Abstract

In this contribution, we report on the experimental investigation of an ultra-dense wavelength-division multiplexing (UDWDM) upstream link with up to 700 × 2.488 Gb/s polarization-division multiplexing differential quadrature phase-shift keying parallel upstream user channels transmitted over 80 km of standard single-mode fiber. We discuss challenges of the digital signal processing in the optical line terminal arising from the joint reception of several upstream user channels. We present solutions for resource and cost-efficient realization of the required channel separation, matched filtering, down-conversion and decimation as well as realization of the clock recovery and polarization demultiplexing for each individual channel.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Real-Time Coherent UDWDM-PON With Dual-Polarization Transceivers in a Field Trial

Ming Luo, Jie Li, Tao Zeng, Lingheng Meng, Lei Xue, Lilin Yi, and Xiang Li
J. Opt. Commun. Netw. 11(2) A166-A173 (2019)

UDWDM-PON Using Low-Cost Coherent Transceivers With Limited Tunability and Heuristic DWA

Vicent Sales, Josep Segarra, Víctor Polo, J. Camilo Velásquez, and Josep Prat
J. Opt. Commun. Netw. 8(8) 582-599 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. Rohde, S. Smolorz, and K. Kloppe, “Next generation optical access: 1 Gbit/s for everyone,” Proc. Eur. Conf. Opt. Commun. (ECOC), (Vienna, Austria, 2009), paper 10.5.5.
  2. E. Gottwald, H. Rohde, and S. Smolorz, “Machbarkeit kohärenter Einfaser-UDWM PONs mit 1000 Teilnehmern und 100 km Reichweite,” Proc. ITG Fachtagung Photonische Netze, (Leipzig, Germany, 2010), paper 12.
  3. S. Smolorz, H. Rohde, E. Gottwald, D. W. Smith, and A. Poustie, “Demonstration of a coherent UDWDM-PON with real-time processing,” Proc. Opt. Fiber Commun. Conf. (OFC), (Los Angeles, USA, 2011), paper PDPD4.
    [Crossref]
  4. D. Lavery, R. Maher, D. S. Millar, B. C. Thomsen, P. Bayvel, and S. J. Savory, “Digital coherent receivers for long-reach optical access networks,” J. Lightwave Technol. 31(4), 609–620 (2013).
    [Crossref]
  5. H. Rohde, E. Gottwald, P. Alves, C. Oliveira, I. Dedic, and T. Drenski, “Digital multi-wavelength generation and real time video transmission in a coherent ultra dense WDM PON,” Proc. Opt. Fiber Commun. Conf. (OFC), (Anaheim, USA, 2013), paper OM3H.3.
    [Crossref]
  6. H. Wang, Y. Lu, and X. Wang, “Channelized receiver with WOLA filterbank,” Proc. Int. Conf. Radar, (Shanghai, China, 2006), paper B5_04.
  7. J. K. Fischer, R. Elschner, F. Frey, J. Hilt, C. Kottke, C. Schubert, Z. Wu, D. Schmidt, and B. Lankl, “Digital signal processing for coherent UDWDM passive optical networks,“ Proc. 15. ITG Fachtagung Photonische Netze, (Leipzig, Germany, 2014).
  8. C. Farrow, “A continuously variable digital delay element,” Proc. IEEE Int. Symp. Circuits and Systems3, 2641–2645 (1988).
  9. S. J. Lee and Seung Joon Lee, “A new non-data-aided feedforward symbol timing estimator using two samples per symbol,” IEEE Commun. Lett. 6(5), 205–207 (2002).
    [Crossref]
  10. D. Schmidt, B. Lankl, J. K. Fischer, J. Hilt, and C. Schubert, “Real-time implementation of a parallelized feedforward timing recovery scheme for receivers in optical access networks,“ Proc. Eur. Conf. Opt. Commun. (ECOC), (Genf, Switzerland, 2012), paper Mo.1.A.1.
    [Crossref]
  11. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
    [Crossref] [PubMed]
  12. A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
    [Crossref]
  13. R. Seidel, A. Theurer, C. Zawadzki, Z. Zhang, N. Keil, A. Matiss, and A. G. Steffan, “Polymer based coherent receiver for next generation optical access network,” Proc. ITG Fachtagung Photonische Netze, (Leipzig, Germany, 2012), paper P2.
  14. A. Theurer, R. Seidel, R. Ziegler, C. Zawadzki, Z. Zhang, N. Keil, A. Matiss, and A. G. Steffan, “Polymer based hybrid integrated coherent receiver for next generation optical access networks,“ Proc. Asia Commun. Photonics Conf. (ACP), (Guangzhou, China, 2013), paper ASB.4.
  15. D. Cardenas, D. Madan, S. Win, D. Lavery, and S. Savory, “Fixed point and power consumption analysis of a coherent receiver for optical access networks implemented in FPGA,” Proc. Eur. Conf. Opt. Commun. (ECOC), (London, United Kingdom, 2013), paper Mo.3.C.4.
    [Crossref]

2013 (1)

2008 (1)

2002 (1)

S. J. Lee and Seung Joon Lee, “A new non-data-aided feedforward symbol timing estimator using two samples per symbol,” IEEE Commun. Lett. 6(5), 205–207 (2002).
[Crossref]

1983 (1)

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

Bayvel, P.

Farrow, C.

C. Farrow, “A continuously variable digital delay element,” Proc. IEEE Int. Symp. Circuits and Systems3, 2641–2645 (1988).

Keil, N.

R. Seidel, A. Theurer, C. Zawadzki, Z. Zhang, N. Keil, A. Matiss, and A. G. Steffan, “Polymer based coherent receiver for next generation optical access network,” Proc. ITG Fachtagung Photonische Netze, (Leipzig, Germany, 2012), paper P2.

Lavery, D.

Lee, S. J.

S. J. Lee and Seung Joon Lee, “A new non-data-aided feedforward symbol timing estimator using two samples per symbol,” IEEE Commun. Lett. 6(5), 205–207 (2002).
[Crossref]

Maher, R.

Matiss, A.

R. Seidel, A. Theurer, C. Zawadzki, Z. Zhang, N. Keil, A. Matiss, and A. G. Steffan, “Polymer based coherent receiver for next generation optical access network,” Proc. ITG Fachtagung Photonische Netze, (Leipzig, Germany, 2012), paper P2.

Millar, D. S.

Savory, S. J.

Seidel, R.

R. Seidel, A. Theurer, C. Zawadzki, Z. Zhang, N. Keil, A. Matiss, and A. G. Steffan, “Polymer based coherent receiver for next generation optical access network,” Proc. ITG Fachtagung Photonische Netze, (Leipzig, Germany, 2012), paper P2.

Steffan, A. G.

R. Seidel, A. Theurer, C. Zawadzki, Z. Zhang, N. Keil, A. Matiss, and A. G. Steffan, “Polymer based coherent receiver for next generation optical access network,” Proc. ITG Fachtagung Photonische Netze, (Leipzig, Germany, 2012), paper P2.

Theurer, A.

R. Seidel, A. Theurer, C. Zawadzki, Z. Zhang, N. Keil, A. Matiss, and A. G. Steffan, “Polymer based coherent receiver for next generation optical access network,” Proc. ITG Fachtagung Photonische Netze, (Leipzig, Germany, 2012), paper P2.

Thomsen, B. C.

Viterbi, A. J.

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

Viterbi, A. M.

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

Zawadzki, C.

R. Seidel, A. Theurer, C. Zawadzki, Z. Zhang, N. Keil, A. Matiss, and A. G. Steffan, “Polymer based coherent receiver for next generation optical access network,” Proc. ITG Fachtagung Photonische Netze, (Leipzig, Germany, 2012), paper P2.

Zhang, Z.

R. Seidel, A. Theurer, C. Zawadzki, Z. Zhang, N. Keil, A. Matiss, and A. G. Steffan, “Polymer based coherent receiver for next generation optical access network,” Proc. ITG Fachtagung Photonische Netze, (Leipzig, Germany, 2012), paper P2.

IEEE Commun. Lett. (1)

S. J. Lee and Seung Joon Lee, “A new non-data-aided feedforward symbol timing estimator using two samples per symbol,” IEEE Commun. Lett. 6(5), 205–207 (2002).
[Crossref]

IEEE Trans. Inf. Theory (1)

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (1)

Other (11)

R. Seidel, A. Theurer, C. Zawadzki, Z. Zhang, N. Keil, A. Matiss, and A. G. Steffan, “Polymer based coherent receiver for next generation optical access network,” Proc. ITG Fachtagung Photonische Netze, (Leipzig, Germany, 2012), paper P2.

A. Theurer, R. Seidel, R. Ziegler, C. Zawadzki, Z. Zhang, N. Keil, A. Matiss, and A. G. Steffan, “Polymer based hybrid integrated coherent receiver for next generation optical access networks,“ Proc. Asia Commun. Photonics Conf. (ACP), (Guangzhou, China, 2013), paper ASB.4.

D. Cardenas, D. Madan, S. Win, D. Lavery, and S. Savory, “Fixed point and power consumption analysis of a coherent receiver for optical access networks implemented in FPGA,” Proc. Eur. Conf. Opt. Commun. (ECOC), (London, United Kingdom, 2013), paper Mo.3.C.4.
[Crossref]

H. Rohde, E. Gottwald, P. Alves, C. Oliveira, I. Dedic, and T. Drenski, “Digital multi-wavelength generation and real time video transmission in a coherent ultra dense WDM PON,” Proc. Opt. Fiber Commun. Conf. (OFC), (Anaheim, USA, 2013), paper OM3H.3.
[Crossref]

H. Wang, Y. Lu, and X. Wang, “Channelized receiver with WOLA filterbank,” Proc. Int. Conf. Radar, (Shanghai, China, 2006), paper B5_04.

J. K. Fischer, R. Elschner, F. Frey, J. Hilt, C. Kottke, C. Schubert, Z. Wu, D. Schmidt, and B. Lankl, “Digital signal processing for coherent UDWDM passive optical networks,“ Proc. 15. ITG Fachtagung Photonische Netze, (Leipzig, Germany, 2014).

C. Farrow, “A continuously variable digital delay element,” Proc. IEEE Int. Symp. Circuits and Systems3, 2641–2645 (1988).

D. Schmidt, B. Lankl, J. K. Fischer, J. Hilt, and C. Schubert, “Real-time implementation of a parallelized feedforward timing recovery scheme for receivers in optical access networks,“ Proc. Eur. Conf. Opt. Commun. (ECOC), (Genf, Switzerland, 2012), paper Mo.1.A.1.
[Crossref]

H. Rohde, S. Smolorz, and K. Kloppe, “Next generation optical access: 1 Gbit/s for everyone,” Proc. Eur. Conf. Opt. Commun. (ECOC), (Vienna, Austria, 2009), paper 10.5.5.

E. Gottwald, H. Rohde, and S. Smolorz, “Machbarkeit kohärenter Einfaser-UDWM PONs mit 1000 Teilnehmern und 100 km Reichweite,” Proc. ITG Fachtagung Photonische Netze, (Leipzig, Germany, 2010), paper 12.

S. Smolorz, H. Rohde, E. Gottwald, D. W. Smith, and A. Poustie, “Demonstration of a coherent UDWDM-PON with real-time processing,” Proc. Opt. Fiber Commun. Conf. (OFC), (Los Angeles, USA, 2011), paper PDPD4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 UDWDM PON architecture. Each OLT line card transmits a multicarrier (MC) signal consisting of several UDWDM downstream channels. Each ONU tunes its local oscillator frequency fLO to receive the assigned UDWDM downstream channel and simultaneously transmit the upstream signal at carrier frequency fLO.
Fig. 2
Fig. 2 Block diagram of (a) OLT line card, (b) optical modulator and (c) heterodyne receiver (AWG: arrayed waveguide grating, PBS: polarization beam splitter, TIA: transimpedance amplifier).
Fig. 3
Fig. 3 Block diagram of the digital signal processing at the OLT.
Fig. 4
Fig. 4 Adaptive 2 × 2 MIMO time-domain equalizer for polarization demultiplexing.
Fig. 5
Fig. 5 Impact of frequency offset on BER for decision-directed carrier frequency recovery.
Fig. 6
Fig. 6 Experimental setup of the UDWDM upstream link. The insets show the block diagrams of (a) the integrated heterodyne frontend and (b) the two different types of employed ADCs.
Fig. 7
Fig. 7 (a-c) Transmitted optical spectrum containing 10 UDWDM channels (top), received electrical spectrum after ADC (bottom) and the respective back-to-back BER (averaged over the ten received UDWDM channels) as a function of total received power for the three available receiver modules. Error bars indicate BER of the best and worst channel.
Fig. 8
Fig. 8 (a) Average BER of a single OTG (10 UDWDM channels) versus the number of UDWDM channels present at the receiver. (b) Average BER of a single OTG versus fiber input power for different numbers of UDWDM channels. (c), (d) Measured optical spectrum with 5 and 50 OTGs, respectively.
Fig. 9
Fig. 9 Average BER of a single OTG versus the total number of UDWDM upstream channels transmitted over the fiber for various input powers into the SSMF.
Fig. 10
Fig. 10 (a) Measured BER (averaged over received UDWDM channels) versus total received optical power for 9 × 2.488 Gb/s PDM-DQPSK upstream channels. and (b) influence of clock frequency offset between transmitter and receiver clocks.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

y k,p (m)= n= h(mM n) x p (n) W K kn ,
s k ( n ) = [ s k , 1 ( n ) s k , 2 ( n ) ] = T k ( n ) [ d k , 1 ( n ) d k , 2 ( n ) ] ,
d ˜ k , p = d ^ k , p ( n ) exp ( j 2 π f k , p n T s y m ) ,
Δ f ^ k,p = Δ φ ˜ k,p Δ ψ k,p 2π T sym = Δ ϕ ^ k,p 2π T sym ,

Metrics