Abstract

We propose a fabrication tolerant polarization splitter and rotator (PSR) on the silicon-on-insulator platform based on the mode-coupling mechanism. The PSR consists of a silicon wire waveguide coupled to a taper-etched waveguide. Compared to previously reported PSRs based on directional couplers which are sensitive to fabrication variations, the partially etched taper structure can compensate for fabrication inaccuracies. In addition, the taper-etched geometry breaks both the horizontal and vertical symmetries of the waveguide, introducing an additional degree of design freedom to accommodate different upper cladding layers. The proposed PSR can be readily integrated in a planar waveguide circuit using e.g. SiO2 cladding, making it compatible with typical metal back-end-of-line processes. Our simulation results show that the PSR has a low TM-to-TE polarization conversion loss of −0.09 dB in the C-band (or a conversion efficiency of 98%). A low TE-to-TE through insertion loss (−0.07 dB) and a very low polarization crosstalk (−30 dB) over a wide wavelength range exceeding 160 nm with a large fabrication tolerance (>50 nm) are numerically demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler

Yunhong Ding, Liu Liu, Christophe Peucheret, and Haiyan Ou
Opt. Express 20(18) 20021-20027 (2012)

Proposal for fabrication-tolerant SOI polarization splitter-rotator based on cascaded MMI couplers and an assisted bi-level taper

Jing Wang, Minghao Qi, Yi Xuan, Haiyang Huang, You Li, Ming Li, Xin Chen, Qi Jia, Zhen Sheng, Aimin Wu, Wei Li, Xi Wang, Shichang Zou, and Fuwan Gan
Opt. Express 22(23) 27869-27879 (2014)

CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler

Hang Guan, Ari Novack, Matthew Streshinsky, Ruizhi Shi, Qing Fang, Andy Eu-Jin Lim, Guo-Qiang Lo, Tom Baehr-Jones, and Michael Hochberg
Opt. Express 22(3) 2489-2496 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7(3), 303–328 (2013).
    [Crossref]
  2. T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
    [Crossref]
  3. P. Dong, C. Xie, L. Chen, L. L. Buhl, and Y.-K. Chen, “112-Gb/s monolithic PDM-QPSK modulator in silicon,” Opt. Express 20(26), B624–B629 (2012).
    [Crossref] [PubMed]
  4. H. Zhang, S. Das, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. Guo-Qiang Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett. 101(2), 021105 (2012).
    [Crossref]
  5. D. Vermeulen, S. Member, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, and G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24(6), 482–484 (2012).
    [Crossref]
  6. Y. Xiong, D.-X. Xu, J. Schmid, P. Cheben, S. Janz, and W. Ye, “Robust silicon waveguide polarization rotator with an amorphous silicon overlayer,” IEEE Photonics J. 6(2), 2200308 (2014).
    [Crossref]
  7. L. Chen, C. R. Doerr, and Y.-K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett. 36(4), 469–471 (2011).
    [Crossref] [PubMed]
  8. A. V. Velasco, M. L. Calvo, P. Cheben, A. Ortega-Moñux, J. H. Schmid, C. A. Ramos, I. M. Fernandez, J. Lapointe, M. Vachon, S. Janz, and D.-X. Xu, “Ultracompact polarization converter with a dual subwavelength trench built in a silicon-on-insulator waveguide,” Opt. Lett. 37(3), 365–367 (2012).
    [Crossref] [PubMed]
  9. L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express 19(13), 12646–12651 (2011).
    [Crossref] [PubMed]
  10. Y. Ding, L. Liu, C. Peucheret, and H. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express 20(18), 20021–20027 (2012).
    [Crossref] [PubMed]
  11. H. Guan, A. Novack, M. Streshinsky, R. Shi, Q. Fang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler,” Opt. Express 22(3), 2489–2496 (2014).
    [Crossref] [PubMed]
  12. J. Wang, B. Niu, Z. Sheng, A. Wu, X. Wang, S. Zou, M. Qi, and F. Gan, “Design of a SiO₂ top-cladding and compact polarization splitter-rotator based on a rib directional coupler,” Opt. Express 22(4), 4137–4143 (2014).
    [Crossref] [PubMed]
  13. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
    [Crossref]

2014 (3)

2013 (1)

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7(3), 303–328 (2013).
[Crossref]

2012 (5)

P. Dong, C. Xie, L. Chen, L. L. Buhl, and Y.-K. Chen, “112-Gb/s monolithic PDM-QPSK modulator in silicon,” Opt. Express 20(26), B624–B629 (2012).
[Crossref] [PubMed]

H. Zhang, S. Das, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. Guo-Qiang Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett. 101(2), 021105 (2012).
[Crossref]

D. Vermeulen, S. Member, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, and G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24(6), 482–484 (2012).
[Crossref]

A. V. Velasco, M. L. Calvo, P. Cheben, A. Ortega-Moñux, J. H. Schmid, C. A. Ramos, I. M. Fernandez, J. Lapointe, M. Vachon, S. Janz, and D.-X. Xu, “Ultracompact polarization converter with a dual subwavelength trench built in a silicon-on-insulator waveguide,” Opt. Lett. 37(3), 365–367 (2012).
[Crossref] [PubMed]

Y. Ding, L. Liu, C. Peucheret, and H. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express 20(18), 20021–20027 (2012).
[Crossref] [PubMed]

2011 (2)

2007 (1)

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

2006 (1)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Absil, P.

D. Vermeulen, S. Member, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, and G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24(6), 482–484 (2012).
[Crossref]

Ayre, M.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Baehr-Jones, T.

Baets, R.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Bienstman, P.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Bogaerts, W.

D. Vermeulen, S. Member, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, and G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24(6), 482–484 (2012).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Buhl, L. L.

Calvo, M. L.

Cheben, P.

Chen, L.

Chen, S.

H. Zhang, S. Das, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. Guo-Qiang Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett. 101(2), 021105 (2012).
[Crossref]

Chen, Y.-K.

Dai, D.

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7(3), 303–328 (2013).
[Crossref]

Das, S.

H. Zhang, S. Das, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. Guo-Qiang Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett. 101(2), 021105 (2012).
[Crossref]

Ding, Y.

Doerr, C. R.

Dong, P.

Fang, Q.

Fernandez, I. M.

Gan, F.

Gao, S.

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7(3), 303–328 (2013).
[Crossref]

Guan, H.

Guo-Qiang Lo, P.

H. Zhang, S. Das, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. Guo-Qiang Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett. 101(2), 021105 (2012).
[Crossref]

He, S.

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7(3), 303–328 (2013).
[Crossref]

Hochberg, M.

Huang, Y.

H. Zhang, S. Das, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. Guo-Qiang Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett. 101(2), 021105 (2012).
[Crossref]

Hvam, J. M.

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Janz, S.

Kärtner, F. X.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Lapointe, J.

Li, C.

H. Zhang, S. Das, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. Guo-Qiang Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett. 101(2), 021105 (2012).
[Crossref]

Lim, A. E.-J.

Liu, L.

Lo, G.-Q.

Member, S.

D. Vermeulen, S. Member, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, and G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24(6), 482–484 (2012).
[Crossref]

Niu, B.

Novack, A.

Ortega-Moñux, A.

Ou, H.

Peucheret, C.

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Qi, M.

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Ramos, C. A.

Roelkens, G.

D. Vermeulen, S. Member, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, and G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24(6), 482–484 (2012).
[Crossref]

Schmid, J.

Y. Xiong, D.-X. Xu, J. Schmid, P. Cheben, S. Janz, and W. Ye, “Robust silicon waveguide polarization rotator with an amorphous silicon overlayer,” IEEE Photonics J. 6(2), 2200308 (2014).
[Crossref]

Schmid, J. H.

Selvaraja, S.

D. Vermeulen, S. Member, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, and G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24(6), 482–484 (2012).
[Crossref]

Sheng, Z.

Shi, R.

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Streshinsky, M.

Taillaert, D.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Thong, J. T. L.

H. Zhang, S. Das, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. Guo-Qiang Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett. 101(2), 021105 (2012).
[Crossref]

Vachon, M.

Van Laere, F.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Van Thourhout, D.

D. Vermeulen, S. Member, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, and G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24(6), 482–484 (2012).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Velasco, A. V.

Verheyen, P.

D. Vermeulen, S. Member, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, and G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24(6), 482–484 (2012).
[Crossref]

Vermeulen, D.

D. Vermeulen, S. Member, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, and G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24(6), 482–484 (2012).
[Crossref]

Wang, J.

Wang, X.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Wu, A.

Xie, C.

Xiong, Y.

Y. Xiong, D.-X. Xu, J. Schmid, P. Cheben, S. Janz, and W. Ye, “Robust silicon waveguide polarization rotator with an amorphous silicon overlayer,” IEEE Photonics J. 6(2), 2200308 (2014).
[Crossref]

Xu, D.-X.

Y. Xiong, D.-X. Xu, J. Schmid, P. Cheben, S. Janz, and W. Ye, “Robust silicon waveguide polarization rotator with an amorphous silicon overlayer,” IEEE Photonics J. 6(2), 2200308 (2014).
[Crossref]

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7(3), 303–328 (2013).
[Crossref]

A. V. Velasco, M. L. Calvo, P. Cheben, A. Ortega-Moñux, J. H. Schmid, C. A. Ramos, I. M. Fernandez, J. Lapointe, M. Vachon, S. Janz, and D.-X. Xu, “Ultracompact polarization converter with a dual subwavelength trench built in a silicon-on-insulator waveguide,” Opt. Lett. 37(3), 365–367 (2012).
[Crossref] [PubMed]

Ye, W.

Y. Xiong, D.-X. Xu, J. Schmid, P. Cheben, S. Janz, and W. Ye, “Robust silicon waveguide polarization rotator with an amorphous silicon overlayer,” IEEE Photonics J. 6(2), 2200308 (2014).
[Crossref]

Yu, M.

H. Zhang, S. Das, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. Guo-Qiang Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett. 101(2), 021105 (2012).
[Crossref]

Yvind, K.

Zhang, H.

H. Zhang, S. Das, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. Guo-Qiang Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett. 101(2), 021105 (2012).
[Crossref]

Zhou, H.

H. Zhang, S. Das, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. Guo-Qiang Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett. 101(2), 021105 (2012).
[Crossref]

Zou, S.

Appl. Phys. Lett. (1)

H. Zhang, S. Das, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. Guo-Qiang Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett. 101(2), 021105 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (1)

D. Vermeulen, S. Member, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, and G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24(6), 482–484 (2012).
[Crossref]

IEEE Photonics J. (1)

Y. Xiong, D.-X. Xu, J. Schmid, P. Cheben, S. Janz, and W. Ye, “Robust silicon waveguide polarization rotator with an amorphous silicon overlayer,” IEEE Photonics J. 6(2), 2200308 (2014).
[Crossref]

Jpn. J. Appl. Phys. (1)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Laser Photon. Rev. (1)

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7(3), 303–328 (2013).
[Crossref]

Nat. Photonics (1)

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of the polarization splitter and rotator based on the taper-etched directional coupler. For clarity, the SiO2 upper cladding is not shown. (b) Effective index of the TE-like mode of the taper-etched waveguide B as a function of the ridge width We for a post-etch height He = 110 nm, Wt = 350 nm, and H = 220 nm. Effective indices of the TM-like mode of the access waveguide A (H = 220 nm) are shown for different widths W of the access waveguide A (black lines). Red circles indicate the phase matching condition.
Fig. 2
Fig. 2 Light intensity (Light input from the left port) of (a) TE-like mode input and (b) TM-like mode input evolution along the polarization splitter and rotator (top views), as calculated by a 3D-FDTD method. (c) Transverse electric field distributions at the corresponding positions along the polarization splitter and rotator when launching TM-like mode as input.
Fig. 3
Fig. 3 (a) Effective index of the TE-like mode of the taper-etched waveguide B as a function of a width ratio We/Wt, for three different post-etch slab heights (He = 70 nm, 110 nm and 150 nm). The corresponding width Wt is 410 nm, 350 nm and 310 nm, for the phase matching near the position We/Wt = 0.5. Effective index of the TM-like mode of the access waveguide A (H = 220 nm) are shown for a waveguide width range W = 450 ± 50 nm (shadow region). (b) Polarization conversion efficiency CETM-TE as a function of coupling length LDC for post-etch slab heights He = 70 nm, 110 nm, and 150 nm.
Fig. 4
Fig. 4 Dependence of the polarization conversion efficiency CETM-TE on structure geometrical variations, calculated using the full-vectorial EME simulations for (a) post-etch slab height, ΔHe, (b) tip width Dt, (c) width ΔW of the wire waveguide, (d) height ΔH of the wire waveguide, (e) width ΔWt of the taper-etched waveguide, and (f) coupling gap ΔDgap. The optimized parameters are listed in Table 1.
Fig. 5
Fig. 5 Wavelength dependence of the polarization splitter and rotator as calculated by the full-vectorial EME simulations. (a) TE-like mode insertion loss and TM-to-TE polarization conversion loss; (b) Crosstalk XTTE and XTTM. W = 450 nm, H = 220 nm, Wt = 350 nm, He = 110 nm, Dgap = 200 nm, and LDC = 200 µm.

Tables (4)

Tables Icon

Table 1 Optimized parameters of the polarization splitter and rotator calculated using the EME method

Tables Icon

Table 2 Calculated tolerances of the polarization splitter and rotator for CETM-TE> −0.5 dB and a TM-like input mode.

Tables Icon

Table 3 Performance of the polarization splitter and rotator for the S, C and L bands (the wavelength range from 1460 nm to 1625 nm)

Tables Icon

Table 4 Comparison of directional coupler based polarization splitter and rotator.

Metrics