S. Sorel, P. E. Lyons, S. De, J. C. Dickerson, and J. N. Coleman, “The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter,” Nanotechnology 23, 185201 (2012).
[Crossref]
[PubMed]
J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Letters, 123138–3144 (2012).
[Crossref]
[PubMed]
P. E. Lyons, S. De, J. Elias, M. Schamel, L. Philippe, A. T. Bellew, J. J. Boland, and J. N. Coleman, “High-Performance transparent conductors from networks of gold nanowires,” J. Phys. Chem. Lett. 2, 3058–3062 (2011).
[Crossref]
M. W. Rowell and M. D. McGehee, “Transparent electrode requirements for thin film solar cell modules,” Energy Environ. Sci. 4, 131–134 (2011).
[Crossref]
A. Kumar and C. Zhou, “The race to replace tin-doped indium oxide: which material will win?,” ACS Nano 4, 11–14 (2010).
[Crossref]
[PubMed]
A. R. Madaria, A. Kumar, F. N. Ishikawa, and C. Zhou, “Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique,” Nano Research 3, 564–573 (2010).
[Crossref]
S. De, P. J. King, M. Lotya, A. O’Neill, E. M. Doherty, Y. Hernandez, G. S. Duesberg, and J. N. Coleman, “Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions,” Small 6, 458–464 (2010).
[Crossref]
L. Hu, H. S. Kim, J. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4, 2955–2963 (2010).
[Crossref]
[PubMed]
Y. C. Lu and K. S. Chou, “Tailoring of silver wires and their performance as transparent conductive coatings,” Nanotechnology 21, 215707 (2010).
[Crossref]
[PubMed]
P. B. Catrysse and S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10, 2944–2949 (2010).
[Crossref]
[PubMed]
S. De, P. J. King, P. E. Lyons, U. Khan, and J. N. Coleman, “Size effects and the problem with percolation in nanostructured transparent conductors,” ACS Nano 4, 7064–7072 (2010).
[Crossref]
[PubMed]
S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios,” ACS Nano 3, 1767–1774 (2009).
[Crossref]
[PubMed]
P. N. Nirmalraj, P. E. Lyons, S. De, J. N. Coleman, and J. J. Boland, “Electrical connectivity in single-walled carbon nanotube networks,” Nano Lett. 9, 3890–3895 (2009).
[Crossref]
[PubMed]
X. Wang, L. Zhi, and K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8, 323–327 (2008).
[Crossref]
T. Minami, “Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes,” Thin Solid Films 516, 5822–5828 (2008).
[Crossref]
J. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8, 689–692 (2008).
[Crossref]
[PubMed]
P. B. Catrysse and S. Fan “Propagating plasmonic mode in nanoscale apertures and its implications for extraordinary transmission,” J. Nanophoton. 2 (1), 021790 (2008).
[Crossref]
Y. Zhou, L. Hu, and G. Grüner, “A method of printing carbon nanotube thin films,” Appl. Phys. Lett. 88, 123109 (2006).
[Crossref]
M. W. Rowell, M. A. Topinka, M. D. McGehee, H. Prall, G. Dennler, N. S. Sariciftci, L. Hu, and G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett. 88, 233506 (2006).
[Crossref]
C. F. Zhang, Z. W. Dong, G. J. You, S. X. Qian, and H. Deng, “Multiphoton route to ZnO nanowire lasers,” Opt. Lett. 31, 3345–3347 (2006).
[Crossref]
[PubMed]
C. G. Granqvist and A. Hultåker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411, 1–5 (2002).
[Crossref]
Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
[Crossref]
[PubMed]
Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394, 201–205 (2001).
[Crossref]
E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[Crossref]
J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845 (1999).
[Crossref]
S. M. Bergin, Y. Chen, A. R. Rathmell, P. Charbonneau, Z. Li, and B. J. Wiley, “The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films,” Nanoscale 4, 1996 (2012).
J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[Crossref]
A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems,” Electromagnetic Compatibility, IEEE Transactions on EMC-22, 191–202 (1980).
[Crossref]
K. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” Antennas and Propagation, IEEE Transactions on 14, 302–307 (1966).
[Crossref]
B. R. Cooper, H. Ehrenreich, and H. R. Philipp, “Optical properties of noble metals. II.,” Phys. Rev. 138, A494–A507 (1965).
[Crossref]
A. J. McAlister and E. A. Stern, “Plasma resonance absorption in thin metal films,” Phys. Rev. 132, 1599–1602 (1963).
[Crossref]
U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]
P. E. Lyons, S. De, J. Elias, M. Schamel, L. Philippe, A. T. Bellew, J. J. Boland, and J. N. Coleman, “High-Performance transparent conductors from networks of gold nanowires,” J. Phys. Chem. Lett. 2, 3058–3062 (2011).
[Crossref]
J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[Crossref]
S. M. Bergin, Y. Chen, A. R. Rathmell, P. Charbonneau, Z. Li, and B. J. Wiley, “The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films,” Nanoscale 4, 1996 (2012).
S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios,” ACS Nano 3, 1767–1774 (2009).
[Crossref]
[PubMed]
P. E. Lyons, S. De, J. Elias, M. Schamel, L. Philippe, A. T. Bellew, J. J. Boland, and J. N. Coleman, “High-Performance transparent conductors from networks of gold nanowires,” J. Phys. Chem. Lett. 2, 3058–3062 (2011).
[Crossref]
S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios,” ACS Nano 3, 1767–1774 (2009).
[Crossref]
[PubMed]
P. N. Nirmalraj, P. E. Lyons, S. De, J. N. Coleman, and J. J. Boland, “Electrical connectivity in single-walled carbon nanotube networks,” Nano Lett. 9, 3890–3895 (2009).
[Crossref]
[PubMed]
P. B. Catrysse and S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10, 2944–2949 (2010).
[Crossref]
[PubMed]
P. B. Catrysse and S. Fan “Propagating plasmonic mode in nanoscale apertures and its implications for extraordinary transmission,” J. Nanophoton. 2 (1), 021790 (2008).
[Crossref]
S. M. Bergin, Y. Chen, A. R. Rathmell, P. Charbonneau, Z. Li, and B. J. Wiley, “The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films,” Nanoscale 4, 1996 (2012).
S. M. Bergin, Y. Chen, A. R. Rathmell, P. Charbonneau, Z. Li, and B. J. Wiley, “The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films,” Nanoscale 4, 1996 (2012).
Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394, 201–205 (2001).
[Crossref]
Y. C. Lu and K. S. Chou, “Tailoring of silver wires and their performance as transparent conductive coatings,” Nanotechnology 21, 215707 (2010).
[Crossref]
[PubMed]
Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394, 201–205 (2001).
[Crossref]
S. Sorel, P. E. Lyons, S. De, J. C. Dickerson, and J. N. Coleman, “The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter,” Nanotechnology 23, 185201 (2012).
[Crossref]
[PubMed]
P. E. Lyons, S. De, J. Elias, M. Schamel, L. Philippe, A. T. Bellew, J. J. Boland, and J. N. Coleman, “High-Performance transparent conductors from networks of gold nanowires,” J. Phys. Chem. Lett. 2, 3058–3062 (2011).
[Crossref]
S. De, P. J. King, P. E. Lyons, U. Khan, and J. N. Coleman, “Size effects and the problem with percolation in nanostructured transparent conductors,” ACS Nano 4, 7064–7072 (2010).
[Crossref]
[PubMed]
S. De, P. J. King, M. Lotya, A. O’Neill, E. M. Doherty, Y. Hernandez, G. S. Duesberg, and J. N. Coleman, “Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions,” Small 6, 458–464 (2010).
[Crossref]
P. N. Nirmalraj, P. E. Lyons, S. De, J. N. Coleman, and J. J. Boland, “Electrical connectivity in single-walled carbon nanotube networks,” Nano Lett. 9, 3890–3895 (2009).
[Crossref]
[PubMed]
S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios,” ACS Nano 3, 1767–1774 (2009).
[Crossref]
[PubMed]
J. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8, 689–692 (2008).
[Crossref]
[PubMed]
B. R. Cooper, H. Ehrenreich, and H. R. Philipp, “Optical properties of noble metals. II.,” Phys. Rev. 138, A494–A507 (1965).
[Crossref]
Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394, 201–205 (2001).
[Crossref]
L. Hu, H. S. Kim, J. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4, 2955–2963 (2010).
[Crossref]
[PubMed]
J. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8, 689–692 (2008).
[Crossref]
[PubMed]
S. Sorel, P. E. Lyons, S. De, J. C. Dickerson, and J. N. Coleman, “The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter,” Nanotechnology 23, 185201 (2012).
[Crossref]
[PubMed]
P. E. Lyons, S. De, J. Elias, M. Schamel, L. Philippe, A. T. Bellew, J. J. Boland, and J. N. Coleman, “High-Performance transparent conductors from networks of gold nanowires,” J. Phys. Chem. Lett. 2, 3058–3062 (2011).
[Crossref]
S. De, P. J. King, P. E. Lyons, U. Khan, and J. N. Coleman, “Size effects and the problem with percolation in nanostructured transparent conductors,” ACS Nano 4, 7064–7072 (2010).
[Crossref]
[PubMed]
S. De, P. J. King, M. Lotya, A. O’Neill, E. M. Doherty, Y. Hernandez, G. S. Duesberg, and J. N. Coleman, “Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions,” Small 6, 458–464 (2010).
[Crossref]
P. N. Nirmalraj, P. E. Lyons, S. De, J. N. Coleman, and J. J. Boland, “Electrical connectivity in single-walled carbon nanotube networks,” Nano Lett. 9, 3890–3895 (2009).
[Crossref]
[PubMed]
S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios,” ACS Nano 3, 1767–1774 (2009).
[Crossref]
[PubMed]
M. W. Rowell, M. A. Topinka, M. D. McGehee, H. Prall, G. Dennler, N. S. Sariciftci, L. Hu, and G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett. 88, 233506 (2006).
[Crossref]
S. Sorel, P. E. Lyons, S. De, J. C. Dickerson, and J. N. Coleman, “The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter,” Nanotechnology 23, 185201 (2012).
[Crossref]
[PubMed]
S. De, P. J. King, M. Lotya, A. O’Neill, E. M. Doherty, Y. Hernandez, G. S. Duesberg, and J. N. Coleman, “Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions,” Small 6, 458–464 (2010).
[Crossref]
S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios,” ACS Nano 3, 1767–1774 (2009).
[Crossref]
[PubMed]
M. Dressel and G. Grüner, Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge University Press, 2002).
[Crossref]
S. De, P. J. King, M. Lotya, A. O’Neill, E. M. Doherty, Y. Hernandez, G. S. Duesberg, and J. N. Coleman, “Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions,” Small 6, 458–464 (2010).
[Crossref]
B. R. Cooper, H. Ehrenreich, and H. R. Philipp, “Optical properties of noble metals. II.,” Phys. Rev. 138, A494–A507 (1965).
[Crossref]
P. E. Lyons, S. De, J. Elias, M. Schamel, L. Philippe, A. T. Bellew, J. J. Boland, and J. N. Coleman, “High-Performance transparent conductors from networks of gold nanowires,” J. Phys. Chem. Lett. 2, 3058–3062 (2011).
[Crossref]
E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[Crossref]
P. B. Catrysse and S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10, 2944–2949 (2010).
[Crossref]
[PubMed]
P. B. Catrysse and S. Fan “Propagating plasmonic mode in nanoscale apertures and its implications for extraordinary transmission,” J. Nanophoton. 2 (1), 021790 (2008).
[Crossref]
U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]
J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845 (1999).
[Crossref]
E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic Press, 1998).
C. G. Granqvist and A. Hultåker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411, 1–5 (2002).
[Crossref]
M. W. Rowell, M. A. Topinka, M. D. McGehee, H. Prall, G. Dennler, N. S. Sariciftci, L. Hu, and G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett. 88, 233506 (2006).
[Crossref]
Y. Zhou, L. Hu, and G. Grüner, “A method of printing carbon nanotube thin films,” Appl. Phys. Lett. 88, 123109 (2006).
[Crossref]
M. Dressel and G. Grüner, Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge University Press, 2002).
[Crossref]
Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394, 201–205 (2001).
[Crossref]
S. De, P. J. King, M. Lotya, A. O’Neill, E. M. Doherty, Y. Hernandez, G. S. Duesberg, and J. N. Coleman, “Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions,” Small 6, 458–464 (2010).
[Crossref]
S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios,” ACS Nano 3, 1767–1774 (2009).
[Crossref]
[PubMed]
L. Hu, H. S. Kim, J. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4, 2955–2963 (2010).
[Crossref]
[PubMed]
Y. Zhou, L. Hu, and G. Grüner, “A method of printing carbon nanotube thin films,” Appl. Phys. Lett. 88, 123109 (2006).
[Crossref]
M. W. Rowell, M. A. Topinka, M. D. McGehee, H. Prall, G. Dennler, N. S. Sariciftci, L. Hu, and G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett. 88, 233506 (2006).
[Crossref]
C. G. Granqvist and A. Hultåker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411, 1–5 (2002).
[Crossref]
A. R. Madaria, A. Kumar, F. N. Ishikawa, and C. Zhou, “Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique,” Nano Research 3, 564–573 (2010).
[Crossref]
S. De, P. J. King, P. E. Lyons, U. Khan, and J. N. Coleman, “Size effects and the problem with percolation in nanostructured transparent conductors,” ACS Nano 4, 7064–7072 (2010).
[Crossref]
[PubMed]
L. Hu, H. S. Kim, J. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4, 2955–2963 (2010).
[Crossref]
[PubMed]
S. De, P. J. King, P. E. Lyons, U. Khan, and J. N. Coleman, “Size effects and the problem with percolation in nanostructured transparent conductors,” ACS Nano 4, 7064–7072 (2010).
[Crossref]
[PubMed]
S. De, P. J. King, M. Lotya, A. O’Neill, E. M. Doherty, Y. Hernandez, G. S. Duesberg, and J. N. Coleman, “Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions,” Small 6, 458–464 (2010).
[Crossref]
A. R. Madaria, A. Kumar, F. N. Ishikawa, and C. Zhou, “Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique,” Nano Research 3, 564–573 (2010).
[Crossref]
A. Kumar and C. Zhou, “The race to replace tin-doped indium oxide: which material will win?,” ACS Nano 4, 11–14 (2010).
[Crossref]
[PubMed]
L. Hu, H. S. Kim, J. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4, 2955–2963 (2010).
[Crossref]
[PubMed]
J. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8, 689–692 (2008).
[Crossref]
[PubMed]
S. M. Bergin, Y. Chen, A. R. Rathmell, P. Charbonneau, Z. Li, and B. J. Wiley, “The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films,” Nanoscale 4, 1996 (2012).
D. Lide, CRC Handbook of Chemistry and Physics (CRC press, 2012).
S. De, P. J. King, M. Lotya, A. O’Neill, E. M. Doherty, Y. Hernandez, G. S. Duesberg, and J. N. Coleman, “Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions,” Small 6, 458–464 (2010).
[Crossref]
Y. C. Lu and K. S. Chou, “Tailoring of silver wires and their performance as transparent conductive coatings,” Nanotechnology 21, 215707 (2010).
[Crossref]
[PubMed]
S. Sorel, P. E. Lyons, S. De, J. C. Dickerson, and J. N. Coleman, “The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter,” Nanotechnology 23, 185201 (2012).
[Crossref]
[PubMed]
P. E. Lyons, S. De, J. Elias, M. Schamel, L. Philippe, A. T. Bellew, J. J. Boland, and J. N. Coleman, “High-Performance transparent conductors from networks of gold nanowires,” J. Phys. Chem. Lett. 2, 3058–3062 (2011).
[Crossref]
S. De, P. J. King, P. E. Lyons, U. Khan, and J. N. Coleman, “Size effects and the problem with percolation in nanostructured transparent conductors,” ACS Nano 4, 7064–7072 (2010).
[Crossref]
[PubMed]
S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios,” ACS Nano 3, 1767–1774 (2009).
[Crossref]
[PubMed]
P. N. Nirmalraj, P. E. Lyons, S. De, J. N. Coleman, and J. J. Boland, “Electrical connectivity in single-walled carbon nanotube networks,” Nano Lett. 9, 3890–3895 (2009).
[Crossref]
[PubMed]
A. R. Madaria, A. Kumar, F. N. Ishikawa, and C. Zhou, “Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique,” Nano Research 3, 564–573 (2010).
[Crossref]
A. J. McAlister and E. A. Stern, “Plasma resonance absorption in thin metal films,” Phys. Rev. 132, 1599–1602 (1963).
[Crossref]
M. W. Rowell and M. D. McGehee, “Transparent electrode requirements for thin film solar cell modules,” Energy Environ. Sci. 4, 131–134 (2011).
[Crossref]
M. W. Rowell, M. A. Topinka, M. D. McGehee, H. Prall, G. Dennler, N. S. Sariciftci, L. Hu, and G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett. 88, 233506 (2006).
[Crossref]
T. Minami, “Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes,” Thin Solid Films 516, 5822–5828 (2008).
[Crossref]
X. Wang, L. Zhi, and K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8, 323–327 (2008).
[Crossref]
E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[Crossref]
P. N. Nirmalraj, P. E. Lyons, S. De, J. N. Coleman, and J. J. Boland, “Electrical connectivity in single-walled carbon nanotube networks,” Nano Lett. 9, 3890–3895 (2009).
[Crossref]
[PubMed]
S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios,” ACS Nano 3, 1767–1774 (2009).
[Crossref]
[PubMed]
S. De, P. J. King, M. Lotya, A. O’Neill, E. M. Doherty, Y. Hernandez, G. S. Duesberg, and J. N. Coleman, “Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions,” Small 6, 458–464 (2010).
[Crossref]
E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic Press, 1998).
J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845 (1999).
[Crossref]
L. Hu, H. S. Kim, J. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4, 2955–2963 (2010).
[Crossref]
[PubMed]
J. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8, 689–692 (2008).
[Crossref]
[PubMed]
B. R. Cooper, H. Ehrenreich, and H. R. Philipp, “Optical properties of noble metals. II.,” Phys. Rev. 138, A494–A507 (1965).
[Crossref]
P. E. Lyons, S. De, J. Elias, M. Schamel, L. Philippe, A. T. Bellew, J. J. Boland, and J. N. Coleman, “High-Performance transparent conductors from networks of gold nanowires,” J. Phys. Chem. Lett. 2, 3058–3062 (2011).
[Crossref]
J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Letters, 123138–3144 (2012).
[Crossref]
[PubMed]
E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[Crossref]
J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845 (1999).
[Crossref]
M. W. Rowell, M. A. Topinka, M. D. McGehee, H. Prall, G. Dennler, N. S. Sariciftci, L. Hu, and G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett. 88, 233506 (2006).
[Crossref]
S. M. Bergin, Y. Chen, A. R. Rathmell, P. Charbonneau, Z. Li, and B. J. Wiley, “The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films,” Nanoscale 4, 1996 (2012).
E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[Crossref]
M. W. Rowell and M. D. McGehee, “Transparent electrode requirements for thin film solar cell modules,” Energy Environ. Sci. 4, 131–134 (2011).
[Crossref]
M. W. Rowell, M. A. Topinka, M. D. McGehee, H. Prall, G. Dennler, N. S. Sariciftci, L. Hu, and G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett. 88, 233506 (2006).
[Crossref]
M. W. Rowell, M. A. Topinka, M. D. McGehee, H. Prall, G. Dennler, N. S. Sariciftci, L. Hu, and G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett. 88, 233506 (2006).
[Crossref]
P. E. Lyons, S. De, J. Elias, M. Schamel, L. Philippe, A. T. Bellew, J. J. Boland, and J. N. Coleman, “High-Performance transparent conductors from networks of gold nanowires,” J. Phys. Chem. Lett. 2, 3058–3062 (2011).
[Crossref]
S. Sorel, P. E. Lyons, S. De, J. C. Dickerson, and J. N. Coleman, “The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter,” Nanotechnology 23, 185201 (2012).
[Crossref]
[PubMed]
J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Letters, 123138–3144 (2012).
[Crossref]
[PubMed]
A. J. McAlister and E. A. Stern, “Plasma resonance absorption in thin metal films,” Phys. Rev. 132, 1599–1602 (1963).
[Crossref]
A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems,” Electromagnetic Compatibility, IEEE Transactions on EMC-22, 191–202 (1980).
[Crossref]
Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
[Crossref]
[PubMed]
A. C. Tolcin, “Indium,” USGS Mineral Commodity Summary (2011).
M. W. Rowell, M. A. Topinka, M. D. McGehee, H. Prall, G. Dennler, N. S. Sariciftci, L. Hu, and G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett. 88, 233506 (2006).
[Crossref]
J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Letters, 123138–3144 (2012).
[Crossref]
[PubMed]
Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394, 201–205 (2001).
[Crossref]
X. Wang, L. Zhi, and K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8, 323–327 (2008).
[Crossref]
S. M. Bergin, Y. Chen, A. R. Rathmell, P. Charbonneau, Z. Li, and B. J. Wiley, “The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films,” Nanoscale 4, 1996 (2012).
K. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” Antennas and Propagation, IEEE Transactions on 14, 302–307 (1966).
[Crossref]
X. Wang, L. Zhi, and K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8, 323–327 (2008).
[Crossref]
A. R. Madaria, A. Kumar, F. N. Ishikawa, and C. Zhou, “Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique,” Nano Research 3, 564–573 (2010).
[Crossref]
A. Kumar and C. Zhou, “The race to replace tin-doped indium oxide: which material will win?,” ACS Nano 4, 11–14 (2010).
[Crossref]
[PubMed]
Y. Zhou, L. Hu, and G. Grüner, “A method of printing carbon nanotube thin films,” Appl. Phys. Lett. 88, 123109 (2006).
[Crossref]
A. Kumar and C. Zhou, “The race to replace tin-doped indium oxide: which material will win?,” ACS Nano 4, 11–14 (2010).
[Crossref]
[PubMed]
S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios,” ACS Nano 3, 1767–1774 (2009).
[Crossref]
[PubMed]
L. Hu, H. S. Kim, J. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4, 2955–2963 (2010).
[Crossref]
[PubMed]
S. De, P. J. King, P. E. Lyons, U. Khan, and J. N. Coleman, “Size effects and the problem with percolation in nanostructured transparent conductors,” ACS Nano 4, 7064–7072 (2010).
[Crossref]
[PubMed]
K. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” Antennas and Propagation, IEEE Transactions on 14, 302–307 (1966).
[Crossref]
M. W. Rowell, M. A. Topinka, M. D. McGehee, H. Prall, G. Dennler, N. S. Sariciftci, L. Hu, and G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett. 88, 233506 (2006).
[Crossref]
Y. Zhou, L. Hu, and G. Grüner, “A method of printing carbon nanotube thin films,” Appl. Phys. Lett. 88, 123109 (2006).
[Crossref]
A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems,” Electromagnetic Compatibility, IEEE Transactions on EMC-22, 191–202 (1980).
[Crossref]
M. W. Rowell and M. D. McGehee, “Transparent electrode requirements for thin film solar cell modules,” Energy Environ. Sci. 4, 131–134 (2011).
[Crossref]
J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[Crossref]
P. B. Catrysse and S. Fan “Propagating plasmonic mode in nanoscale apertures and its implications for extraordinary transmission,” J. Nanophoton. 2 (1), 021790 (2008).
[Crossref]
P. E. Lyons, S. De, J. Elias, M. Schamel, L. Philippe, A. T. Bellew, J. J. Boland, and J. N. Coleman, “High-Performance transparent conductors from networks of gold nanowires,” J. Phys. Chem. Lett. 2, 3058–3062 (2011).
[Crossref]
J. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8, 689–692 (2008).
[Crossref]
[PubMed]
X. Wang, L. Zhi, and K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8, 323–327 (2008).
[Crossref]
P. B. Catrysse and S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10, 2944–2949 (2010).
[Crossref]
[PubMed]
P. N. Nirmalraj, P. E. Lyons, S. De, J. N. Coleman, and J. J. Boland, “Electrical connectivity in single-walled carbon nanotube networks,” Nano Lett. 9, 3890–3895 (2009).
[Crossref]
[PubMed]
J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Letters, 123138–3144 (2012).
[Crossref]
[PubMed]
A. R. Madaria, A. Kumar, F. N. Ishikawa, and C. Zhou, “Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique,” Nano Research 3, 564–573 (2010).
[Crossref]
S. M. Bergin, Y. Chen, A. R. Rathmell, P. Charbonneau, Z. Li, and B. J. Wiley, “The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films,” Nanoscale 4, 1996 (2012).
Y. C. Lu and K. S. Chou, “Tailoring of silver wires and their performance as transparent conductive coatings,” Nanotechnology 21, 215707 (2010).
[Crossref]
[PubMed]
S. Sorel, P. E. Lyons, S. De, J. C. Dickerson, and J. N. Coleman, “The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter,” Nanotechnology 23, 185201 (2012).
[Crossref]
[PubMed]
U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]
B. R. Cooper, H. Ehrenreich, and H. R. Philipp, “Optical properties of noble metals. II.,” Phys. Rev. 138, A494–A507 (1965).
[Crossref]
A. J. McAlister and E. A. Stern, “Plasma resonance absorption in thin metal films,” Phys. Rev. 132, 1599–1602 (1963).
[Crossref]
E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[Crossref]
Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
[Crossref]
[PubMed]
J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845 (1999).
[Crossref]
S. De, P. J. King, M. Lotya, A. O’Neill, E. M. Doherty, Y. Hernandez, G. S. Duesberg, and J. N. Coleman, “Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions,” Small 6, 458–464 (2010).
[Crossref]
C. G. Granqvist and A. Hultåker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411, 1–5 (2002).
[Crossref]
T. Minami, “Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes,” Thin Solid Films 516, 5822–5828 (2008).
[Crossref]
Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394, 201–205 (2001).
[Crossref]
A. C. Tolcin, “Indium,” USGS Mineral Commodity Summary (2011).
“Solar spectral irradiance: Air mass 1.5”.
E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic Press, 1998).
D. Lide, CRC Handbook of Chemistry and Physics (CRC press, 2012).
M. Dressel and G. Grüner, Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge University Press, 2002).
[Crossref]