Abstract

A fast-tuning Brillouin/erbium fiber laser (BEFL) is investigated on its mechanism and characteristics in detail, in which a 4 m erbium-doped fiber (EDF) as both the Brillouin gain and linear gain media is coiled on a piezoelectric transducer (PZT) for laser frequency modulations. We demonstrate the fast-tuning mechanism theoretically and experimentally that only the lasing cavity mode is modulated, instead of the previous presumption that the Brillouin frequency shift of the EDF is modulated synchronously with the lasing mode. And the maximum tuning range (~60 MHz) is limited by the bandwidth of the Brillouin gain spectrum. The frequency tuning amplitude is direct proportional to the voltage on the PZT. The tuning rates reach up to 48 kHz. The BEFL keeps high-coherence property under fast frequency modulation. Its phase noise remains about −124 dB/Hz1/2 (normalized to 1 m optical path difference) at 1 kHz under 32 kHz modulations. This fast-tuning BEFL presents a wide range of applications in fiber sensors, optical fiber communications, and so forth.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
53-dB phase noise suppression and Hz-range linewidth emission in compact Brillouin/erbium fiber laser

Mo Chen, Chenyu Wang, Jianfei Wang, Hong Luo, and Zhou Meng
Opt. Express 25(16) 19216-19225 (2017)

Investigation on the effect of EDFA location in ring cavity Brillouin-Erbium fiber laser

Nor Azura Malini, A. Hambali, Mohd Adzir Mahdi, Al-Mansoori Mohammed Hayder, Ahmad Fauzi Abas, and M. Iqbal Saripan
Opt. Express 17(14) 11768-11775 (2009)

Tunable range enhancement of Brillouin-erbium fiber laser utilizing Brillouin pump pre-amplification technique

Mohammed Haydar Al-Mansoori and Mohd Adzir Mahdi
Opt. Express 16(11) 7649-7654 (2008)

References

  • View by:
  • |
  • |
  • |

  1. E. C. Burrows and K.-Y. Liou, “High resolution laser LIDAR utilizing two-section distributed feedback semiconductor laser as a coherent source,” Electron. Lett. 26(9), 577–579 (1990).
    [Crossref]
  2. N. J. C. Libatique, L. Wang, and R. K. Jain, “Single-longitudinal-mode tunable WDM-channel-selectable fiber laser,” Opt. Express 10(25), 1503–1507 (2002).
    [Crossref] [PubMed]
  3. K. Numata, J. R. Chen, and S. T. Wu, “Precision and fast wavelength tuning of a dynamically phase-locked widely-tunable laser,” Opt. Express 20(13), 14234–14243 (2012).
    [Crossref] [PubMed]
  4. J. Wang, H. Luo, Z. Meng, and Y. Hu, “Experiemental research of an all-polarization-maintaining optical fiber vector hydrophone,” J. Lightwave Technol. 30(8), 1178–1184 (2012).
    [Crossref]
  5. A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18(10), 1647–1653 (1982).
    [Crossref]
  6. Z. Meng, Y. Hu, S. Xiong, G. Stewart, G. Whitenett, and B. Culshaw, “Phase noise characteristics of a diode-pumped Nd:YAG laser in an unbalanced fiber-optic interferometer,” Appl. Opt. 44(17), 3425–3428 (2005).
    [Crossref] [PubMed]
  7. I. Freitag, D. Golla, S. Knoke, W. Schöne, H. Zellmer, A. Tünnermann, and H. Welling, “Amplitude and frequency stability of a diode-pumped Nd:YAG laser operating at a single-frequency continuous-wave output power of 20 W,” Opt. Lett. 20(5), 462–464 (1995).
    [Crossref] [PubMed]
  8. D. Welford and A. Mooradian, “Output power and temperature dependence of the linewidth of single-frequency cw (GaAl)As diode lasers,” Appl. Opt. Lett. 40(10), 865–867 (1982).
    [Crossref]
  9. K. C. Harvey and C. J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating,” Opt. Lett. 16(12), 910–912 (1991).
    [Crossref] [PubMed]
  10. M. J. Chawki, I. Valiente, R. Auffret, and V. Tholey, “All fibre, 1.5 μm widely tunable single frequency and narrow linewidth semiconductor ring laser with fibre Fabry-Perot filter,” Electron. Lett. 29(23), 2034–2035 (1993).
    [Crossref]
  11. B. Boggs, C. Greiner, T. Wang, H. Lin, and T. W. Mossberg, “Simple high-coherence rapidly tunable external-cavity diode laser,” Opt. Lett. 23(24), 1906–1908 (1998).
    [Crossref] [PubMed]
  12. Z. Zang and W. Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys. 109(10), 103106 (2011).
    [Crossref]
  13. Z. Zang and Y. Zhang, “Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation,” Appl. Opt. 51(16), 3424–3430 (2012).
    [Crossref] [PubMed]
  14. J. Dong, Y. Q. Wei, A. Wonfor, R. V. Penty, I. H. White, J. Lousteau, G. Jose, and A. Jha, “Dual-pumped Tellirite fiber amplifier and tunable laser using Er3+/Ce3+ codoping scheme,” IEEE Photon. Technol. Lett. 23(11), 736–738 (2011).
    [Crossref]
  15. F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, and G. Mazé, “Narrow linewidth, tunable Tm3+-doped fluoride fiber laser for optical-based hydrocarbon gas sensing,” IEEE J. Sel. Top. Quantum Electron. 3, 1103–1111 (2009).
  16. C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm,” J. Lightwave Technol. 22(1), 57–62 (2004).
    [Crossref]
  17. Z. Meng, Z. Hu, Y. Hu, S. Xiong, and C. Cao, “Fast-tuning, narrow-linewidth, all polarization-maintiang fiber ring laser,” Proc. SPIE 6552, 65521C (2007).
    [Crossref]
  18. Z. Meng, G. Stewart, and G. Whitenett, “Stable single-mode operation of a narrow-linewidth, linearly polarized, erbium-fiber ring laser using a saturable absorber,” J. Lightwave Technol. 24(5), 2179–2183 (2006).
    [Crossref]
  19. S. P. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Opt. Lett. 16(6), 393–395 (1991).
    [Crossref] [PubMed]
  20. Z. Wu, L. Zhan, Q. Shen, J. Liu, X. Hu, and P. Xiao, “Ultrafine optical-frequency tunable Brillouin fiber laser based on fiber strain,” Opt. Lett. 36(19), 3837–3839 (2011).
    [Crossref] [PubMed]
  21. G. Wang, L. Zhan, J. Liu, T. Zhang, J. Li, L. Zhang, J. Peng, and L. Yi, “Watt-level ultrahigh-optical signal-to-noise ratio single-longitudinal-mode tunable Brillouin fiber laser,” Opt. Lett. 38(1), 19–21 (2013).
    [Crossref] [PubMed]
  22. G. J. Cowle and D. Y. Stepanov, “Hybrid Brillouin/erbium fiber laser,” Opt. Lett. 21(16), 1250–1252 (1996).
    [Crossref] [PubMed]
  23. H. Zhou, C. Sun, M. Chen, W. Chen, and Z. Meng, “Characteristics of a Brillouin-erbium fiber laser based on Brillouin pump preamplification,” Appl. Opt. 51(29), 7046–7051 (2012).
    [Crossref] [PubMed]
  24. M. Chen, Z. Meng, and H. Zhou, “Low-threshold, single-mode, compact Brillouin/erbium fiber ring laser,” J. Lightwave Technol. 31(12), 1980–1986 (2013).
    [Crossref]
  25. M. Chen, Z. Meng, X. Tu, and H. Zhou, “Low-noise, single-frequency, single-polarization Brillouin/erbium fiber laser,” Opt. Lett. 38(12), 2041–2043 (2013).
    [Crossref] [PubMed]
  26. M. Chen, Z. Meng, X. Tu, and Y. Zhang, “Fast-tuning, low-noise, compact Brillouin/erbium fiber laser,” Opt. Lett. 39(3), 689–692 (2014).
    [Crossref] [PubMed]
  27. X. Tu, Q. Sun, W. Chen, M. Chen, and Z. Meng, “Vector Brillouin optical time-domain analysis with heterodyne detection and IQ demodulation algorithm,” IEEE Photon. J. 6(2), 6800908 (2014).
    [Crossref]
  28. M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
    [Crossref]
  29. V. I. Kovalev and R. G. Harrison, “Waveguide-induced inhomogeneous spectral broadening of stimulated Brillouin scattering in optical fiber,” Opt. Lett. 27(22), 2022–2024 (2002).
    [Crossref] [PubMed]
  30. A. Yeniay, J.-M. Delavaux, and J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Technol. 20(8), 1425–1432 (2002).
    [Crossref]
  31. H. Zhou, W. Chen, Z. Meng, and C. Sun, “Phase noise characteristics of narrow-linewidth fiber laser and laser diode in unbalanced interferometers,” Chin. Opt. Lett. 11, 021401 (2013).

2014 (2)

M. Chen, Z. Meng, X. Tu, and Y. Zhang, “Fast-tuning, low-noise, compact Brillouin/erbium fiber laser,” Opt. Lett. 39(3), 689–692 (2014).
[Crossref] [PubMed]

X. Tu, Q. Sun, W. Chen, M. Chen, and Z. Meng, “Vector Brillouin optical time-domain analysis with heterodyne detection and IQ demodulation algorithm,” IEEE Photon. J. 6(2), 6800908 (2014).
[Crossref]

2013 (4)

2012 (4)

2011 (3)

J. Dong, Y. Q. Wei, A. Wonfor, R. V. Penty, I. H. White, J. Lousteau, G. Jose, and A. Jha, “Dual-pumped Tellirite fiber amplifier and tunable laser using Er3+/Ce3+ codoping scheme,” IEEE Photon. Technol. Lett. 23(11), 736–738 (2011).
[Crossref]

Z. Zang and W. Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys. 109(10), 103106 (2011).
[Crossref]

Z. Wu, L. Zhan, Q. Shen, J. Liu, X. Hu, and P. Xiao, “Ultrafine optical-frequency tunable Brillouin fiber laser based on fiber strain,” Opt. Lett. 36(19), 3837–3839 (2011).
[Crossref] [PubMed]

2009 (1)

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, and G. Mazé, “Narrow linewidth, tunable Tm3+-doped fluoride fiber laser for optical-based hydrocarbon gas sensing,” IEEE J. Sel. Top. Quantum Electron. 3, 1103–1111 (2009).

2007 (1)

Z. Meng, Z. Hu, Y. Hu, S. Xiong, and C. Cao, “Fast-tuning, narrow-linewidth, all polarization-maintiang fiber ring laser,” Proc. SPIE 6552, 65521C (2007).
[Crossref]

2006 (1)

2005 (1)

2004 (1)

2002 (3)

1998 (1)

1997 (1)

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

1996 (1)

1995 (1)

1993 (1)

M. J. Chawki, I. Valiente, R. Auffret, and V. Tholey, “All fibre, 1.5 μm widely tunable single frequency and narrow linewidth semiconductor ring laser with fibre Fabry-Perot filter,” Electron. Lett. 29(23), 2034–2035 (1993).
[Crossref]

1991 (2)

1990 (1)

E. C. Burrows and K.-Y. Liou, “High resolution laser LIDAR utilizing two-section distributed feedback semiconductor laser as a coherent source,” Electron. Lett. 26(9), 577–579 (1990).
[Crossref]

1982 (2)

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18(10), 1647–1653 (1982).
[Crossref]

D. Welford and A. Mooradian, “Output power and temperature dependence of the linewidth of single-frequency cw (GaAl)As diode lasers,” Appl. Opt. Lett. 40(10), 865–867 (1982).
[Crossref]

Auffret, R.

M. J. Chawki, I. Valiente, R. Auffret, and V. Tholey, “All fibre, 1.5 μm widely tunable single frequency and narrow linewidth semiconductor ring laser with fibre Fabry-Perot filter,” Electron. Lett. 29(23), 2034–2035 (1993).
[Crossref]

Boggs, B.

Burrows, E. C.

E. C. Burrows and K.-Y. Liou, “High resolution laser LIDAR utilizing two-section distributed feedback semiconductor laser as a coherent source,” Electron. Lett. 26(9), 577–579 (1990).
[Crossref]

Cao, C.

Z. Meng, Z. Hu, Y. Hu, S. Xiong, and C. Cao, “Fast-tuning, narrow-linewidth, all polarization-maintiang fiber ring laser,” Proc. SPIE 6552, 65521C (2007).
[Crossref]

Chawki, M. J.

M. J. Chawki, I. Valiente, R. Auffret, and V. Tholey, “All fibre, 1.5 μm widely tunable single frequency and narrow linewidth semiconductor ring laser with fibre Fabry-Perot filter,” Electron. Lett. 29(23), 2034–2035 (1993).
[Crossref]

Chen, J. R.

Chen, M.

Chen, W.

Cowle, G. J.

Culshaw, B.

Dandridge, A.

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18(10), 1647–1653 (1982).
[Crossref]

Delavaux, J.-M.

Donegan, J. F.

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, and G. Mazé, “Narrow linewidth, tunable Tm3+-doped fluoride fiber laser for optical-based hydrocarbon gas sensing,” IEEE J. Sel. Top. Quantum Electron. 3, 1103–1111 (2009).

Dong, J.

J. Dong, Y. Q. Wei, A. Wonfor, R. V. Penty, I. H. White, J. Lousteau, G. Jose, and A. Jha, “Dual-pumped Tellirite fiber amplifier and tunable laser using Er3+/Ce3+ codoping scheme,” IEEE Photon. Technol. Lett. 23(11), 736–738 (2011).
[Crossref]

Ezekiel, S.

Freitag, I.

Geng, J.

Giallorenzi, T. G.

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18(10), 1647–1653 (1982).
[Crossref]

Golla, D.

Greiner, C.

Harrison, R. G.

Harvey, K. C.

Hegarty, J.

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, and G. Mazé, “Narrow linewidth, tunable Tm3+-doped fluoride fiber laser for optical-based hydrocarbon gas sensing,” IEEE J. Sel. Top. Quantum Electron. 3, 1103–1111 (2009).

Hu, X.

Hu, Y.

Hu, Z.

Z. Meng, Z. Hu, Y. Hu, S. Xiong, and C. Cao, “Fast-tuning, narrow-linewidth, all polarization-maintiang fiber ring laser,” Proc. SPIE 6552, 65521C (2007).
[Crossref]

Jain, R. K.

Jha, A.

J. Dong, Y. Q. Wei, A. Wonfor, R. V. Penty, I. H. White, J. Lousteau, G. Jose, and A. Jha, “Dual-pumped Tellirite fiber amplifier and tunable laser using Er3+/Ce3+ codoping scheme,” IEEE Photon. Technol. Lett. 23(11), 736–738 (2011).
[Crossref]

Jiang, S.

Jose, G.

J. Dong, Y. Q. Wei, A. Wonfor, R. V. Penty, I. H. White, J. Lousteau, G. Jose, and A. Jha, “Dual-pumped Tellirite fiber amplifier and tunable laser using Er3+/Ce3+ codoping scheme,” IEEE Photon. Technol. Lett. 23(11), 736–738 (2011).
[Crossref]

Kaneda, Y.

Knoke, S.

Kovalev, V. I.

Li, J.

Libatique, N. J. C.

Lin, H.

Liou, K.-Y.

E. C. Burrows and K.-Y. Liou, “High resolution laser LIDAR utilizing two-section distributed feedback semiconductor laser as a coherent source,” Electron. Lett. 26(9), 577–579 (1990).
[Crossref]

Liu, J.

Lousteau, J.

J. Dong, Y. Q. Wei, A. Wonfor, R. V. Penty, I. H. White, J. Lousteau, G. Jose, and A. Jha, “Dual-pumped Tellirite fiber amplifier and tunable laser using Er3+/Ce3+ codoping scheme,” IEEE Photon. Technol. Lett. 23(11), 736–738 (2011).
[Crossref]

Luo, H.

MacCraith, B. D.

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, and G. Mazé, “Narrow linewidth, tunable Tm3+-doped fluoride fiber laser for optical-based hydrocarbon gas sensing,” IEEE J. Sel. Top. Quantum Electron. 3, 1103–1111 (2009).

Mazé, G.

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, and G. Mazé, “Narrow linewidth, tunable Tm3+-doped fluoride fiber laser for optical-based hydrocarbon gas sensing,” IEEE J. Sel. Top. Quantum Electron. 3, 1103–1111 (2009).

McAleavey, F. J.

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, and G. Mazé, “Narrow linewidth, tunable Tm3+-doped fluoride fiber laser for optical-based hydrocarbon gas sensing,” IEEE J. Sel. Top. Quantum Electron. 3, 1103–1111 (2009).

Meng, Z.

X. Tu, Q. Sun, W. Chen, M. Chen, and Z. Meng, “Vector Brillouin optical time-domain analysis with heterodyne detection and IQ demodulation algorithm,” IEEE Photon. J. 6(2), 6800908 (2014).
[Crossref]

M. Chen, Z. Meng, X. Tu, and Y. Zhang, “Fast-tuning, low-noise, compact Brillouin/erbium fiber laser,” Opt. Lett. 39(3), 689–692 (2014).
[Crossref] [PubMed]

H. Zhou, W. Chen, Z. Meng, and C. Sun, “Phase noise characteristics of narrow-linewidth fiber laser and laser diode in unbalanced interferometers,” Chin. Opt. Lett. 11, 021401 (2013).

M. Chen, Z. Meng, and H. Zhou, “Low-threshold, single-mode, compact Brillouin/erbium fiber ring laser,” J. Lightwave Technol. 31(12), 1980–1986 (2013).
[Crossref]

M. Chen, Z. Meng, X. Tu, and H. Zhou, “Low-noise, single-frequency, single-polarization Brillouin/erbium fiber laser,” Opt. Lett. 38(12), 2041–2043 (2013).
[Crossref] [PubMed]

J. Wang, H. Luo, Z. Meng, and Y. Hu, “Experiemental research of an all-polarization-maintaining optical fiber vector hydrophone,” J. Lightwave Technol. 30(8), 1178–1184 (2012).
[Crossref]

H. Zhou, C. Sun, M. Chen, W. Chen, and Z. Meng, “Characteristics of a Brillouin-erbium fiber laser based on Brillouin pump preamplification,” Appl. Opt. 51(29), 7046–7051 (2012).
[Crossref] [PubMed]

Z. Meng, Z. Hu, Y. Hu, S. Xiong, and C. Cao, “Fast-tuning, narrow-linewidth, all polarization-maintiang fiber ring laser,” Proc. SPIE 6552, 65521C (2007).
[Crossref]

Z. Meng, G. Stewart, and G. Whitenett, “Stable single-mode operation of a narrow-linewidth, linearly polarized, erbium-fiber ring laser using a saturable absorber,” J. Lightwave Technol. 24(5), 2179–2183 (2006).
[Crossref]

Z. Meng, Y. Hu, S. Xiong, G. Stewart, G. Whitenett, and B. Culshaw, “Phase noise characteristics of a diode-pumped Nd:YAG laser in an unbalanced fiber-optic interferometer,” Appl. Opt. 44(17), 3425–3428 (2005).
[Crossref] [PubMed]

Mooradian, A.

D. Welford and A. Mooradian, “Output power and temperature dependence of the linewidth of single-frequency cw (GaAl)As diode lasers,” Appl. Opt. Lett. 40(10), 865–867 (1982).
[Crossref]

Mossberg, T. W.

Myatt, C. J.

Nikles, M.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Numata, K.

O’Gorman, J.

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, and G. Mazé, “Narrow linewidth, tunable Tm3+-doped fluoride fiber laser for optical-based hydrocarbon gas sensing,” IEEE J. Sel. Top. Quantum Electron. 3, 1103–1111 (2009).

Peng, J.

Penty, R. V.

J. Dong, Y. Q. Wei, A. Wonfor, R. V. Penty, I. H. White, J. Lousteau, G. Jose, and A. Jha, “Dual-pumped Tellirite fiber amplifier and tunable laser using Er3+/Ce3+ codoping scheme,” IEEE Photon. Technol. Lett. 23(11), 736–738 (2011).
[Crossref]

Peyghambarian, N.

Robert, P. A.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Schöne, W.

Shen, Q.

Smith, S. P.

Spiegelberg, C.

Stepanov, D. Y.

Stewart, G.

Sun, C.

Sun, Q.

X. Tu, Q. Sun, W. Chen, M. Chen, and Z. Meng, “Vector Brillouin optical time-domain analysis with heterodyne detection and IQ demodulation algorithm,” IEEE Photon. J. 6(2), 6800908 (2014).
[Crossref]

Thevenaz, L.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Tholey, V.

M. J. Chawki, I. Valiente, R. Auffret, and V. Tholey, “All fibre, 1.5 μm widely tunable single frequency and narrow linewidth semiconductor ring laser with fibre Fabry-Perot filter,” Electron. Lett. 29(23), 2034–2035 (1993).
[Crossref]

Toulouse, J.

Tu, X.

Tünnermann, A.

Tveten, A. B.

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18(10), 1647–1653 (1982).
[Crossref]

Valiente, I.

M. J. Chawki, I. Valiente, R. Auffret, and V. Tholey, “All fibre, 1.5 μm widely tunable single frequency and narrow linewidth semiconductor ring laser with fibre Fabry-Perot filter,” Electron. Lett. 29(23), 2034–2035 (1993).
[Crossref]

Wang, G.

Wang, J.

Wang, L.

Wang, T.

Wei, Y. Q.

J. Dong, Y. Q. Wei, A. Wonfor, R. V. Penty, I. H. White, J. Lousteau, G. Jose, and A. Jha, “Dual-pumped Tellirite fiber amplifier and tunable laser using Er3+/Ce3+ codoping scheme,” IEEE Photon. Technol. Lett. 23(11), 736–738 (2011).
[Crossref]

Welford, D.

D. Welford and A. Mooradian, “Output power and temperature dependence of the linewidth of single-frequency cw (GaAl)As diode lasers,” Appl. Opt. Lett. 40(10), 865–867 (1982).
[Crossref]

Welling, H.

White, I. H.

J. Dong, Y. Q. Wei, A. Wonfor, R. V. Penty, I. H. White, J. Lousteau, G. Jose, and A. Jha, “Dual-pumped Tellirite fiber amplifier and tunable laser using Er3+/Ce3+ codoping scheme,” IEEE Photon. Technol. Lett. 23(11), 736–738 (2011).
[Crossref]

Whitenett, G.

Wonfor, A.

J. Dong, Y. Q. Wei, A. Wonfor, R. V. Penty, I. H. White, J. Lousteau, G. Jose, and A. Jha, “Dual-pumped Tellirite fiber amplifier and tunable laser using Er3+/Ce3+ codoping scheme,” IEEE Photon. Technol. Lett. 23(11), 736–738 (2011).
[Crossref]

Wu, S. T.

Wu, Z.

Xiao, P.

Xiong, S.

Yang, W.

Z. Zang and W. Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys. 109(10), 103106 (2011).
[Crossref]

Yeniay, A.

Yi, L.

Zang, Z.

Z. Zang and Y. Zhang, “Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation,” Appl. Opt. 51(16), 3424–3430 (2012).
[Crossref] [PubMed]

Z. Zang and W. Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys. 109(10), 103106 (2011).
[Crossref]

Zarinetchi, F.

Zellmer, H.

Zhan, L.

Zhang, L.

Zhang, T.

Zhang, Y.

Zhou, H.

Appl. Opt. (3)

Appl. Opt. Lett. (1)

D. Welford and A. Mooradian, “Output power and temperature dependence of the linewidth of single-frequency cw (GaAl)As diode lasers,” Appl. Opt. Lett. 40(10), 865–867 (1982).
[Crossref]

Chin. Opt. Lett. (1)

Electron. Lett. (2)

E. C. Burrows and K.-Y. Liou, “High resolution laser LIDAR utilizing two-section distributed feedback semiconductor laser as a coherent source,” Electron. Lett. 26(9), 577–579 (1990).
[Crossref]

M. J. Chawki, I. Valiente, R. Auffret, and V. Tholey, “All fibre, 1.5 μm widely tunable single frequency and narrow linewidth semiconductor ring laser with fibre Fabry-Perot filter,” Electron. Lett. 29(23), 2034–2035 (1993).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18(10), 1647–1653 (1982).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, and G. Mazé, “Narrow linewidth, tunable Tm3+-doped fluoride fiber laser for optical-based hydrocarbon gas sensing,” IEEE J. Sel. Top. Quantum Electron. 3, 1103–1111 (2009).

IEEE Photon. J. (1)

X. Tu, Q. Sun, W. Chen, M. Chen, and Z. Meng, “Vector Brillouin optical time-domain analysis with heterodyne detection and IQ demodulation algorithm,” IEEE Photon. J. 6(2), 6800908 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. Dong, Y. Q. Wei, A. Wonfor, R. V. Penty, I. H. White, J. Lousteau, G. Jose, and A. Jha, “Dual-pumped Tellirite fiber amplifier and tunable laser using Er3+/Ce3+ codoping scheme,” IEEE Photon. Technol. Lett. 23(11), 736–738 (2011).
[Crossref]

J. Appl. Phys. (1)

Z. Zang and W. Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys. 109(10), 103106 (2011).
[Crossref]

J. Lightwave Technol. (6)

Opt. Express (2)

Opt. Lett. (10)

K. C. Harvey and C. J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating,” Opt. Lett. 16(12), 910–912 (1991).
[Crossref] [PubMed]

I. Freitag, D. Golla, S. Knoke, W. Schöne, H. Zellmer, A. Tünnermann, and H. Welling, “Amplitude and frequency stability of a diode-pumped Nd:YAG laser operating at a single-frequency continuous-wave output power of 20 W,” Opt. Lett. 20(5), 462–464 (1995).
[Crossref] [PubMed]

S. P. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Opt. Lett. 16(6), 393–395 (1991).
[Crossref] [PubMed]

Z. Wu, L. Zhan, Q. Shen, J. Liu, X. Hu, and P. Xiao, “Ultrafine optical-frequency tunable Brillouin fiber laser based on fiber strain,” Opt. Lett. 36(19), 3837–3839 (2011).
[Crossref] [PubMed]

G. Wang, L. Zhan, J. Liu, T. Zhang, J. Li, L. Zhang, J. Peng, and L. Yi, “Watt-level ultrahigh-optical signal-to-noise ratio single-longitudinal-mode tunable Brillouin fiber laser,” Opt. Lett. 38(1), 19–21 (2013).
[Crossref] [PubMed]

G. J. Cowle and D. Y. Stepanov, “Hybrid Brillouin/erbium fiber laser,” Opt. Lett. 21(16), 1250–1252 (1996).
[Crossref] [PubMed]

B. Boggs, C. Greiner, T. Wang, H. Lin, and T. W. Mossberg, “Simple high-coherence rapidly tunable external-cavity diode laser,” Opt. Lett. 23(24), 1906–1908 (1998).
[Crossref] [PubMed]

M. Chen, Z. Meng, X. Tu, and H. Zhou, “Low-noise, single-frequency, single-polarization Brillouin/erbium fiber laser,” Opt. Lett. 38(12), 2041–2043 (2013).
[Crossref] [PubMed]

M. Chen, Z. Meng, X. Tu, and Y. Zhang, “Fast-tuning, low-noise, compact Brillouin/erbium fiber laser,” Opt. Lett. 39(3), 689–692 (2014).
[Crossref] [PubMed]

V. I. Kovalev and R. G. Harrison, “Waveguide-induced inhomogeneous spectral broadening of stimulated Brillouin scattering in optical fiber,” Opt. Lett. 27(22), 2022–2024 (2002).
[Crossref] [PubMed]

Proc. SPIE (1)

Z. Meng, Z. Hu, Y. Hu, S. Xiong, and C. Cao, “Fast-tuning, narrow-linewidth, all polarization-maintiang fiber ring laser,” Proc. SPIE 6552, 65521C (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Configuration of the fast-tuning BEFL: DFB-LD, distributed feedback laser diode; WDM, wavelength-division multiplexer; EDF, erbium-doped fiber; PZT, piezoelectric transducer; TOF, tunable optical filter.
Fig. 2
Fig. 2 Brillouin gain spectra of the EDF without (the black solid line) and with ± 3.5 V driving voltages (the red and blue dashed line) on the PZT.
Fig. 3
Fig. 3 Experimental setup to measure the characteristics of the fast-tuning BEFL: DFB-LD, distributed feedback laser diode; TOF, tunable optical filter; FRM, Faraday rotating mirror; A/D, analog-to-digital convertor; PC, personal computer.
Fig. 4
Fig. 4 Fast tuning response of the BEFL as a function of the modulation frequency with a sinusoidal input of ±1 V.
Fig. 5
Fig. 5 Frequency modulating amplitude of the BEFL against the sinusoidal voltage amplitude at 12.5 kHz (〇), 32 kHz (□), and 48 kHz (◇) modulation frequencies on the PZT. The dashed line is the simulation result.
Fig. 6
Fig. 6 RINs of the BEFL without modulation (the red solid line) and with 32 kHz modulation and 2.8 V voltage amplitude on the PZT (the blue dashed line).
Fig. 7
Fig. 7 Phase noises of the BEFL without modulation (the red line) and with 32 kHz modulation and 2.8 V voltage amplitude on the PZT (the blue line), measured by the Michelson interferometer of 5 m OPD.
Fig. 8
Fig. 8 Fast-tuning stability of the BEFL (a), an EDFL (b), and a laser diode (c).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f=m c nL
m c n( L 0 +ΔLcosωt) =m c n L 0 +Δfcosωt
| Δf |= | ΔL | L f 0 | ΔL | L 0 f 0
| Δf |= f 0 L 0 k L W | u |

Metrics