Abstract

Orthogonal frequency-division multiplexing (OFDM) has been widely used in visible light communication systems to achieve high-rate data transmission. Due to the nonlinear transfer characteristics of light emitting diodes (LEDs) and owing the high peak-to-average-power ratio of OFDM signals, the transmitted signal has to be scaled and biased before modulating the LEDs. In this contribution, an adaptive scaling and biasing scheme is proposed for OFDM-based visible light communication systems, which fully exploits the dynamic range of the LEDs and improves the achievable system performance. Specifically, the proposed scheme calculates near-optimal scaling and biasing factors for each specific OFDM symbol according to the distribution of the signals, which strikes an attractive trade-off between the effective signal power and the clipping-distortion power. Our simulation results demonstrate that the proposed scheme significantly improves the performance without changing the LED’s emitted power, while maintaining the same receiver structure.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
BICM-ID scheme for clipped DCO-OFDM in visible light communications

Jiandong Tan, Zhaocheng Wang, Qi Wang, and Linglong Dai
Opt. Express 24(5) 4573-4581 (2016)

PAPR reduction based on tone reservation scheme for DCO-OFDM indoor visible light communications

Jurong Bai, Yong Li, Yang Yi, Wei Cheng, and Huimin Du
Opt. Express 25(20) 24630-24638 (2017)

Time domain reshuffling for OFDM based indoor visible light communication systems

Xiaodi You, Jian Chen, Changyuan Yu, and Huanhuan Zheng
Opt. Express 25(10) 11606-11621 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Jovicic, J. Li, T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Magazine 51(12), 26–32 (2013).
    [Crossref]
  2. Q. Wang, Z. Wang, S. Chen, L. Hanzo, “Enhancing the decoding performance of optical wireless communication systems using receiver-side predistortion,” Opt. Express 21(25), 30295–30395 (2013).
    [Crossref]
  3. J. Vučić, C. Kottke, S. Nerreter, K. Langer, J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightwave Technol. 28(24), 3512–3518 (2010).
  4. Z. Wang, C. Yu, W. Zhong, J. Chen, “Performance improvement by tilting receiver plane in M-QAM OFDM visible light communications,” Opt. Express 19(14), 13418–13427 (2011).
    [Crossref] [PubMed]
  5. A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
    [Crossref]
  6. G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
    [Crossref] [PubMed]
  7. Y. Wang, N. Chi, Y. Wang, R. Li, X. Huang, C. Yang, Z. Zhang, “High-speed quasi-balanced detection OFDM in visible light communication,” Opt. Express 21(23), 27558–27564 (2013)
    [Crossref]
  8. H. Elgala, R. Mesleh, H. Haas, “Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs,” Inderscience International J. Ultra Wideband Commun. Syst. 1(2), 143–150 (2009).
    [Crossref]
  9. S. Dimitrov, S. Sinanovic, H. Haas, “Clipping noise in OFDM-based optical wireless communication systems,” IEEE Trans. Commun. 60(4), 1072–1081 (2012).
    [Crossref]
  10. J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol. 27(3), 189–204 (2009).
    [Crossref]
  11. T. Komine, J. H. Lee, S. Haruyama, M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wirel. Commun. 8(6), 2892–2900 (2009).
    [Crossref]
  12. J. Li, X. Zhang, Q. Gao, Y. Luo, D. Gu, “Exact BEP analysis for coherent M-ary PAM and QAM over AWGN and Rayleigh fading channels,” in Proc. IEEE VTC-Spring, 390–394 (2008).
  13. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University, 2004).
    [Crossref]
  14. J. G. Proakis, M. Salehi, Digital Communications, 5 (McGram-Hill, 2008).

2013 (3)

2012 (3)

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

S. Dimitrov, S. Sinanovic, H. Haas, “Clipping noise in OFDM-based optical wireless communication systems,” IEEE Trans. Commun. 60(4), 1072–1081 (2012).
[Crossref]

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

2009 (3)

T. Komine, J. H. Lee, S. Haruyama, M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wirel. Commun. 8(6), 2892–2900 (2009).
[Crossref]

J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol. 27(3), 189–204 (2009).
[Crossref]

H. Elgala, R. Mesleh, H. Haas, “Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs,” Inderscience International J. Ultra Wideband Commun. Syst. 1(2), 143–150 (2009).
[Crossref]

Armstrong, J.

Boyd, S.

S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University, 2004).
[Crossref]

Chen, J.

Chen, S.

Chi, N.

Choudhury, P.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Ciaramella, E.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

Corsini, R.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Cossu, G.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

Dimitrov, S.

S. Dimitrov, S. Sinanovic, H. Haas, “Clipping noise in OFDM-based optical wireless communication systems,” IEEE Trans. Commun. 60(4), 1072–1081 (2012).
[Crossref]

Elgala, H.

H. Elgala, R. Mesleh, H. Haas, “Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs,” Inderscience International J. Ultra Wideband Commun. Syst. 1(2), 143–150 (2009).
[Crossref]

Gao, Q.

J. Li, X. Zhang, Q. Gao, Y. Luo, D. Gu, “Exact BEP analysis for coherent M-ary PAM and QAM over AWGN and Rayleigh fading channels,” in Proc. IEEE VTC-Spring, 390–394 (2008).

Gu, D.

J. Li, X. Zhang, Q. Gao, Y. Luo, D. Gu, “Exact BEP analysis for coherent M-ary PAM and QAM over AWGN and Rayleigh fading channels,” in Proc. IEEE VTC-Spring, 390–394 (2008).

Haas, H.

S. Dimitrov, S. Sinanovic, H. Haas, “Clipping noise in OFDM-based optical wireless communication systems,” IEEE Trans. Commun. 60(4), 1072–1081 (2012).
[Crossref]

H. Elgala, R. Mesleh, H. Haas, “Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs,” Inderscience International J. Ultra Wideband Commun. Syst. 1(2), 143–150 (2009).
[Crossref]

Hanzo, L.

Haruyama, S.

T. Komine, J. H. Lee, S. Haruyama, M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wirel. Commun. 8(6), 2892–2900 (2009).
[Crossref]

Huang, X.

Jovicic, A.

A. Jovicic, J. Li, T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Magazine 51(12), 26–32 (2013).
[Crossref]

Khalid, A. M.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

Komine, T.

T. Komine, J. H. Lee, S. Haruyama, M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wirel. Commun. 8(6), 2892–2900 (2009).
[Crossref]

Kottke, C.

Langer, K.

Lee, J. H.

T. Komine, J. H. Lee, S. Haruyama, M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wirel. Commun. 8(6), 2892–2900 (2009).
[Crossref]

Li, J.

A. Jovicic, J. Li, T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Magazine 51(12), 26–32 (2013).
[Crossref]

J. Li, X. Zhang, Q. Gao, Y. Luo, D. Gu, “Exact BEP analysis for coherent M-ary PAM and QAM over AWGN and Rayleigh fading channels,” in Proc. IEEE VTC-Spring, 390–394 (2008).

Li, R.

Luo, Y.

J. Li, X. Zhang, Q. Gao, Y. Luo, D. Gu, “Exact BEP analysis for coherent M-ary PAM and QAM over AWGN and Rayleigh fading channels,” in Proc. IEEE VTC-Spring, 390–394 (2008).

Mesleh, R.

H. Elgala, R. Mesleh, H. Haas, “Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs,” Inderscience International J. Ultra Wideband Commun. Syst. 1(2), 143–150 (2009).
[Crossref]

Nakagawa, M.

T. Komine, J. H. Lee, S. Haruyama, M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wirel. Commun. 8(6), 2892–2900 (2009).
[Crossref]

Nerreter, S.

Proakis, J. G.

J. G. Proakis, M. Salehi, Digital Communications, 5 (McGram-Hill, 2008).

Richardson, T.

A. Jovicic, J. Li, T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Magazine 51(12), 26–32 (2013).
[Crossref]

Salehi, M.

J. G. Proakis, M. Salehi, Digital Communications, 5 (McGram-Hill, 2008).

Sinanovic, S.

S. Dimitrov, S. Sinanovic, H. Haas, “Clipping noise in OFDM-based optical wireless communication systems,” IEEE Trans. Commun. 60(4), 1072–1081 (2012).
[Crossref]

Vandenberghe, L.

S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University, 2004).
[Crossref]

Vucic, J.

Walewski, J. W.

Wang, Q.

Wang, Y.

Wang, Z.

Yang, C.

Yu, C.

Zhang, X.

J. Li, X. Zhang, Q. Gao, Y. Luo, D. Gu, “Exact BEP analysis for coherent M-ary PAM and QAM over AWGN and Rayleigh fading channels,” in Proc. IEEE VTC-Spring, 390–394 (2008).

Zhang, Z.

Zhong, W.

IEEE Commun. Magazine (1)

A. Jovicic, J. Li, T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Magazine 51(12), 26–32 (2013).
[Crossref]

IEEE Photonics J. (1)

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

IEEE Trans. Commun. (1)

S. Dimitrov, S. Sinanovic, H. Haas, “Clipping noise in OFDM-based optical wireless communication systems,” IEEE Trans. Commun. 60(4), 1072–1081 (2012).
[Crossref]

IEEE Trans. Wirel. Commun. (1)

T. Komine, J. H. Lee, S. Haruyama, M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wirel. Commun. 8(6), 2892–2900 (2009).
[Crossref]

Inderscience International J. Ultra Wideband Commun. Syst. (1)

H. Elgala, R. Mesleh, H. Haas, “Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs,” Inderscience International J. Ultra Wideband Commun. Syst. 1(2), 143–150 (2009).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (4)

Other (3)

J. Li, X. Zhang, Q. Gao, Y. Luo, D. Gu, “Exact BEP analysis for coherent M-ary PAM and QAM over AWGN and Rayleigh fading channels,” in Proc. IEEE VTC-Spring, 390–394 (2008).

S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University, 2004).
[Crossref]

J. G. Proakis, M. Salehi, Digital Communications, 5 (McGram-Hill, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 OFDM-based visible light communication system.
Fig. 2
Fig. 2 The dynamic range of the time-domain signal x(k) in an OFDM-based VLC system with M-QAM and N subcarriers.
Fig. 3
Fig. 3 The required normalized OSNR to achieve the BER level of 10−3 as the function of scaling factor for the conventional OFDM-based VLC system with M-QAM and N subcarriers.
Fig. 4
Fig. 4 The BER performance comparison of the conventional OFDM-based VLC system and our system with the proposed adaptive scaling and biasing scheme. The both systems employ M-QAM with N subcarriers.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

X ( m ) = X * ( N m ) , m = 1 , 2 , , N / 2 1 ,
x ( k ) = 1 N m = 0 N 1 X ( m ) exp ( j 2 π N m k ) , k = 0 , 1 , , N 1 ,
x c ( k ) = { z max x bias , α x ( k ) + x bias > z max ; α x ( k ) , z min α x ( k ) + x bias z max ; z min x bias , α x ( k ) + x bias < z min .
Y ( m ) = 1 N k = 0 N 1 y ( k ) exp ( j 2 π k m N ) , m = 0 , 1 , , N 1 ,
1 N m = 0 N 1 exp ( j 2 π k m N ) = { N , m = 0 0 , m = 1 , 2 , , N 1 ,
BER = 4 ( M 1 ) M log 2 ( M ) Q ( 3 log 2 M M 1 Γ b ( elec ) ) + 4 ( M 2 ) M log 2 ( M ) Q ( 3 3 log 2 M M 1 Γ b ( elec ) ) ,
Γ b ( elec ) = P s σ clip 2 + σ AWGN 2 ,
𝕏 = { x ( l ) } l = 1 M N / 2 1 .
Γ b ( elec ) ( l ) = P s ( l ) ( σ clip ( l ) ) 2 + σ AWGN 2 ,
α min = z max z min x max x min
α = 2 ( z max z min ) x max + x smax x min x smin ,
1 N k = 0 N 1 ( α x ( k ) + x bias ) = α N 3 / 2 k = 0 N 1 m = 0 N 1 X ( m ) exp ( j 2 π m k N ) + x bias = α N 3 / 2 m = 0 N 1 X ( m ) k = 0 N 1 exp ( j 2 π m k N ) + x bias = x bias ,
x ^ bias = arg min x bias + k = 0 N 1 f ( α x ( k ) + x bias ) ,
f ( x ) = { ( x z max ) 2 , x > z max ; 0 , z min x z max ; ( x z min ) 2 , x < z min .
x ^ bias ( z min + z max ) / 2 α ( x max + x min ) / 2 .

Metrics