Abstract

We observe an enhancement of optical absorption and photocurrent from semi-insulating gallium arsenide (SI-GaAs) irradiated by femtosecond laser pulses. The SI-GaAs wafer is treated by a regeneratively amplified Ti: Sapphire laser of 120 fs laser pulse at 800 nm wavelength. The laser ablation induced 0.74 μm periodic ripples, and its optical absorption-edge is shifted to a longer wavelength. Meanwhile, the steady photocurrent of irradiated SI-GaAs is found to enhance 50%. The electrical properties of samples are calibrated by van der Pauw method. It is found that femtosecond laser ablation causes a microscale anti-reflection coating surface which enhances the absorption and photoconductivity.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser ablation of silicon in water with nanosecond and femtosecond pulses

Jun Ren, Michael Kelly, and Lambertus Hesselink
Opt. Lett. 30(13) 1740-1742 (2005)

Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses

Yang Yang, Jianjun Yang, Chunyong Liang, and Hongshui Wang
Opt. Express 16(15) 11259-11265 (2008)

Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses

Go Obara, Hisashi Shimizu, Taira Enami, Eric Mazur, Mitsuhiro Terakawa, and Minoru Obara
Opt. Express 21(22) 26323-26334 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. Winnerl, “Scalable microstructured photoconductive terahertz emitters,” J. Infrared. Millim. Terahertz Waves 33(4), 431–454 (2012).
    [Crossref]
  2. Z. Zhao, A. Schwagmann, F. Ospald, D. C. Driscoll, H. Lu, A. C. Gossard, and J. H. Smet, “Thickness dependence of the terahertz response in (110)-oriented GaAs crystals for electro-optic sampling at 1.55 microm,” Opt. Express 18(15), 15956–15963 (2010).
    [Crossref] [PubMed]
  3. J. Yoon, S. Jo, I.-S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
    [Crossref] [PubMed]
  4. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables,” Prog. Photovolt. Res. Appl. 20(5), 606–614 (2012).
    [Crossref]
  5. D. Birtalan and W. Nunlley, Optoelectronics: Infrared-Visible-Ultraviolet Device and Applications, 2nd ed. (CRC, 2009).
  6. A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
    [Crossref]
  7. N. P. Hylton, X. F. Li, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu, M. Sugiyama, and S. A. Maier, “Loss mitigation in plasmonic solar cells: aluminum nanoparticles for broadband photocurrent enhancements in GaAs photodiodes,” Sci. Rep 3, 2874–2879 (2013).
    [Crossref] [PubMed]
  8. A. J. Young, B. D. Schultz, and C. J. Palmstrøm, “Lattice distortion in single crystal rare-earth arsenide/GaAs nanocomposites,” Appl. Phys. Lett. 104(7), 073114 (2014).
    [Crossref]
  9. J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H.-H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89(23), 232102 (2006).
    [Crossref]
  10. T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4(1), 123–143 (2010).
    [Crossref]
  11. S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006).
    [Crossref]
  12. Q.-Z. Zhao, F. Ciobanu, S. Malzer, and L.-J. Wang, “Enhancement of optical absorption and photocurrent of 6 H-Si C by laser surface nanostructuring,” Appl. Phys. Lett. 91(12), 121107 (2007).
    [Crossref]
  13. J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
    [Crossref]
  14. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass,” Opt. Express 18(S4), A600–A619 (2010).
    [Crossref] [PubMed]
  15. J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53(10), R123–R181 (1982).
    [Crossref]
  16. G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express 16(20), 16265–16271 (2008).
    [Crossref] [PubMed]
  17. S. S. Li, Semiconductor Physical Electronics, 2nd ed. (Springer, 2006).

2014 (2)

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

A. J. Young, B. D. Schultz, and C. J. Palmstrøm, “Lattice distortion in single crystal rare-earth arsenide/GaAs nanocomposites,” Appl. Phys. Lett. 104(7), 073114 (2014).
[Crossref]

2013 (1)

N. P. Hylton, X. F. Li, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu, M. Sugiyama, and S. A. Maier, “Loss mitigation in plasmonic solar cells: aluminum nanoparticles for broadband photocurrent enhancements in GaAs photodiodes,” Sci. Rep 3, 2874–2879 (2013).
[Crossref] [PubMed]

2012 (3)

S. Winnerl, “Scalable microstructured photoconductive terahertz emitters,” J. Infrared. Millim. Terahertz Waves 33(4), 431–454 (2012).
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables,” Prog. Photovolt. Res. Appl. 20(5), 606–614 (2012).
[Crossref]

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

2010 (4)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass,” Opt. Express 18(S4), A600–A619 (2010).
[Crossref] [PubMed]

Z. Zhao, A. Schwagmann, F. Ospald, D. C. Driscoll, H. Lu, A. C. Gossard, and J. H. Smet, “Thickness dependence of the terahertz response in (110)-oriented GaAs crystals for electro-optic sampling at 1.55 microm,” Opt. Express 18(15), 15956–15963 (2010).
[Crossref] [PubMed]

J. Yoon, S. Jo, I.-S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4(1), 123–143 (2010).
[Crossref]

2008 (1)

G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express 16(20), 16265–16271 (2008).
[Crossref] [PubMed]

2007 (1)

Q.-Z. Zhao, F. Ciobanu, S. Malzer, and L.-J. Wang, “Enhancement of optical absorption and photocurrent of 6 H-Si C by laser surface nanostructuring,” Appl. Phys. Lett. 91(12), 121107 (2007).
[Crossref]

2006 (2)

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006).
[Crossref]

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H.-H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89(23), 232102 (2006).
[Crossref]

1982 (1)

J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53(10), R123–R181 (1982).
[Crossref]

Blakemore, J. S.

J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53(10), R123–R181 (1982).
[Crossref]

Bonse, J.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

Brandt, M. S.

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006).
[Crossref]

Castro-Camus, E.

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H.-H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89(23), 232102 (2006).
[Crossref]

Cheng, Y.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass,” Opt. Express 18(S4), A600–A619 (2010).
[Crossref] [PubMed]

Chong, T. C.

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4(1), 123–143 (2010).
[Crossref]

Chun, I.-S.

J. Yoon, S. Jo, I.-S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Ciobanu, F.

Q.-Z. Zhao, F. Ciobanu, S. Malzer, and L.-J. Wang, “Enhancement of optical absorption and photocurrent of 6 H-Si C by laser surface nanostructuring,” Appl. Phys. Lett. 91(12), 121107 (2007).
[Crossref]

Coleman, J. J.

J. Yoon, S. Jo, I.-S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Driscoll, D. C.

Z. Zhao, A. Schwagmann, F. Ospald, D. C. Driscoll, H. Lu, A. C. Gossard, and J. H. Smet, “Thickness dependence of the terahertz response in (110)-oriented GaAs crystals for electro-optic sampling at 1.55 microm,” Opt. Express 18(15), 15956–15963 (2010).
[Crossref] [PubMed]

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables,” Prog. Photovolt. Res. Appl. 20(5), 606–614 (2012).
[Crossref]

Ekins-Daukes, N. J.

N. P. Hylton, X. F. Li, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu, M. Sugiyama, and S. A. Maier, “Loss mitigation in plasmonic solar cells: aluminum nanoparticles for broadband photocurrent enhancements in GaAs photodiodes,” Sci. Rep 3, 2874–2879 (2013).
[Crossref] [PubMed]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables,” Prog. Photovolt. Res. Appl. 20(5), 606–614 (2012).
[Crossref]

Fu, L.

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H.-H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89(23), 232102 (2006).
[Crossref]

Giannini, V.

N. P. Hylton, X. F. Li, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu, M. Sugiyama, and S. A. Maier, “Loss mitigation in plasmonic solar cells: aluminum nanoparticles for broadband photocurrent enhancements in GaAs photodiodes,” Sci. Rep 3, 2874–2879 (2013).
[Crossref] [PubMed]

Gossard, A. C.

Z. Zhao, A. Schwagmann, F. Ospald, D. C. Driscoll, H. Lu, A. C. Gossard, and J. H. Smet, “Thickness dependence of the terahertz response in (110)-oriented GaAs crystals for electro-optic sampling at 1.55 microm,” Opt. Express 18(15), 15956–15963 (2010).
[Crossref] [PubMed]

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables,” Prog. Photovolt. Res. Appl. 20(5), 606–614 (2012).
[Crossref]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables,” Prog. Photovolt. Res. Appl. 20(5), 606–614 (2012).
[Crossref]

Höhm, S.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

Hong, M. H.

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4(1), 123–143 (2010).
[Crossref]

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass,” Opt. Express 18(S4), A600–A619 (2010).
[Crossref] [PubMed]

Hylton, N. P.

N. P. Hylton, X. F. Li, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu, M. Sugiyama, and S. A. Maier, “Loss mitigation in plasmonic solar cells: aluminum nanoparticles for broadband photocurrent enhancements in GaAs photodiodes,” Sci. Rep 3, 2874–2879 (2013).
[Crossref] [PubMed]

Jagadish, C.

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H.-H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89(23), 232102 (2006).
[Crossref]

Jo, S.

J. Yoon, S. Jo, I.-S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Johnston, M. B.

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H.-H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89(23), 232102 (2006).
[Crossref]

Jung, I.

J. Yoon, S. Jo, I.-S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Kim, H.-S.

J. Yoon, S. Jo, I.-S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Koynov, S.

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006).
[Crossref]

Krüger, J.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

Lee, K.-H.

N. P. Hylton, X. F. Li, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu, M. Sugiyama, and S. A. Maier, “Loss mitigation in plasmonic solar cells: aluminum nanoparticles for broadband photocurrent enhancements in GaAs photodiodes,” Sci. Rep 3, 2874–2879 (2013).
[Crossref] [PubMed]

Li, X.

J. Yoon, S. Jo, I.-S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Li, X. F.

N. P. Hylton, X. F. Li, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu, M. Sugiyama, and S. A. Maier, “Loss mitigation in plasmonic solar cells: aluminum nanoparticles for broadband photocurrent enhancements in GaAs photodiodes,” Sci. Rep 3, 2874–2879 (2013).
[Crossref] [PubMed]

Lloyd-Hughes, J.

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H.-H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89(23), 232102 (2006).
[Crossref]

Loo, J.

N. P. Hylton, X. F. Li, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu, M. Sugiyama, and S. A. Maier, “Loss mitigation in plasmonic solar cells: aluminum nanoparticles for broadband photocurrent enhancements in GaAs photodiodes,” Sci. Rep 3, 2874–2879 (2013).
[Crossref] [PubMed]

Lu, H.

Z. Zhao, A. Schwagmann, F. Ospald, D. C. Driscoll, H. Lu, A. C. Gossard, and J. H. Smet, “Thickness dependence of the terahertz response in (110)-oriented GaAs crystals for electro-optic sampling at 1.55 microm,” Opt. Express 18(15), 15956–15963 (2010).
[Crossref] [PubMed]

Maier, S. A.

N. P. Hylton, X. F. Li, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu, M. Sugiyama, and S. A. Maier, “Loss mitigation in plasmonic solar cells: aluminum nanoparticles for broadband photocurrent enhancements in GaAs photodiodes,” Sci. Rep 3, 2874–2879 (2013).
[Crossref] [PubMed]

Malzer, S.

Q.-Z. Zhao, F. Ciobanu, S. Malzer, and L.-J. Wang, “Enhancement of optical absorption and photocurrent of 6 H-Si C by laser surface nanostructuring,” Appl. Phys. Lett. 91(12), 121107 (2007).
[Crossref]

Meitl, M.

J. Yoon, S. Jo, I.-S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Menard, E.

J. Yoon, S. Jo, I.-S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Merchant, S. K. E.

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H.-H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89(23), 232102 (2006).
[Crossref]

Miyaji, G.

G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express 16(20), 16265–16271 (2008).
[Crossref] [PubMed]

Miyazaki, K.

G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express 16(20), 16265–16271 (2008).
[Crossref] [PubMed]

Nanal, V.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

Ospald, F.

Z. Zhao, A. Schwagmann, F. Ospald, D. C. Driscoll, H. Lu, A. C. Gossard, and J. H. Smet, “Thickness dependence of the terahertz response in (110)-oriented GaAs crystals for electro-optic sampling at 1.55 microm,” Opt. Express 18(15), 15956–15963 (2010).
[Crossref] [PubMed]

Paik, U.

J. Yoon, S. Jo, I.-S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Pal, S.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

Palmstrøm, C. J.

A. J. Young, B. D. Schultz, and C. J. Palmstrøm, “Lattice distortion in single crystal rare-earth arsenide/GaAs nanocomposites,” Appl. Phys. Lett. 104(7), 073114 (2014).
[Crossref]

Pillay, R. G.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

Prabhu, S. S.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

Rogers, J. A.

J. Yoon, S. Jo, I.-S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Rosenfeld, A.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

Schultz, B. D.

A. J. Young, B. D. Schultz, and C. J. Palmstrøm, “Lattice distortion in single crystal rare-earth arsenide/GaAs nanocomposites,” Appl. Phys. Lett. 104(7), 073114 (2014).
[Crossref]

Schwagmann, A.

Z. Zhao, A. Schwagmann, F. Ospald, D. C. Driscoll, H. Lu, A. C. Gossard, and J. H. Smet, “Thickness dependence of the terahertz response in (110)-oriented GaAs crystals for electro-optic sampling at 1.55 microm,” Opt. Express 18(15), 15956–15963 (2010).
[Crossref] [PubMed]

Shi, L. P.

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4(1), 123–143 (2010).
[Crossref]

Singh, A.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

Smet, J. H.

Z. Zhao, A. Schwagmann, F. Ospald, D. C. Driscoll, H. Lu, A. C. Gossard, and J. H. Smet, “Thickness dependence of the terahertz response in (110)-oriented GaAs crystals for electro-optic sampling at 1.55 microm,” Opt. Express 18(15), 15956–15963 (2010).
[Crossref] [PubMed]

Sodabanlu, H.

N. P. Hylton, X. F. Li, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu, M. Sugiyama, and S. A. Maier, “Loss mitigation in plasmonic solar cells: aluminum nanoparticles for broadband photocurrent enhancements in GaAs photodiodes,” Sci. Rep 3, 2874–2879 (2013).
[Crossref] [PubMed]

Stutzmann, M.

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006).
[Crossref]

Sugiyama, M.

N. P. Hylton, X. F. Li, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu, M. Sugiyama, and S. A. Maier, “Loss mitigation in plasmonic solar cells: aluminum nanoparticles for broadband photocurrent enhancements in GaAs photodiodes,” Sci. Rep 3, 2874–2879 (2013).
[Crossref] [PubMed]

Surdi, H.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

Tan, H.-H.

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H.-H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89(23), 232102 (2006).
[Crossref]

Van Dorpe, P.

N. P. Hylton, X. F. Li, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu, M. Sugiyama, and S. A. Maier, “Loss mitigation in plasmonic solar cells: aluminum nanoparticles for broadband photocurrent enhancements in GaAs photodiodes,” Sci. Rep 3, 2874–2879 (2013).
[Crossref] [PubMed]

Vercruysse, D.

N. P. Hylton, X. F. Li, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu, M. Sugiyama, and S. A. Maier, “Loss mitigation in plasmonic solar cells: aluminum nanoparticles for broadband photocurrent enhancements in GaAs photodiodes,” Sci. Rep 3, 2874–2879 (2013).
[Crossref] [PubMed]

Wang, L.-J.

Q.-Z. Zhao, F. Ciobanu, S. Malzer, and L.-J. Wang, “Enhancement of optical absorption and photocurrent of 6 H-Si C by laser surface nanostructuring,” Appl. Phys. Lett. 91(12), 121107 (2007).
[Crossref]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables,” Prog. Photovolt. Res. Appl. 20(5), 606–614 (2012).
[Crossref]

Winnerl, S.

S. Winnerl, “Scalable microstructured photoconductive terahertz emitters,” J. Infrared. Millim. Terahertz Waves 33(4), 431–454 (2012).
[Crossref]

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass,” Opt. Express 18(S4), A600–A619 (2010).
[Crossref] [PubMed]

Xu, Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass,” Opt. Express 18(S4), A600–A619 (2010).
[Crossref] [PubMed]

Yoon, J.

J. Yoon, S. Jo, I.-S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Young, A. J.

A. J. Young, B. D. Schultz, and C. J. Palmstrøm, “Lattice distortion in single crystal rare-earth arsenide/GaAs nanocomposites,” Appl. Phys. Lett. 104(7), 073114 (2014).
[Crossref]

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass,” Opt. Express 18(S4), A600–A619 (2010).
[Crossref] [PubMed]

Zhao, Q.-Z.

Q.-Z. Zhao, F. Ciobanu, S. Malzer, and L.-J. Wang, “Enhancement of optical absorption and photocurrent of 6 H-Si C by laser surface nanostructuring,” Appl. Phys. Lett. 91(12), 121107 (2007).
[Crossref]

Zhao, Z.

Z. Zhao, A. Schwagmann, F. Ospald, D. C. Driscoll, H. Lu, A. C. Gossard, and J. H. Smet, “Thickness dependence of the terahertz response in (110)-oriented GaAs crystals for electro-optic sampling at 1.55 microm,” Opt. Express 18(15), 15956–15963 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

A. J. Young, B. D. Schultz, and C. J. Palmstrøm, “Lattice distortion in single crystal rare-earth arsenide/GaAs nanocomposites,” Appl. Phys. Lett. 104(7), 073114 (2014).
[Crossref]

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H.-H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89(23), 232102 (2006).
[Crossref]

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006).
[Crossref]

Q.-Z. Zhao, F. Ciobanu, S. Malzer, and L.-J. Wang, “Enhancement of optical absorption and photocurrent of 6 H-Si C by laser surface nanostructuring,” Appl. Phys. Lett. 91(12), 121107 (2007).
[Crossref]

J. Appl. Phys. (1)

J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53(10), R123–R181 (1982).
[Crossref]

J. Infrared. Millim. Terahertz Waves (1)

S. Winnerl, “Scalable microstructured photoconductive terahertz emitters,” J. Infrared. Millim. Terahertz Waves 33(4), 431–454 (2012).
[Crossref]

J. Laser Appl. (1)

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

Laser Photon. Rev. (1)

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4(1), 123–143 (2010).
[Crossref]

Nature (1)

J. Yoon, S. Jo, I.-S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Opt. Express (3)

Z. Zhao, A. Schwagmann, F. Ospald, D. C. Driscoll, H. Lu, A. C. Gossard, and J. H. Smet, “Thickness dependence of the terahertz response in (110)-oriented GaAs crystals for electro-optic sampling at 1.55 microm,” Opt. Express 18(15), 15956–15963 (2010).
[Crossref] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass,” Opt. Express 18(S4), A600–A619 (2010).
[Crossref] [PubMed]

G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express 16(20), 16265–16271 (2008).
[Crossref] [PubMed]

Prog. Photovolt. Res. Appl. (1)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables,” Prog. Photovolt. Res. Appl. 20(5), 606–614 (2012).
[Crossref]

Sci. Rep (1)

N. P. Hylton, X. F. Li, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu, M. Sugiyama, and S. A. Maier, “Loss mitigation in plasmonic solar cells: aluminum nanoparticles for broadband photocurrent enhancements in GaAs photodiodes,” Sci. Rep 3, 2874–2879 (2013).
[Crossref] [PubMed]

Other (2)

D. Birtalan and W. Nunlley, Optoelectronics: Infrared-Visible-Ultraviolet Device and Applications, 2nd ed. (CRC, 2009).

S. S. Li, Semiconductor Physical Electronics, 2nd ed. (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of femtosecond laser processing. M: mirror, ND: neutral density, BS: beam-splitter, OL: objective lens, TS: 3 dimension-translation stage.
Fig. 2
Fig. 2 SEM images of microstructural ripples on the surface of SI-GaAs along the laser scanning tracks at different image magnifications, respectively.
Fig. 3
Fig. 3 (a) Optical transmission spectra of samples. Inset: Zoom-in figure of optical transmission of treated SI-GaAs. (b) Optical reflection spectra of samples. Red solid line: SI-GaAs reference. Blue solid line: treated SI-GaAs.
Fig. 4
Fig. 4 Optical absorption spectra of samples. Red area: SI-GaAs reference. Blue area: treated SI-GaAs.
Fig. 5
Fig. 5 Photocurrent as a function of bias voltage of the treated and untreated SI-GaAs samples. Red solid line: SI-GaAs reference. Blue solid line: treated SI-GaAs.

Tables (1)

Tables Icon

Table 1 Electrical properties of treated and untreated SI-GaAs wafers

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

1=R+A+T,
Δn= g B = α I 0 ( 1R ) Bhν ,
Δσ=qμΔn,

Metrics