Abstract

The performance of Nyquist WDM superchannel using advanced modulation formats with coherent detection is degraded due to the existence of both inter-symbol interference (ISI) and inter-channel interference (ICI). Here, we propose and numerically investigate a Nyquist WDM superchannel using offset-16QAM and receiver-side digital spectral shaping (RS-DSS), achieving a spectral efficiency up to 7.44 bit/s/Hz with 7% hard-decision forward error correction (HD-FEC) overhead. Compared with Nyquist WDM superchannel using 16QAM and RS-DSS, the proposed system has 1.4 dB improvement of required OSNR at BER = 10−3 in the case of back-to-back (B2B) transmission. Furthermore, the range of launched optical power allowed beyond HD-FEC threshold is drastically increased from −6 dBm to 1.2 dBm, after 960 km SSMF transmission with EDFA-only. In particular, no more than 1.8 dB required OSNR penalty at BER = 10−3 is achieved for the proposed system even with the phase difference between channels varying from 0 to 360 degree.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Feed-forward carrier phase recovery for offset-QAM Nyquist WDM transmission

Haoyuan Tang, Meng Xiang, Songnian Fu, Ming Tang, Perry Shum, and Deming Liu
Opt. Express 23(5) 6215-6227 (2015)

Signal-signal beat interference cancellation in spectrally-efficient WDM direct-detection Nyquist-pulse-shaped 16-QAM subcarrier modulation

Zhe Li, M. Sezer. Erkılınç, Stephan Pachnicke, Helmut Griesser, Rachid Bouziane, Benn C. Thomsen, Polina Bayvel, and Robert I. Killey
Opt. Express 23(18) 23694-23709 (2015)

Phase noise tolerant inter-carrier-interference cancellation for WDM superchannels with sub-Nyquist channel spacing

Shuchang Yao, Songnian Fu, Jianqiang Li, Ming Tang, Perry Shum, and Deming Liu
Opt. Express 21(18) 21569-21578 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. Chandrasekhar, X. Liu, “Advances in Tb/s superchannels,” in Systems and Networks, Vol. VIB of Optical Fiber Telecommunications (2013), pp. 83–117.
  2. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
    [Crossref] [PubMed]
  3. X. Liu, S. Chandrasekhar, and B. Zhu, “Transmission of a 448-Gb/s reduced-guard-interval CO-OFDM signal with a 60-GHz optical bandwidth over 2000 km of ULAF and five 80-GHz-Grid ROADMs,” in Proceedings of OFC (San Diego, California, 2010), paper PDPC2.
    [Crossref]
  4. R. Schmogrow, R. Bouziane, M. Meyer, and P. A. Milder, “Real-time digital Nyquist-WDM and OFDM signal generation: spectral efficiency versus DSP complexity,” in Proceedings of European Conference and Exposition on Optical Communications (Amsterdam, Netherlands, 2012), paper Mo.2.A.
    [Crossref]
  5. G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
    [Crossref]
  6. X. Zhou, L. E. Nelson, P. Magill, R. Isaac, B. Zhu, D. W. Peckham, P. I. Borel, and K. Carlson, “PDM-Nyquist-32QAM for 450-Gb/s per-channel WDM transmission on the 50 GHz ITU-T grid,” J. Lightwave Technol. 30(4), 553–559 (2012).
    [Crossref]
  7. B. Saltzberg, “Performance of an efficient parallel data transmission system,” IEEE Trans. Commun. 15(6), 805–811 (1967).
    [Crossref]
  8. J. Fickers, A. Ghazisaeidi, M. Salsi, and F. Horlin, “Multicarrier offset-QAM modulations for coherent optical communication systems,” in Proceedings of OFC (San Francisco, California, 2014), paper M2A.5.
    [Crossref]
  9. S. Randel, A. Sierra, X. Liu, and S. Chandrasekhar, “Study of multicarrier offset-QAM for spectrally efficient coherent optical communications,” in Proceedings of European Conference and Exposition on Optical Communications (Geneva, Switzerland, 2011), paper Th.11.A.1.
    [Crossref]
  10. J. Zhao and A. D. Ellis, “Offset-QAM based coherent WDM for spectral efficiency enhancement,” Opt. Express 19(15), 14617–14631 (2011).
    [Crossref] [PubMed]
  11. J. Li, M. Sjödin, M. Karlsson, and P. A. Andrekson, “Building up low-complexity spectrally-efficient Terabit superchannels by receiver-side duobinary shaping,” Opt. Express 20(9), 10271–10282 (2012).
    [Crossref] [PubMed]
  12. H. Chien, J. Yu, Z. Jia, Z. Dong, and X. Xiao, “Performance assessment of noise-suppressed Nyquist-WDM for terabit superchannel transmission,” J. Lightwave Technol. 30(24), 3965–3971 (2012).
    [Crossref]
  13. J. Li, E. Tipsuwannakul, T. Eriksson, M. Karlsson, and P. A. Andrekson, “Approaching Nyquist limit in WDM Systems by low-complexity receiver-side duobinary shaping,” J. Lightwave Technol. 30(11), 1664–1676 (2012).
    [Crossref]
  14. Z. Jia, Y. Cai, H. C. Chien, and J. Yu, “Performance comparison of spectrum-narrowing equalizations with maximum likelihood sequence estimation and soft-decision output,” Opt. Express 22(5), 6047–6059 (2014).
    [Crossref] [PubMed]
  15. J. Li, M. Karlsson, P. A. Andrekson, and K. Xu, “Transmission of 1.936 Tb/s (11 × 176 Gb/s) DP-16QAM superchannel signals over 640 km SSMF with EDFA only and 300 GHz WSS channel,” Opt. Express 20(26), B223–B231 (2012).
    [Crossref] [PubMed]
  16. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
    [Crossref] [PubMed]
  17. M. Selmi, Y. Jaouen, and P. Ciblat, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in Proceedings of European Conference and Exposition on Optical Communications (Vienna, Austria, 2009), pp. 1–2.
  18. T. Pfau, S. Hoffmann, and R. Noe, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
    [Crossref]
  19. T. F. Detwiler, A. J. Stark, and Y. T. Hsueh, “Offset QPSK receiver implementation in 112Gb/s coherent optical networks,” in Proceedings of European Conference and Exposition on Optical Communications (Torino, Italy, 2010), paper P3.24.
  20. T. Healy, C. Fatima, G. Gunning, A. D. Ellis, and J. D. Bull, “Multi-wavelength source using low drive-voltage amplitude modulators for optical communications,” Opt. Express 15(6), 2981–2986 (2007).
  21. F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
    [Crossref]

2014 (1)

2012 (5)

2011 (2)

2010 (1)

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[Crossref]

2009 (1)

2008 (2)

2007 (1)

1967 (1)

B. Saltzberg, “Performance of an efficient parallel data transmission system,” IEEE Trans. Commun. 15(6), 805–811 (1967).
[Crossref]

Andrekson, P. A.

Bao, H.

Borel, P. I.

Bosco, G.

Bull, J. D.

Cai, Y.

Carena, A.

Carlson, K.

Chang, F.

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[Crossref]

Chien, H.

Chien, H. C.

Ciblat, P.

M. Selmi, Y. Jaouen, and P. Ciblat, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in Proceedings of European Conference and Exposition on Optical Communications (Vienna, Austria, 2009), pp. 1–2.

Curri, V.

Dong, Z.

Ellis, A. D.

Eriksson, T.

Fatima, C.

Forghieri, F.

Gunning, G.

Healy, T.

Hoffmann, S.

Isaac, R.

Jaouen, Y.

M. Selmi, Y. Jaouen, and P. Ciblat, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in Proceedings of European Conference and Exposition on Optical Communications (Vienna, Austria, 2009), pp. 1–2.

Jia, Z.

Karlsson, M.

Li, J.

Magill, P.

Mizuochi, T.

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[Crossref]

Nelson, L. E.

Noe, R.

Onohara, K.

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[Crossref]

Peckham, D. W.

Pfau, T.

Poggiolini, P.

Saltzberg, B.

B. Saltzberg, “Performance of an efficient parallel data transmission system,” IEEE Trans. Commun. 15(6), 805–811 (1967).
[Crossref]

Savory, S. J.

Selmi, M.

M. Selmi, Y. Jaouen, and P. Ciblat, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in Proceedings of European Conference and Exposition on Optical Communications (Vienna, Austria, 2009), pp. 1–2.

Shieh, W.

Sjödin, M.

Tang, Y.

Tipsuwannakul, E.

Xiao, X.

Xu, K.

Yu, J.

Zhao, J.

Zhou, X.

Zhu, B.

IEEE Commun. Mag. (1)

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[Crossref]

IEEE Trans. Commun. (1)

B. Saltzberg, “Performance of an efficient parallel data transmission system,” IEEE Trans. Commun. 15(6), 805–811 (1967).
[Crossref]

J. Lightwave Technol. (5)

Opt. Express (7)

Other (7)

J. Fickers, A. Ghazisaeidi, M. Salsi, and F. Horlin, “Multicarrier offset-QAM modulations for coherent optical communication systems,” in Proceedings of OFC (San Francisco, California, 2014), paper M2A.5.
[Crossref]

S. Randel, A. Sierra, X. Liu, and S. Chandrasekhar, “Study of multicarrier offset-QAM for spectrally efficient coherent optical communications,” in Proceedings of European Conference and Exposition on Optical Communications (Geneva, Switzerland, 2011), paper Th.11.A.1.
[Crossref]

S. Chandrasekhar, X. Liu, “Advances in Tb/s superchannels,” in Systems and Networks, Vol. VIB of Optical Fiber Telecommunications (2013), pp. 83–117.

M. Selmi, Y. Jaouen, and P. Ciblat, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in Proceedings of European Conference and Exposition on Optical Communications (Vienna, Austria, 2009), pp. 1–2.

T. F. Detwiler, A. J. Stark, and Y. T. Hsueh, “Offset QPSK receiver implementation in 112Gb/s coherent optical networks,” in Proceedings of European Conference and Exposition on Optical Communications (Torino, Italy, 2010), paper P3.24.

X. Liu, S. Chandrasekhar, and B. Zhu, “Transmission of a 448-Gb/s reduced-guard-interval CO-OFDM signal with a 60-GHz optical bandwidth over 2000 km of ULAF and five 80-GHz-Grid ROADMs,” in Proceedings of OFC (San Diego, California, 2010), paper PDPC2.
[Crossref]

R. Schmogrow, R. Bouziane, M. Meyer, and P. A. Milder, “Real-time digital Nyquist-WDM and OFDM signal generation: spectral efficiency versus DSP complexity,” in Proceedings of European Conference and Exposition on Optical Communications (Amsterdam, Netherlands, 2012), paper Mo.2.A.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 System configuration and offline DSP flow for (a) 16QAM based RS-DSS WDM superchannel, (b) Offset-16QAM based RS-DSS WDM superchannel. Mux/DeMux: wavelength multiplexer /demultiplexer.
Fig. 2
Fig. 2 Required OSNR at BER = 10−3 with respect to the channel spacing. The transmitter-side optical filter bandwidth is optimized to maximize the performance for each channel spacing.
Fig. 3
Fig. 3 Required OSNR at BER = 10−3 with respect to the transmitter-side optical filter bandwidth.
Fig. 4
Fig. 4 (a) The equivalent amplitude response of RS-DSS for different values ofα; (b) Relationship between optimalαand transmitter-side optical filter bandwidth.
Fig. 5
Fig. 5 Optical spectrum of generated three 28 GHz-spaced signals after transmitter-side optimal filtering, for (a) 16QAM based RS-DSS Nyquist WDM superchannel, (b) the proposed Nyquist WDM superchannel.
Fig. 6
Fig. 6 B2B performance comparison.
Fig. 7
Fig. 7 Performance after 960 km SSMF transmission as a function of launched optical power per channel along with the calculated OSNR at the receiver-side.
Fig. 8
Fig. 8 Performance as a function of phase difference between channels.

Tables (1)

Tables Icon

Table 1 Achieved Q-factor under different launched optical power per channel and the launched optical power range allowed beyond BER of 10−3.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Z X (k)={[ S XO (k); S YO (k )] T [ W XX (k); W XY (k)]}+j{[ S XE (k); S YE (k )] T [ W XX (k); W XY (k)]}
Z Y (k)={[ S XO (k); S YO (k )] T [ W YX (k); W YY (k)]}+j{[ S XE (k); S YE (k )] T [ W YX (k); W YY (k)]}
W XX (k+1)= W XX (k)+μ[{ e X } S XO (k) +j{ e X } S XE (k) ]
W XY (k+1)= W XY (k)+μ[{ e X } S XO (k) +j{ e X } S XE (k) ]
W YX (k+1)= W YX (k)+μ[{ e Y } S XO (k) +j{ e Y } S XE (k) ]
W YX (k+1)= W YX (k)+μ[{ e Y } S XO (k) +j{ e Y } S XE (k) ]

Metrics