mag. 49(10), 164–172 (2011).
[Crossref]

Liu, S.

Lord, A.

Mardoyan, H.

J. Renaudier, O. Bertran-Pardo, G. Charlet, M. Salsi, M. Bertolini, P. Tran, H. Mardoyan, and S. Bigo, “Investigation on WDM nonlinear impairments arising from the insertion of 100-Gb / s coherent PDM-QPSK over legacy optical networks,” IEEE Photonics Technol. Lett. 21(24), 1816–1818 (2009).
[Crossref]

Meusburger, C.

Ohara, T.

M. Jinno, T. Ohara, Y. Sone, A. Hirano, O. Ishida, and M. Tomizawa, “Elastic and adaptive optical networks: Possible adoption scenarios and future standardization aspects,” IEEE Commun. Mag. 49(10), 164–172 (2011).
[Crossref]

Petropoulos, P.

Rafique, D.

Rancano, V. J. F.

Renaudier, J.

J. Renaudier, O. Bertran-Pardo, G. Charlet, M. Salsi, M. Bertolini, P. Tran, H. Mardoyan, and S. Bigo, “Investigation on WDM nonlinear impairments arising from the insertion of 100-Gb / s coherent PDM-QPSK over legacy optical networks,” IEEE Photonics Technol. Lett. 21(24), 1816–1818 (2009).
[Crossref]

Richardson, D. J.

Salsi, M.

J. Renaudier, O. Bertran-Pardo, G. Charlet, M. Salsi, M. Bertolini, P. Tran, H. Mardoyan, and S. Bigo, “Investigation on WDM nonlinear impairments arising from the insertion of 100-Gb / s coherent PDM-QPSK over legacy optical networks,” IEEE Photonics Technol. Lett. 21(24), 1816–1818 (2009).
[Crossref]

Schupke, D. A.

Simeonidou, D.

Smith, K.

Sone, Y.

M. Jinno, T. Ohara, Y. Sone, A. Hirano, O. Ishida, and M. Tomizawa, “Elastic and adaptive optical networks: Possible adoption scenarios and future standardization aspects,” IEEE Commun. Mag. 49(10), 164–172 (2011).
[Crossref]

Sygletos, S.

Tomizawa, M.

M. Jinno, T. Ohara, Y. Sone, A. Hirano, O. Ishida, and M. Tomizawa, “Elastic and adaptive optical networks: Possible adoption scenarios and future standardization aspects,” IEEE Commun. Mag. 49(10), 164–172 (2011).
[Crossref]

Tran, P.

J. Renaudier, O. Bertran-Pardo, G. Charlet, M. Salsi, M. Bertolini, P. Tran, H. Mardoyan, and S. Bigo, “Investigation on WDM nonlinear impairments arising from the insertion of 100-Gb / s coherent PDM-QPSK over legacy optical networks,” IEEE Photonics Technol. Lett. 21(24), 1816–1818 (2009).
[Crossref]

Zervas, G.

Zhou, Y. R.

IEEE Commun. Mag. (1)

M. Jinno, T. Ohara, Y. Sone, A. Hirano, O. Ishida, and M. Tomizawa, “Elastic and adaptive optical networks: Possible adoption scenarios and future standardization aspects,” IEEE Commun. Mag. 49(10), 164–172 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (2)

D. Rafique and A. D. Ellis, “Nonlinear penalties in dynamic optical networks employing autonomous transponders,” IEEE Photonics Technol. Lett. 23(17), 1213–1215 (2011).
[Crossref]

J. Renaudier, O. Bertran-Pardo, G. Charlet, M. Salsi, M. Bertolini, P. Tran, H. Mardoyan, and S. Bigo, “Investigation on WDM nonlinear impairments arising from the insertion of 100-Gb / s coherent PDM-QPSK over legacy optical networks,” IEEE Photonics Technol. Lett. 21(24), 1816–1818 (2009).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (3)

Opt. Network Design Model. (1)

J. Elbers and A. Autenrieth, “From static to software-defined optical networks,” Opt. Network Design Model. 12, 1–4 (2012).

Other (10)

B. Mukherjee, “Issues and challenges in optical network design telecom network hierarchy,” in ECOC’11 (2011), Mo.1.K.

S. L. Woodward, “ROADM options in optical networks: flexible grid or not?,” in OFC’13 (2013), OTh3B.1.

Y. Huang, E. Ip, P. N. Ji, Y. Shao, T. Wang, Y. Aono, Y. Yano, and T. Tajima, “Terabit/s optical superchannel with flexible modulation format for dynamic distance/route transmission,” in OFC’12 (2012), OM3H.4.

L. Zong, G. N. Liu, A. Lord, Y. R. Zhou, and T. Ma, “40/100/400 Gb/s mixed line rate transmission performance in flexgrid optical networks,” in OFC’13 (2013), OTu2A.2.

M. Zhang, Y. Yin, R. Proietti, Z. Zhu, and S. J. B. Yoo, “Spectrum defragmentation algorithms for elastic optical networks using hitless spectrum retuning techniques,” in OFC’13 (2013), OW3A.4.

H. Y. Choi, T. Tsuritani, and I. Morita, “Feasibility demonstration of flexible Tx/Rx for spectrum defragmentation in elastic optical networks,” in OFC’13 (2013), OW3A.2.

J. G. Proakis and M. Salehi, Digital Communications, 5th ed. (McGraw-Hill, 2008), pp. 296–304.

C. Xia and D. van den Borne, “Impact of the channel count on the nonlinear tolerance in coherently-detected POLMUX-QPSK modulation,” in OFC’11 (2011), OWO1.

S. Ma, B. Guo, Y. Zhao, X. Chen, J. Li, Z. Chen, and Y. He, “An investigation on power allocation between subcarriers with mixed formats in spectrum-flexible optical networks,” in ACP (2012), AS4C.3.

E. Tsardinakis, A. Lord, P. Wright, G. N. Liu, and P. Bayvel, “Should like demands be grouped in mixed line rate networks?,” in OFC’13 (2013), JW2A.65.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 a) Back-to-Back Q-factor as a function of OSNR, for various super-channel configurations, including, 240Gb/s 1-carrier (squares), 480Gb/s 2-carriers (circles), 1.2Tb/s 5-carriers (triangles), Theory 240Gb/s (grey line). b) Transmitter spectra for various super-channel configurations in Fig. 1(a), in a WDM format, where super-channel neighbor count is fixed at 12, 6, and 2 for 1C, 2C, and 5C PM-16QAM super-channels, respectively. H-FEC: Hard-decision FEC (error rate:1e-3), S-FEC: Soft-decision FEC (error rate:2e-2)
Fig. 2
Fig. 2 Simulation setup for 30Gbaud PM-16QAM super-channels, employing 1(240Gb/s), 2(480Gb/s), and 5(1.2Tb/s) sub-carriers. The neighboring traffic is either super-channel themselves (homogeneous spectrum allocation), or 120Gb/s PM-QPSK, 43Gb/s DPSK, 43Gb/s PM-QPSK (heterogeneous spectrum allocation).
Fig. 3
Fig. 3 PM-16QAM single super-channel transmission: Q-factor as a function of per subcarrier launch power. 240Gb/s 1-carrier (squares), 480Gb/s 2-carrier (circles), 1.2Tb/s 5-carrier (triangles), a) SSMF, 1600km, b) LEAF, 1120km.
Fig. 4
Fig. 4 PM-16QAM WDM super-channel transmission employing SSMF after 1600km. a) 240Gb/s 1-carrier, b) 480Gb/s 2-carriers, c) 1.2Tb/s 5-carriers. Homogeneous transmission employing super-channels themselves for Figs. 4(a)4(c) (squares), Heterogeneous transmission: PM-QPSK 120Gb/s (circles), DPSK 43Gb/s (up-triangles), PM-QPSK 43Gb/s (down-triangles), Grey Lines (single super-channel transmission). d) Q-penalty for WDM super-channel transmission compared to single super-channel transmission, for all combinations in Figs. 4(a)4(c).
Fig. 5
Fig. 5 PM-16QAM WDM super-channel transmission employing LEAF after 1120km. a) 240Gb/s 1-carrier, b) 480Gb/s 2-carriers, c) 1.2Tb/s 5-carriers. Homogeneous transmission employing super-channels themselves for Figs. 5(a)5(c) (squares), Heterogeneous transmission: PM-QPSK 120Gb/s (circles), DPSK 43Gb/s (up-triangles), PM-QPSK 43Gb/s (down-triangles), Grey Lines (single super-channel transmission). d) Q-penalty for WDM super-channel transmission compared to single super-channel transmission, for all combinations in Figs. 5(a)5(c).

Metrics