Abstract

Time-reversal (TR) phase prints are first used in far-field (FF) detection of sub-wavelength (SW) deformable scatterers without any extra metal structure positioned in the vicinity of the target. The 2D prints derive from discrete short-time Fourier transform of 1D TR electromagnetic (EM) signals. Because the time-invariant intensive background interference is effectively centralized by TR technique, the time-variant weak indication from FF SW scatterers can be highlighted. This method shows a different use of TR technique in which the focus peak of TR EM waves is unusually removed and the most useful information is conveyed by the other part.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polycentric spatial focus of time-reversal electromagnetic field in rectangular conductor cavity

Yingming Chen and Bing-Zhong Wang
Opt. Express 21(22) 26657-26662 (2013)

Advanced terahertz electric near-field measurements at sub-wavelength diameter metallic apertures

A. J. L. Adam, J. M. Brok, M. A. Seo, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. Nagel, and P. C. M. Planken
Opt. Express 16(10) 7407-7417 (2008)

References

  • View by:
  • |
  • |
  • |

  1. X. Li and M. I. Stockman, “Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer-femtosecond scale by time reversal,” Phys. Rev. B 77(19), 195109 (2008).
    [Crossref]
  2. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
    [Crossref] [PubMed]
  3. J. B. Pendry, “Perfect cylindrical lenses,” Opt. Express 11(7), 755–760 (2003).
    [Crossref] [PubMed]
  4. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
    [Crossref] [PubMed]
  5. A. Ono, J. I. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95(26), 267407 (2005).
    [Crossref] [PubMed]
  6. G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, “guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays,” Phys. Rev. Lett. 99(5), 053903 (2007).
    [Crossref] [PubMed]
  7. G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
    [Crossref] [PubMed]
  8. G.-D. Ge, B.-Z. Wang, D. Wang, D. Zhao, and S. Ding, “Subwavelength array of planar monopoles with complementary split rings based on far-field time reversal,” IEEE Trans. Antenn. Propag. 59(11), 4345–4350 (2011).
    [Crossref]
  9. H. Yi, J. Long, H. Li, X. He, and T. Yang, “Sub-wavelength full-vectorial profiling of optical focus,” Frontiers in Optics/Laser Science (2013), FW4F.3.
  10. F. I. Baida, “Spatiotemporal sub-wavelength near-field light localization,” Opt. Express 18(14), 14812–14819 (2010).
    [Crossref] [PubMed]
  11. Y. Chen and B.-Z. Wang, “Four-domain dual-combination operation invariance and time reversal symmetry of electromagnetic fields,” Opt. Express 21(21), 24702–24710 (2013).
    [Crossref] [PubMed]
  12. P. Sundaralingam, V. Fusco, D. Zelenchuk, and R. Appleby, “Detection of an object in a reverberant environment using direct and differential time reversal,” 6th European Conference on Antennas and Propagation (2012), pp. 1115–1117.
    [Crossref]
  13. N. Guo, B. M. Sadler, and R. C. Qiu, “Reduced-complexity UWB time-reversal techniques and experimental results,” IEEE Trans. Wirel. Comm. 6(12), 4221–4226 (2007).
    [Crossref]
  14. B. Wu, W. Cai, M. Alrubaiee, M. Xu, and S. K. Gayen, “Time reversal optical tomography: locating targets in a highly scattering turbid medium,” Opt. Express 19(22), 21956–21976 (2011).
    [Crossref] [PubMed]
  15. A. Khaleghi, G. El Zein, and I. H. Naqvi, “Demonstration of time-reversal in indoor ultra-wideband communication: time domain measurement,” IEEE ISWCS (2007), pp. 465–468.
  16. Y. W. Jin and J. M. F. Moura, “Time-reversal detection using antenna arrays,” IEEE Trans. Signal Process. 57(4), 1396–1414 (2009).
    [Crossref]
  17. S. Yu, J. Zhang, M. S. Moran, J. Q. Lu, Y. Feng, and X.-H. Hu, “A novel method of diffraction imaging flow cytometry for sizing microspheres,” Opt. Express 20(20), 22245–22251 (2012).
    [Crossref] [PubMed]
  18. Z. Xu, L. Carrion, and R. Maciejko, “An assessment of the Wigner distribution method in Doppler OCT,” Opt. Express 15(22), 14738–14749 (2007).
    [Crossref] [PubMed]
  19. T.-H. Sang, “The self-duality of discrete short-time Fourier transform and its applications,” IEEE Trans. Signal Process. 58(2), 604–612 (2010).
    [Crossref]
  20. Y. Chen and B.-Z. Wang, “Polycentric spatial focus of time-reversal electromagnetic field in rectangular conductor cavity,” Opt. Express 21(22), 26657–26662 (2013).
    [Crossref] [PubMed]
  21. www.cst.com .
  22. J. Goldstein and J. L. Burch, “Magnetospheric model of subauroral polarization stream,” J. Geophys. Res. 110(A9), A09222 (2005).
    [Crossref]
  23. J. C. Foster, P. J. Erickson, A. J. Coster, J. Goldstein, and F. J. Rich, “Ionospheric signatures of plasmaspleric tails,” Geophys. Res. Lett. 29(13), 1623 (2002).
    [Crossref]

2013 (2)

2012 (1)

2011 (2)

B. Wu, W. Cai, M. Alrubaiee, M. Xu, and S. K. Gayen, “Time reversal optical tomography: locating targets in a highly scattering turbid medium,” Opt. Express 19(22), 21956–21976 (2011).
[Crossref] [PubMed]

G.-D. Ge, B.-Z. Wang, D. Wang, D. Zhao, and S. Ding, “Subwavelength array of planar monopoles with complementary split rings based on far-field time reversal,” IEEE Trans. Antenn. Propag. 59(11), 4345–4350 (2011).
[Crossref]

2010 (2)

F. I. Baida, “Spatiotemporal sub-wavelength near-field light localization,” Opt. Express 18(14), 14812–14819 (2010).
[Crossref] [PubMed]

T.-H. Sang, “The self-duality of discrete short-time Fourier transform and its applications,” IEEE Trans. Signal Process. 58(2), 604–612 (2010).
[Crossref]

2009 (1)

Y. W. Jin and J. M. F. Moura, “Time-reversal detection using antenna arrays,” IEEE Trans. Signal Process. 57(4), 1396–1414 (2009).
[Crossref]

2008 (1)

X. Li and M. I. Stockman, “Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer-femtosecond scale by time reversal,” Phys. Rev. B 77(19), 195109 (2008).
[Crossref]

2007 (5)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, “guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays,” Phys. Rev. Lett. 99(5), 053903 (2007).
[Crossref] [PubMed]

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[Crossref] [PubMed]

N. Guo, B. M. Sadler, and R. C. Qiu, “Reduced-complexity UWB time-reversal techniques and experimental results,” IEEE Trans. Wirel. Comm. 6(12), 4221–4226 (2007).
[Crossref]

Z. Xu, L. Carrion, and R. Maciejko, “An assessment of the Wigner distribution method in Doppler OCT,” Opt. Express 15(22), 14738–14749 (2007).
[Crossref] [PubMed]

2005 (2)

J. Goldstein and J. L. Burch, “Magnetospheric model of subauroral polarization stream,” J. Geophys. Res. 110(A9), A09222 (2005).
[Crossref]

A. Ono, J. I. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95(26), 267407 (2005).
[Crossref] [PubMed]

2004 (1)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[Crossref] [PubMed]

2003 (1)

2002 (1)

J. C. Foster, P. J. Erickson, A. J. Coster, J. Goldstein, and F. J. Rich, “Ionospheric signatures of plasmaspleric tails,” Geophys. Res. Lett. 29(13), 1623 (2002).
[Crossref]

Alrubaiee, M.

Baida, F. I.

Burch, J. L.

J. Goldstein and J. L. Burch, “Magnetospheric model of subauroral polarization stream,” J. Geophys. Res. 110(A9), A09222 (2005).
[Crossref]

Cai, W.

Carrion, L.

Chen, Y.

Coster, A. J.

J. C. Foster, P. J. Erickson, A. J. Coster, J. Goldstein, and F. J. Rich, “Ionospheric signatures of plasmaspleric tails,” Geophys. Res. Lett. 29(13), 1623 (2002).
[Crossref]

de Rosny, J.

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[Crossref] [PubMed]

Ding, S.

G.-D. Ge, B.-Z. Wang, D. Wang, D. Zhao, and S. Ding, “Subwavelength array of planar monopoles with complementary split rings based on far-field time reversal,” IEEE Trans. Antenn. Propag. 59(11), 4345–4350 (2011).
[Crossref]

Erickson, P. J.

J. C. Foster, P. J. Erickson, A. J. Coster, J. Goldstein, and F. J. Rich, “Ionospheric signatures of plasmaspleric tails,” Geophys. Res. Lett. 29(13), 1623 (2002).
[Crossref]

Feng, Y.

Fink, M.

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[Crossref] [PubMed]

Foster, J. C.

J. C. Foster, P. J. Erickson, A. J. Coster, J. Goldstein, and F. J. Rich, “Ionospheric signatures of plasmaspleric tails,” Geophys. Res. Lett. 29(13), 1623 (2002).
[Crossref]

Gayen, S. K.

Ge, G.-D.

G.-D. Ge, B.-Z. Wang, D. Wang, D. Zhao, and S. Ding, “Subwavelength array of planar monopoles with complementary split rings based on far-field time reversal,” IEEE Trans. Antenn. Propag. 59(11), 4345–4350 (2011).
[Crossref]

Goldstein, J.

J. Goldstein and J. L. Burch, “Magnetospheric model of subauroral polarization stream,” J. Geophys. Res. 110(A9), A09222 (2005).
[Crossref]

J. C. Foster, P. J. Erickson, A. J. Coster, J. Goldstein, and F. J. Rich, “Ionospheric signatures of plasmaspleric tails,” Geophys. Res. Lett. 29(13), 1623 (2002).
[Crossref]

Guo, N.

N. Guo, B. M. Sadler, and R. C. Qiu, “Reduced-complexity UWB time-reversal techniques and experimental results,” IEEE Trans. Wirel. Comm. 6(12), 4221–4226 (2007).
[Crossref]

Hu, X.-H.

Jin, Y. W.

Y. W. Jin and J. M. F. Moura, “Time-reversal detection using antenna arrays,” IEEE Trans. Signal Process. 57(4), 1396–1414 (2009).
[Crossref]

Kato, J. I.

A. Ono, J. I. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95(26), 267407 (2005).
[Crossref] [PubMed]

Kawata, S.

A. Ono, J. I. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95(26), 267407 (2005).
[Crossref] [PubMed]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Lerosey, G.

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[Crossref] [PubMed]

Li, X.

X. Li and M. I. Stockman, “Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer-femtosecond scale by time reversal,” Phys. Rev. B 77(19), 195109 (2008).
[Crossref]

Liu, Z.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Lu, J. Q.

Maciejko, R.

Moran, M. S.

Moura, J. M. F.

Y. W. Jin and J. M. F. Moura, “Time-reversal detection using antenna arrays,” IEEE Trans. Signal Process. 57(4), 1396–1414 (2009).
[Crossref]

Ono, A.

A. Ono, J. I. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95(26), 267407 (2005).
[Crossref] [PubMed]

Pendry, J. B.

G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, “guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays,” Phys. Rev. Lett. 99(5), 053903 (2007).
[Crossref] [PubMed]

J. B. Pendry, “Perfect cylindrical lenses,” Opt. Express 11(7), 755–760 (2003).
[Crossref] [PubMed]

Qiu, R. C.

N. Guo, B. M. Sadler, and R. C. Qiu, “Reduced-complexity UWB time-reversal techniques and experimental results,” IEEE Trans. Wirel. Comm. 6(12), 4221–4226 (2007).
[Crossref]

Rich, F. J.

J. C. Foster, P. J. Erickson, A. J. Coster, J. Goldstein, and F. J. Rich, “Ionospheric signatures of plasmaspleric tails,” Geophys. Res. Lett. 29(13), 1623 (2002).
[Crossref]

Sadler, B. M.

N. Guo, B. M. Sadler, and R. C. Qiu, “Reduced-complexity UWB time-reversal techniques and experimental results,” IEEE Trans. Wirel. Comm. 6(12), 4221–4226 (2007).
[Crossref]

Sang, T.-H.

T.-H. Sang, “The self-duality of discrete short-time Fourier transform and its applications,” IEEE Trans. Signal Process. 58(2), 604–612 (2010).
[Crossref]

Sarychev, A.

G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, “guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays,” Phys. Rev. Lett. 99(5), 053903 (2007).
[Crossref] [PubMed]

Shvets, G.

G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, “guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays,” Phys. Rev. Lett. 99(5), 053903 (2007).
[Crossref] [PubMed]

Stockman, M. I.

X. Li and M. I. Stockman, “Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer-femtosecond scale by time reversal,” Phys. Rev. B 77(19), 195109 (2008).
[Crossref]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[Crossref] [PubMed]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Tourin, A.

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[Crossref] [PubMed]

Trendafilov, S.

G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, “guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays,” Phys. Rev. Lett. 99(5), 053903 (2007).
[Crossref] [PubMed]

Wang, B.-Z.

Wang, D.

G.-D. Ge, B.-Z. Wang, D. Wang, D. Zhao, and S. Ding, “Subwavelength array of planar monopoles with complementary split rings based on far-field time reversal,” IEEE Trans. Antenn. Propag. 59(11), 4345–4350 (2011).
[Crossref]

Wu, B.

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Xu, M.

Xu, Z.

Yu, S.

Zhang, J.

Zhang, X.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Zhao, D.

G.-D. Ge, B.-Z. Wang, D. Wang, D. Zhao, and S. Ding, “Subwavelength array of planar monopoles with complementary split rings based on far-field time reversal,” IEEE Trans. Antenn. Propag. 59(11), 4345–4350 (2011).
[Crossref]

Geophys. Res. Lett. (1)

J. C. Foster, P. J. Erickson, A. J. Coster, J. Goldstein, and F. J. Rich, “Ionospheric signatures of plasmaspleric tails,” Geophys. Res. Lett. 29(13), 1623 (2002).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

G.-D. Ge, B.-Z. Wang, D. Wang, D. Zhao, and S. Ding, “Subwavelength array of planar monopoles with complementary split rings based on far-field time reversal,” IEEE Trans. Antenn. Propag. 59(11), 4345–4350 (2011).
[Crossref]

IEEE Trans. Signal Process. (2)

Y. W. Jin and J. M. F. Moura, “Time-reversal detection using antenna arrays,” IEEE Trans. Signal Process. 57(4), 1396–1414 (2009).
[Crossref]

T.-H. Sang, “The self-duality of discrete short-time Fourier transform and its applications,” IEEE Trans. Signal Process. 58(2), 604–612 (2010).
[Crossref]

IEEE Trans. Wirel. Comm. (1)

N. Guo, B. M. Sadler, and R. C. Qiu, “Reduced-complexity UWB time-reversal techniques and experimental results,” IEEE Trans. Wirel. Comm. 6(12), 4221–4226 (2007).
[Crossref]

J. Geophys. Res. (1)

J. Goldstein and J. L. Burch, “Magnetospheric model of subauroral polarization stream,” J. Geophys. Res. 110(A9), A09222 (2005).
[Crossref]

Opt. Express (7)

Phys. Rev. B (1)

X. Li and M. I. Stockman, “Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer-femtosecond scale by time reversal,” Phys. Rev. B 77(19), 195109 (2008).
[Crossref]

Phys. Rev. Lett. (3)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[Crossref] [PubMed]

A. Ono, J. I. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95(26), 267407 (2005).
[Crossref] [PubMed]

G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, “guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays,” Phys. Rev. Lett. 99(5), 053903 (2007).
[Crossref] [PubMed]

Science (2)

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Other (4)

H. Yi, J. Long, H. Li, X. He, and T. Yang, “Sub-wavelength full-vectorial profiling of optical focus,” Frontiers in Optics/Laser Science (2013), FW4F.3.

www.cst.com .

P. Sundaralingam, V. Fusco, D. Zelenchuk, and R. Appleby, “Detection of an object in a reverberant environment using direct and differential time reversal,” 6th European Conference on Antennas and Propagation (2012), pp. 1115–1117.
[Crossref]

A. Khaleghi, G. El Zein, and I. H. Naqvi, “Demonstration of time-reversal in indoor ultra-wideband communication: time domain measurement,” IEEE ISWCS (2007), pp. 465–468.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1 Far-field detection of sub-wavelength (SW) deformable blocks based on time-reversal process in cubic resonant cavity must deal with two challenges. The transmitter location is r T :( 12.9,11.3,4.7 )cm and the receiver location is r R :( 9.9,12.1,13 )cm . The signal bandwidth is 2~3 GHz . Tetris has 5 basic figurations and every figuration contains 4 cubic cells. The cell side length a is 3mm and the cavity side length L is 60cm .
Fig. 2
Fig. 2 The far-field time-reversal (TR) phase prints (PP) database of the 5 blocks of sub-wavelength Tetris calculated by discrete short-time Fourier transform. (a) is the TR PP of Block 1, (b) is the one of Block 2, (c) is the one of Block 3, (d) is the one of Block 4, (e) is the one of Block 5, and each block can be uniquely characterized by its TR PP.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

h i ( t )= h 0 ( t )+ T i ( t )
F[ T i ( t ) ] = T i ( ω ) h 0 ( ω ) = F[ h 0 ( t ) ]
Arg{ F[ h i ( t ) ] }Arg{ F[ h 0 ( t ) ] }0
Arg{ F[ s( t ) h 0 ( t ) h i ( t )s( t ) h 0 ( t ) h 0 ( t ) ] }=Arg{ F[ s( t ) h 0 ( t ) T i ( t ) ] } =Arg[ s ( ω ) h 0 ( ω ) T i ( ω ) ]=Arg[ s( ω ) ]Arg[ h 0 ( ω ) ]+Arg[ T i ( ω ) ]
E i TR ( t,ω )= + [ s( τ ) h 0 ( τ ) h i ( τ )s( τ ) h 0 ( τ ) h 0 ( τ ) ]W( τt ) e jωτ dτ
E i TR ( t,ω ) + [ s( τ ) h 0 ( τ ) h i ( τ ) ]R( τ )W( τt ) e jωτ dτ R( τ )={ 0 τ( 0.5,0.5 )ns 1 τ( ,0.5 ]ns[ 0.5,+ )ns
Arg{ F[ h i ( t ) h 0 ( t+Δt ) ] }Arg{ F[ T i ( t ) ] } =Arg{ h i ( ω ) h 0 ( ω ) e jϕ }Arg{ T i ( ω ) } Arg{ T i ( ω )jϕ h 0 ( ω ) }Arg{ T i ( ω ) }
Arg{ F[ h 0 ( tΔt ) T i ( t ) ] }Arg{ F[ h 0 ( t ) T i ( t ) ] } =Arg{ h 0 ( ω ) e jϕ }Arg{ h 0 ( ω ) }=ϕ=ωΔt

Metrics