Abstract

We show that spherical aberration of all orders can be generated as an extrinsic aberration in a system of axially translating plates. Some practical examples are provided. In particular for two phase plates that are 10 mm in diameter it is possible to generate from −10 to 10 waves of fourth-order spherical aberration with an axial displacement of +/− 0.65 mm. We also apply the phenomenon of extrinsic aberration for the generation of a conical wavefront and other non-axially symmetric wavefronts, in other words we propose what can be called a generalized zoom plate.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase plates for generation of variable amounts of primary spherical aberration

Eva Acosta and José Sasián
Opt. Express 19(14) 13171-13178 (2011)

Lateral-shift variable aberration generators

Iwona A. Palusinski, José M. Sasián, and John E. Greivenkamp
Appl. Opt. 38(1) 86-90 (1999)

Variable aberration generators using rotated Zernike plates

Eva Acosta and Salvador Bará
J. Opt. Soc. Am. A 22(9) 1993-1996 (2005)

References

  • View by:
  • |
  • |
  • |

  1. L. W. Alvarez and W. E. Humphrey, “Variable power lens and system,” U.S. Patent 3,507,565 (1970).
  2. L. W. Alvarez, “Two-element variable-power spherical lens,” U.S. Patent 3,305,294 (1967).
  3. A. W. Lohmann, “A new class of varifocal lenses,” Appl. Opt. 9(7), 1669–1671 (1970).
    [Crossref] [PubMed]
  4. N. López-Gil, H. C. Howland, B. Howland, N. Charman, and R. Applegate, “Generation of third order spherical and coma aberrations by use of radially symmetrical fourth order lenses,” J. Opt. Soc. Am. A 15(9), 2563–2571 (1998).
    [Crossref]
  5. I. A. Palusinski, J. M. Sasián, and J. E. Greivenkamp, “Lateral-shift variable aberration generators,” Appl. Opt. 38(1), 86–90 (1999).
    [Crossref] [PubMed]
  6. T. Hellmuth, A. Bich, R. Börret, A. Holschbach, and A. Kelm, “Variable phase plates for focus invariant optical systems,” Proc. SPIE 5962, 596215 (2005).
  7. E. Acosta and S. Bará, “Variable aberration generators using rotated Zernike plates,” J. Opt. Soc. Am. A 22(9), 1993–1996 (2005).
    [Crossref] [PubMed]
  8. B. M. Pixton and J. E. Greivenkamp, “Spherical aberration gauge for human vision,” Appl. Opt. 49(30), 5906–5913 (2010).
    [Crossref] [PubMed]
  9. E. Acosta and J. Sasián, “Phase plates for generation of variable amounts of primary spherical aberration,” Opt. Express 19(14), 13171–13178 (2011).
    [Crossref] [PubMed]
  10. M. T. Chang and J. Sasian, “Variable spherical aberration generators” Proc. SPIE 3129, 217 (1997).
  11. J. P. Mills, T. A. Mitchell, K. S. Ellis, and P. K. Manhart, “Conformal dome aberration correction with counter-rotating phase plates,” Proc. SPIE 3705, 201 (1999).
  12. J. Sasian, “Extrinsic aberrations in optical imaging systems,” Adv. Opt. Technol. 2(1), 75–80 (2013).
  13. P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
    [Crossref]
  14. E. Theofanidou, L. Wilson, W. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236(1–3), 145–150 (2004).
    [Crossref]
  15. A. Kołodziejczyk and Z. Jaroszewicz, “Diffractive elements of variable optical power and high diffraction efficiency,” Appl. Opt. 32(23), 4317–4322 (1993).
    [Crossref] [PubMed]
  16. Anees Ahmad, “High resonance adjustable mirror mount,” U.S. Patent 4,726,671, (1988).
  17. K. Kato, A. Ono, W. Inami, and Y. Kawata, “Plasmonic nanofocusing using a metal-coated axicon prism,” Opt. Express 18(13), 13580–13585 (2010).
    [Crossref] [PubMed]
  18. K. Petelczyc, S. Bará, A. C. Lopez, Z. Jaroszewicz, K. Kakarenko, A. Kolodziejczyk, and M. Sypek, “Imaging properties of the light sword optical element used as a contact lens in a presbyopic eye model,” Opt. Express 19(25), 25602–25616 (2011).
    [Crossref] [PubMed]
  19. B. Chebbi, S. Minko, N. Al-Akwaa, and I. Golub, “Remote control of extended depth of field focusing,” Opt. Commun. 283(9), 1678–1683 (2010).
    [Crossref]
  20. F. M. Dickey and J. D. Conner, “Annular ring zoom system using two positive axicons,” Proc. Soc. Photo Opt. Instrum. Eng. 8130, 81300B (2011).

2013 (1)

J. Sasian, “Extrinsic aberrations in optical imaging systems,” Adv. Opt. Technol. 2(1), 75–80 (2013).

2011 (3)

2010 (3)

2007 (1)

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[Crossref]

2005 (2)

T. Hellmuth, A. Bich, R. Börret, A. Holschbach, and A. Kelm, “Variable phase plates for focus invariant optical systems,” Proc. SPIE 5962, 596215 (2005).

E. Acosta and S. Bará, “Variable aberration generators using rotated Zernike plates,” J. Opt. Soc. Am. A 22(9), 1993–1996 (2005).
[Crossref] [PubMed]

2004 (1)

E. Theofanidou, L. Wilson, W. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236(1–3), 145–150 (2004).
[Crossref]

1999 (2)

J. P. Mills, T. A. Mitchell, K. S. Ellis, and P. K. Manhart, “Conformal dome aberration correction with counter-rotating phase plates,” Proc. SPIE 3705, 201 (1999).

I. A. Palusinski, J. M. Sasián, and J. E. Greivenkamp, “Lateral-shift variable aberration generators,” Appl. Opt. 38(1), 86–90 (1999).
[Crossref] [PubMed]

1998 (1)

1997 (1)

M. T. Chang and J. Sasian, “Variable spherical aberration generators” Proc. SPIE 3129, 217 (1997).

1993 (1)

1970 (1)

Acosta, E.

Al-Akwaa, N.

B. Chebbi, S. Minko, N. Al-Akwaa, and I. Golub, “Remote control of extended depth of field focusing,” Opt. Commun. 283(9), 1678–1683 (2010).
[Crossref]

Applegate, R.

Arlt, J.

E. Theofanidou, L. Wilson, W. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236(1–3), 145–150 (2004).
[Crossref]

Bará, S.

Bich, A.

T. Hellmuth, A. Bich, R. Börret, A. Holschbach, and A. Kelm, “Variable phase plates for focus invariant optical systems,” Proc. SPIE 5962, 596215 (2005).

Börret, R.

T. Hellmuth, A. Bich, R. Börret, A. Holschbach, and A. Kelm, “Variable phase plates for focus invariant optical systems,” Proc. SPIE 5962, 596215 (2005).

Campbell, K.

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[Crossref]

Chang, M. T.

M. T. Chang and J. Sasian, “Variable spherical aberration generators” Proc. SPIE 3129, 217 (1997).

Charman, N.

Chebbi, B.

B. Chebbi, S. Minko, N. Al-Akwaa, and I. Golub, “Remote control of extended depth of field focusing,” Opt. Commun. 283(9), 1678–1683 (2010).
[Crossref]

Conner, J. D.

F. M. Dickey and J. D. Conner, “Annular ring zoom system using two positive axicons,” Proc. Soc. Photo Opt. Instrum. Eng. 8130, 81300B (2011).

Dickey, F. M.

F. M. Dickey and J. D. Conner, “Annular ring zoom system using two positive axicons,” Proc. Soc. Photo Opt. Instrum. Eng. 8130, 81300B (2011).

Ellis, K. S.

J. P. Mills, T. A. Mitchell, K. S. Ellis, and P. K. Manhart, “Conformal dome aberration correction with counter-rotating phase plates,” Proc. SPIE 3705, 201 (1999).

Golub, I.

B. Chebbi, S. Minko, N. Al-Akwaa, and I. Golub, “Remote control of extended depth of field focusing,” Opt. Commun. 283(9), 1678–1683 (2010).
[Crossref]

Greivenkamp, J. E.

Groisman, A.

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[Crossref]

Hellmuth, T.

T. Hellmuth, A. Bich, R. Börret, A. Holschbach, and A. Kelm, “Variable phase plates for focus invariant optical systems,” Proc. SPIE 5962, 596215 (2005).

Holschbach, A.

T. Hellmuth, A. Bich, R. Börret, A. Holschbach, and A. Kelm, “Variable phase plates for focus invariant optical systems,” Proc. SPIE 5962, 596215 (2005).

Hossack, W.

E. Theofanidou, L. Wilson, W. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236(1–3), 145–150 (2004).
[Crossref]

Howland, B.

Howland, H. C.

Inami, W.

Jaroszewicz, Z.

Kakarenko, K.

Kam, Z.

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[Crossref]

Kato, K.

Kawata, Y.

Kelm, A.

T. Hellmuth, A. Bich, R. Börret, A. Holschbach, and A. Kelm, “Variable phase plates for focus invariant optical systems,” Proc. SPIE 5962, 596215 (2005).

Kim, T. N.

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[Crossref]

Kleinfeld, D.

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[Crossref]

Kolodziejczyk, A.

Lohmann, A. W.

Lopez, A. C.

López-Gil, N.

Manhart, P. K.

J. P. Mills, T. A. Mitchell, K. S. Ellis, and P. K. Manhart, “Conformal dome aberration correction with counter-rotating phase plates,” Proc. SPIE 3705, 201 (1999).

Migliori, B.

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[Crossref]

Mills, J. P.

J. P. Mills, T. A. Mitchell, K. S. Ellis, and P. K. Manhart, “Conformal dome aberration correction with counter-rotating phase plates,” Proc. SPIE 3705, 201 (1999).

Minko, S.

B. Chebbi, S. Minko, N. Al-Akwaa, and I. Golub, “Remote control of extended depth of field focusing,” Opt. Commun. 283(9), 1678–1683 (2010).
[Crossref]

Mitchell, T. A.

J. P. Mills, T. A. Mitchell, K. S. Ellis, and P. K. Manhart, “Conformal dome aberration correction with counter-rotating phase plates,” Proc. SPIE 3705, 201 (1999).

Ono, A.

Palusinski, I. A.

Petelczyc, K.

Pixton, B. M.

Sasian, J.

J. Sasian, “Extrinsic aberrations in optical imaging systems,” Adv. Opt. Technol. 2(1), 75–80 (2013).

M. T. Chang and J. Sasian, “Variable spherical aberration generators” Proc. SPIE 3129, 217 (1997).

Sasián, J.

Sasián, J. M.

Sypek, M.

Theofanidou, E.

E. Theofanidou, L. Wilson, W. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236(1–3), 145–150 (2004).
[Crossref]

Tsai, P. S.

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[Crossref]

Wilson, L.

E. Theofanidou, L. Wilson, W. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236(1–3), 145–150 (2004).
[Crossref]

Adv. Opt. Technol. (1)

J. Sasian, “Extrinsic aberrations in optical imaging systems,” Adv. Opt. Technol. 2(1), 75–80 (2013).

Appl. Opt. (4)

Appl. Phys. Lett. (1)

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[Crossref]

J. Opt. Soc. Am. A (2)

Opt. Commun. (2)

E. Theofanidou, L. Wilson, W. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236(1–3), 145–150 (2004).
[Crossref]

B. Chebbi, S. Minko, N. Al-Akwaa, and I. Golub, “Remote control of extended depth of field focusing,” Opt. Commun. 283(9), 1678–1683 (2010).
[Crossref]

Opt. Express (3)

Proc. Soc. Photo Opt. Instrum. Eng. (1)

F. M. Dickey and J. D. Conner, “Annular ring zoom system using two positive axicons,” Proc. Soc. Photo Opt. Instrum. Eng. 8130, 81300B (2011).

Proc. SPIE (3)

T. Hellmuth, A. Bich, R. Börret, A. Holschbach, and A. Kelm, “Variable phase plates for focus invariant optical systems,” Proc. SPIE 5962, 596215 (2005).

M. T. Chang and J. Sasian, “Variable spherical aberration generators” Proc. SPIE 3129, 217 (1997).

J. P. Mills, T. A. Mitchell, K. S. Ellis, and P. K. Manhart, “Conformal dome aberration correction with counter-rotating phase plates,” Proc. SPIE 3705, 201 (1999).

Other (3)

L. W. Alvarez and W. E. Humphrey, “Variable power lens and system,” U.S. Patent 3,507,565 (1970).

L. W. Alvarez, “Two-element variable-power spherical lens,” U.S. Patent 3,305,294 (1967).

Anees Ahmad, “High resonance adjustable mirror mount,” U.S. Patent 4,726,671, (1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1 Phase plates for the generation of +/− 10 waves of fourth-order aberration in their 1.35 mm displacement position. Note the strong plate asphericity. The beam diameter is 10 mm.
Fig. 2
Fig. 2 Left, phase plates for generating a conical wavefront; center, wave fan for an axial displacement of 1 mm corresponding to 1.24 waves of wavefront amplitude; Right, point spread function when the beam is focused by a perfect lens. Note the strong plate asphericity. The beam diameter is 10 mm.

Tables (3)

Tables Icon

Table 1 Extrinsic Aberration Terms

Tables Icon

Table 2 Extrinsic Aberration Terms

Tables Icon

Table 3 Surface Definition Aspheric Coefficients

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

W( ρ )= W 1 ( ρ )+ W 2 ( ρ )+ W 12 ( ρ ),
Δ ρ = d a W 1 ( ρ ),
W 2 ( ρ +Δ ρ )= W 1 ( ρ )+ W 2 ( ρ +Δ ρ ) W 1 ( ρ )+ W 2 ( ρ )+ 1 a W 2 ( ρ )Δ ρ = W 1 ( ρ )+ W 2 ( ρ )+ d a 2 W 2 ( ρ ) W 1 ( ρ )
W 2 ( ρ +Δ ρ ) d a 2 W 2 ( ρ ) W 1 ( ρ ).
W 1 ( ρ )= W 2 ( ρ )= W 3/2 ρ 3/2 + W 2 ρ 2 + W 3 ρ 3 + W 4 ρ 4 + W 5 ρ 5 .
W 1 ( ρ )= W 2 ( ρ )=. W focus ( ρ ρ )+ W astigmatism ( i ρ ) 2 + W coma ( i ρ )( ρ ρ )+ W linecoma ( i ρ ) 3
W 1 ( r )=(n1)( S 3 r 3 + S 4 r 4 + S 5 r 5 )
W coma =4 Δy a W spherical

Metrics