Abstract

Speckle noise is an important issue in electro-holographic displays. We propose a new method for suppressing speckle noise in a computer-generated hologram (CGH) for 3D display. In our previous research, we proposed a method for CGH calculation using ray-sampling plane (RS-plane), which enables the application of advanced ray-based rendering techniques to the calculation of hologram that can reconstruct a deep 3D scene in high resolution. Conventional techniques for effective speckle suppression, which utilizes the time-multiplexing of sparse object points, can suppress the speckle noise with high resolution, but it cannot be applied to the CGH calculation using RS-plane because the CGH calculated using RS-plane does not utilize point sources on an object surface. Then, we propose the method to define the point sources from light-ray information and apply the speckle suppression technique using sparse point sources to CGH calculation using RS-plane. The validity of the proposed method was verified by numerical simulations.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Calculation for computer generated hologram using ray-sampling plane

Koki Wakunami and Masahiro Yamaguchi
Opt. Express 19(10) 9086-9101 (2011)

Speckle reduction method for image-based coherent stereogram generation

Jani Mäkinen, Erdem Sahin, and Atanas Gotchev
Opt. Express 26(5) 5381-5394 (2018)

Occlusion culling for computer generated hologram based on ray-wavefront conversion

Koki Wakunami, Hiroaki Yamashita, and Masahiro Yamaguchi
Opt. Express 21(19) 21811-21822 (2013)

References

  • View by:
  • |
  • |
  • |

  1. F. Yaraş, H. Kang, and L. Onural, “Real-time phase-only color holographic video display system using LED illumination,” Appl. Opt. 48(34), H48–H53 (2009).
    [Crossref] [PubMed]
  2. H. Yoshikawa, “Computer-generated holograms for white light reconstruction,” in Digital Holography and Three-Dimensional Display, T.-C. Poon, ed. (Springer, 2006), pp. 235–255.
  3. J. Amako, H. Miura, and T. Sonehara, “Speckle-noise reduction on kinoform reconstruction using a phase-only spatial light modulator,” Appl. Opt. 34(17), 3165–3171 (1995).
    [Crossref] [PubMed]
  4. T. Kozacki, M. Kujawińska, G. Finke, B. Hennelly, and N. Pandey, “Extended viewing angle holographic display system with tilted SLMs in a circular configuration,” Appl. Opt. 51(11), 1771–1780 (2012).
    [Crossref] [PubMed]
  5. L. Golan and S. Shoham, “Speckle elimination using shift-averaging in high-rate holographic projection,” Opt. Express 17(3), 1330–1339 (2009).
    [Crossref] [PubMed]
  6. Y. Takaki and M. Yokouchi, “Speckle-free and grayscale hologram reconstruction using time-multiplexing technique,” Opt. Express 19(8), 7567–7579 (2011).
    [Crossref] [PubMed]
  7. T. Kurihara and Y. Takaki, “Speckle-free, shaded 3D images produced by computer-generated holography,” Opt. Express 21(4), 4044–4054 (2013).
    [Crossref] [PubMed]
  8. T. Yatagai, “Stereoscopic approach to 3-D display using computer-generated holograms,” Appl. Opt. 15(11), 2722–2729 (1976).
    [Crossref] [PubMed]
  9. P. McOwan, W. Hossack, and R. Burge, “Three-dimensional stereoscopic display using ray traced computer generated holograms,” Opt. Commun. 82(1–2), 6–11 (1991).
    [Crossref]
  10. K. Wakunami and M. Yamaguchi, “Calculation for computer generated hologram using ray-sampling plane,” Opt. Express 19(10), 9086–9101 (2011).
    [Crossref] [PubMed]
  11. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  12. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company, 2007).
  13. M. Makowski, “Minimized speckle noise in lens-less holographic projection by pixel separation,” Opt. Express 21(24), 29205–29216 (2013).
    [Crossref] [PubMed]
  14. W. F. Hsu and C. F. Yeh, “Speckle suppression in holographic projection displays using temporal integration of speckle images from diffractive optical elements,” Appl. Opt. 50(34), H50–H55 (2011).
    [Crossref] [PubMed]
  15. K. Wakunami, M. Yamaguchi, and B. Javidi, “High-resolution three-dimensional holographic display using dense ray sampling from integral imaging,” Opt. Lett. 37(24), 5103–5105 (2012).
    [Crossref] [PubMed]
  16. K. Wakunami, H. Yamashita, and M. Yamaguchi, “Occlusion culling for computer generated hologram based on ray-wavefront conversion,” Opt. Express 21(19), 21811–21822 (2013).
    [Crossref] [PubMed]
  17. M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).
    [Crossref]
  18. H. Kang, F. Yaraş, and L. Onural, “Graphics processing unit accelerated computation of digital holograms,” Appl. Opt. 48(34), H137–H143 (2009).
    [Crossref] [PubMed]
  19. H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phase-added stereogram for real-time holographic display,” Opt. Eng. 46(9), 095802 (2007).
    [Crossref]
  20. H. Kang, T. Yamaguchi, and H. Yoshikawa, “Accurate phase-added stereogram to improve the coherent stereogram,” Appl. Opt. 47(19), D44–D54 (2008).
    [Crossref] [PubMed]
  21. K. Matsushima, “Shifted angular spectrum method for off-axis numerical propagation,” Opt. Express 18(17), 18453–18463 (2010).
    [Crossref] [PubMed]
  22. J. P. Liu, “Controlling the aliasing by zero-padding in the digital calculation of the scalar diffraction,” J. Opt. Soc. Am. A 29(9), 1956–1964 (2012).
    [Crossref] [PubMed]
  23. http://www.opengl.org

2013 (3)

2012 (3)

2011 (3)

2010 (1)

2009 (3)

2008 (1)

2007 (1)

H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phase-added stereogram for real-time holographic display,” Opt. Eng. 46(9), 095802 (2007).
[Crossref]

1995 (1)

1993 (1)

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).
[Crossref]

1991 (1)

P. McOwan, W. Hossack, and R. Burge, “Three-dimensional stereoscopic display using ray traced computer generated holograms,” Opt. Commun. 82(1–2), 6–11 (1991).
[Crossref]

1976 (1)

Amako, J.

Burge, R.

P. McOwan, W. Hossack, and R. Burge, “Three-dimensional stereoscopic display using ray traced computer generated holograms,” Opt. Commun. 82(1–2), 6–11 (1991).
[Crossref]

Finke, G.

Fujii, T.

H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phase-added stereogram for real-time holographic display,” Opt. Eng. 46(9), 095802 (2007).
[Crossref]

Golan, L.

Hennelly, B.

Honda, T.

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).
[Crossref]

Hoshino, H.

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).
[Crossref]

Hossack, W.

P. McOwan, W. Hossack, and R. Burge, “Three-dimensional stereoscopic display using ray traced computer generated holograms,” Opt. Commun. 82(1–2), 6–11 (1991).
[Crossref]

Hsu, W. F.

Javidi, B.

Kang, H.

Kozacki, T.

Kujawinska, M.

Kurihara, T.

Liu, J. P.

Makowski, M.

Matsushima, K.

McOwan, P.

P. McOwan, W. Hossack, and R. Burge, “Three-dimensional stereoscopic display using ray traced computer generated holograms,” Opt. Commun. 82(1–2), 6–11 (1991).
[Crossref]

Miura, H.

Ohyama, N.

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).
[Crossref]

Onural, L.

Pandey, N.

Shoham, S.

Sonehara, T.

Takaki, Y.

Wakunami, K.

Yamaguchi, M.

Yamaguchi, T.

H. Kang, T. Yamaguchi, and H. Yoshikawa, “Accurate phase-added stereogram to improve the coherent stereogram,” Appl. Opt. 47(19), D44–D54 (2008).
[Crossref] [PubMed]

H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phase-added stereogram for real-time holographic display,” Opt. Eng. 46(9), 095802 (2007).
[Crossref]

Yamashita, H.

Yaras, F.

Yatagai, T.

Yeh, C. F.

Yokouchi, M.

Yoshikawa, H.

H. Kang, T. Yamaguchi, and H. Yoshikawa, “Accurate phase-added stereogram to improve the coherent stereogram,” Appl. Opt. 47(19), D44–D54 (2008).
[Crossref] [PubMed]

H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phase-added stereogram for real-time holographic display,” Opt. Eng. 46(9), 095802 (2007).
[Crossref]

Appl. Opt. (7)

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

P. McOwan, W. Hossack, and R. Burge, “Three-dimensional stereoscopic display using ray traced computer generated holograms,” Opt. Commun. 82(1–2), 6–11 (1991).
[Crossref]

Opt. Eng. (1)

H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phase-added stereogram for real-time holographic display,” Opt. Eng. 46(9), 095802 (2007).
[Crossref]

Opt. Express (7)

Opt. Lett. (1)

Proc. SPIE (1)

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).
[Crossref]

Other (4)

H. Yoshikawa, “Computer-generated holograms for white light reconstruction,” in Digital Holography and Three-Dimensional Display, T.-C. Poon, ed. (Springer, 2006), pp. 235–255.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company, 2007).

http://www.opengl.org

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Model of speckle generation in CGH reconstruction.
Fig. 2
Fig. 2 Concept of sparse-points time-multiplexing.
Fig. 3
Fig. 3 CGH calculation using RS-plane.
Fig. 4
Fig. 4 Concept of the proposed method.
Fig. 5
Fig. 5 Setup for CGH calculation.
Fig. 6
Fig. 6 Defining voxel in the 3D space.
Fig. 7
Fig. 7 Defining the object points from the light-ray emission coordinates.
Fig. 8
Fig. 8 Light-ray culling instead of the object point culling to avoid interference of the PSF.
Fig. 9
Fig. 9 Setup of the first simulation.
Fig. 10
Fig. 10 Simulation results of the reconstructed image of planar diffused object CGH (a) without speckle suppression, (b) with the random-averaging method (16 frames), (d) with the proposed method (single frame) and (e) with the proposed method (16 frames). (c) and (f) are the horizontal cross section of the center of the (b) and (e).
Fig. 11
Fig. 11 Setup of the second simulation.
Fig. 12
Fig. 12 Simulation results of the reconstructed image of teapot CGH calculated (a) without speckle suppression and (b) with the proposed method (16 frames time-multiplexing).

Tables (1)

Tables Icon

Table 1 Parameters of the CGH Calculations

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

| u( X,Y ) | 2 = | 1 λ 2 d obj d ret { g( X M , Y M )exp[ ik 2M d ret ( X 2 + Y 2 ) ]*PSF( X,Y ) } | 2 ,
PSF( X,Y )=[ circ( 2 D X 2 + Y 2 ) ]= π D 2 2 [ J 1 ( kD X 2 + Y 2 /2 d ret ) kD X 2 + Y 2 /2 d ret ]jinc( kD X 2 + Y 2 /2 d ret ).
L x,y 2.44 λ d ret D ,
L z 16 λ d ret 2 D 2 ,
C= σ I ¯ ,
x e m = | d i , j [ m , n ] | tan ( m Δ θ x ) + i Δ S x ,
y e m = | d i , j [ m , n ] | tan ( n Δ θ y ) + j Δ S y ,
z e m = d i , j [ m , n ] .
( x ob , y ob , z ob )= argmin ( x,y,z ) S v { (x x em ) 2 + (y y em ) 2 + (z z em ) 2 }.
U CPAS_p ( ξ,η ) = a p ( θ pξcFFT , θ pηcFFT ) r p exp{ i2π[ sin θ pξcFFT λ ( ξ ξ c )+ sin θ pηcFFT λ ( η η c ) ]+i 2π λ r p +i ϕ p +i C ξη },
C ξη =2π[ sin θ pξc λ ( ξ c x ob_p )+ sin θ pηc λ ( η c y ob_p ) ].
U CPAS ( ξ,η )= p U CPAS_p ( ξ,η ) .
FFT[ U CPAS ( ξ,η ) ]= p a p ( θ pξcFFT , θ pηcFFT ) r p exp[ i 2π λ r p +i φ p +i C ξη ] p a p ( θ pξcFFT , θ pηcFFT )exp[ i 2π λ r p +i φ p +i C ξη ] ,

Metrics