Abstract

In order to investigate the influence of target materials, including aluminum (Al), titanium (Ti) and copper (Cu), on underwater laser propulsion, the analytical formula of the target momentum IT is deduced from the enhanced coupling theory of laser propulsion in atmosphere with transparent overlay metal target. The high-speed photography method and numerical simulation are employed to verify the IT model. It is shown that the enhanced coupling theory, which was developed originally for laser propulsion in atmosphere, is also applicable to underwater laser propulsion with metal targets.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Interaction between a bubble and a metal target for underwater laser propulsion

Hao Qiang, Jun Chen, Bing Han, Yunxiang Pan, Hongchao Zhang, Zhonghua Shen, Jian Lu, and Xiaowu Ni
Appl. Opt. 56(11) 3193-3198 (2017)

Light propulsion of microbeads with femtosecond laser pulses

Nan Zhang, You-Bo Zhao, and Xiao-Nong Zhu
Opt. Express 12(15) 3590-3598 (2004)

Confined geometry and laser energy affect laser plasma propulsion

Haichao Yu, Xiao Wu, Yonggui Yuan, Hanyang Li, and Jun Yang
Opt. Express 27(7) 9763-9772 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Kantrowitz, “Propulsion to orbit by ground based lasers,” Astronaut. Aeronaut. 10, 74–76 (1972).
  2. T. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
    [Crossref]
  3. L. N. Myrabo, “World record flights of beam-riding rocket lightcraft: Demonstration of ‘disruptive’ propulsion technology,” AIAA paper 2001–3798.
  4. Y. Ogata, T. Yabe, T. Ookubo, M. Yamaguchi, H. Oozono, and T. Oku, “Numerical and experimental investigation of laser propulsion,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 829–831 (2004).
    [Crossref]
  5. W. L. Bohn and W. O. Schall, “Laser propulsion activities in Germany,” in Proceedings of the First International Symposium on Beamed Energy Propulsion (American Institute of Physics, 2003), pp. 79–94.
    [Crossref]
  6. B. Han, Z. H. Shen, J. Lu, and X. W. Ni, “Laser propulsion for transport in water environment,” Mod. Phys. Lett. B 24(07), 641–648 (2010).
    [Crossref]
  7. J. Chen, B. Han, B. B. Li, Z. H. Shen, J. Lu, and X. W. Ni, “The collapse of a bubble against infinite and finite rigid boundaries for underwater laser propulsion,” J. Appl. Phys. 109(8), 083101 (2011).
    [Crossref]
  8. C. Phipps and J. Luke, “Diode laser-driven microthrusters: a new departure for micropropulsion,” AIAA J. 40(2), 310–318 (2002).
    [Crossref]
  9. C. Phipps, J. Luke, and T. Lippert, “Laser ablation of organic coatings as a basis for micropropulsion,” Thin Solid Films 453, 573–583 (2004).
    [Crossref]
  10. J. Chen, H. Qian, B. Han, Z. H. Shen, and X. W. Ni, “Investigation of the momentum coupling coefficient for propulsion by Nd: YAG laser at 1064nm in atmospheric and water environment,” Optik 124(13), 1650–1655 (2013).
    [Crossref]
  11. L. N. Myrabo, M. Libeau, E. Meloney, R. Bracken, and T. Knowles, “Pulsed laser propulsion performance of 11-cm parabolic bell engines within the atmosphere,” in High-Power Laser Ablation 2004 (International Society for Optics and Photonics, 2004), pp. 450–464.
  12. Y. J. Hong, M. Wen, and Z. R. Cao, “Investigation on Mechanism of Altitude Characteristic for Air-breathing Pulsed Laser Thruster,” Chin. J. Aeronaut. 23(1), 33–38 (2010).
    [Crossref]
  13. Z. Y. Zheng, J. Zhang, X. Lu, Z. Q. Hao, X. H. Yuan, Z. H. Wang, and Z. Y. Wei, “Characteristic investigation of ablative laser propulsion driven by nanosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 83(2), 329–332 (2006).
    [Crossref]
  14. Y. Zhang, X. Lu, Z. Y. Zheng, F. Liu, P. F. Zhu, H. M. Li, Y. T. Li, Y. J. Li, and J. Zhang, “Transmitted laser propulsion in confined geometry using liquid propellant,” Appl. Phys., A Mater. Sci. Process. 91(2), 357–360 (2008).
    [Crossref]
  15. G. A. Simons and A. N. Pirri, “The fluid mechanics of pulsed laser propulsion,” AIAA J. 15(6), 835–842 (1977).
    [Crossref]
  16. T. Yabe, H. Oozono, K. Taniguchi, T. Ohkubo, S. Miyazaki, S. Uchida, and C. Baasandash, “Proposal of laser-driven automobile,” in High-Power Laser Ablation 2004 (International Society for Optics and Photonics, 2004), pp. 428–431.
  17. A. V. Pakhomov and D. A. Gregory, “Ablative laser propulsion: an old concept revisited,” AIAA J. 38(4), 725–727 (2000).
    [Crossref]
  18. A. V. Pakhomov, D. A. Gregory, and M. S. Thompson, “Specific impulse and other characteristics of elementary propellants for ablative laser propulsion,” AIAA J. 40, 947–952 (2002).
    [Crossref]
  19. T. Yabe and K. Niu, “Numerical analysis on implosion of laser-driven target plasma,” J. Phys. Soc. Jpn. 40(3), 863–868 (1976).
    [Crossref]
  20. B. Han, Y. X. Pan, Y. L. Xue, J. Chen, Z. H. Shen, J. Lu, and X. W. Ni, “Mechanical effects of laser-induced cavitation bubble on different geometrical confinements for laser propulsion in water,” Opt. Lasers Eng. 49(3), 428–433 (2011).
    [Crossref]
  21. J. Chen, B. B. Li, H. C. Zhang, H. Qiang, Z. H. Shen, and X. W. Ni, “Enhancement of momentum coupling coefficient by cavity with toroidal bubble for underwater laser propulsion,” J. Appl. Phys. 113(6), 063107 (2013).
    [Crossref]
  22. B. Han, J. Chen, H. C. Zhang, Z. H. Shen, J. Lu, and X. W. Ni, “Influence of different interfaces on laser propulsion in water environment,” Opt. Laser Technol. 42(6), 1049–1053 (2010).
    [Crossref]
  23. N. C. Anderholm, “Laser-generated stress waves,” Appl. Phys. Lett. 16(3), 113–115 (1970).
    [Crossref]
  24. T. Yabe, C. Phipps, K. Aoki, M. Yamaguchi, R. Nakagawa, C. Baasandash, Y. Ogata, M. Shiho, G. Inoue, and M. Onda, “Laser-driven vehicles–from inner-space to outer-space,” Appl. Phys., A Mater. Sci. Process. 77, 243–249 (2003).
  25. B. J. Kohn, “Compilation of Hugoniot equations of state,” Air Force Weapons Laboratory Report, Rept AFWL-TR-69–38 (1969).
  26. D. Steinberg, S. Cochran, and M. Guinan, “A constitutive model for metals applicable at high‐strain rate,” J. Appl. Phys. 51(3), 1498–1504 (1980).
    [Crossref]
  27. Y. N. Yang, N. Zhao, and X. W. Ni, “Reflection effects of spherical shock wave,” Mod. Phys. Lett. B 19(28n29), 1451–1454 (2005).
    [Crossref]
  28. L. Rayleigh, “Pressure due to collapse of bubbles,” Philos. Mag. 34, 94–98 (1917).
    [Crossref]
  29. M. Rttray, Perturbation Effects in Cavitation Bubble Dynamics (PhD Thesis) (California Institute of Technology, 1951).
  30. J. Lu, X. W. Ni, and A. Z. He, “Mechanical response of high-power YAG laser upon metal targets (in Chinese),” Laser Technol. 18, 361–365 (1994).

2013 (2)

J. Chen, H. Qian, B. Han, Z. H. Shen, and X. W. Ni, “Investigation of the momentum coupling coefficient for propulsion by Nd: YAG laser at 1064nm in atmospheric and water environment,” Optik 124(13), 1650–1655 (2013).
[Crossref]

J. Chen, B. B. Li, H. C. Zhang, H. Qiang, Z. H. Shen, and X. W. Ni, “Enhancement of momentum coupling coefficient by cavity with toroidal bubble for underwater laser propulsion,” J. Appl. Phys. 113(6), 063107 (2013).
[Crossref]

2011 (2)

J. Chen, B. Han, B. B. Li, Z. H. Shen, J. Lu, and X. W. Ni, “The collapse of a bubble against infinite and finite rigid boundaries for underwater laser propulsion,” J. Appl. Phys. 109(8), 083101 (2011).
[Crossref]

B. Han, Y. X. Pan, Y. L. Xue, J. Chen, Z. H. Shen, J. Lu, and X. W. Ni, “Mechanical effects of laser-induced cavitation bubble on different geometrical confinements for laser propulsion in water,” Opt. Lasers Eng. 49(3), 428–433 (2011).
[Crossref]

2010 (3)

Y. J. Hong, M. Wen, and Z. R. Cao, “Investigation on Mechanism of Altitude Characteristic for Air-breathing Pulsed Laser Thruster,” Chin. J. Aeronaut. 23(1), 33–38 (2010).
[Crossref]

B. Han, Z. H. Shen, J. Lu, and X. W. Ni, “Laser propulsion for transport in water environment,” Mod. Phys. Lett. B 24(07), 641–648 (2010).
[Crossref]

B. Han, J. Chen, H. C. Zhang, Z. H. Shen, J. Lu, and X. W. Ni, “Influence of different interfaces on laser propulsion in water environment,” Opt. Laser Technol. 42(6), 1049–1053 (2010).
[Crossref]

2008 (1)

Y. Zhang, X. Lu, Z. Y. Zheng, F. Liu, P. F. Zhu, H. M. Li, Y. T. Li, Y. J. Li, and J. Zhang, “Transmitted laser propulsion in confined geometry using liquid propellant,” Appl. Phys., A Mater. Sci. Process. 91(2), 357–360 (2008).
[Crossref]

2006 (1)

Z. Y. Zheng, J. Zhang, X. Lu, Z. Q. Hao, X. H. Yuan, Z. H. Wang, and Z. Y. Wei, “Characteristic investigation of ablative laser propulsion driven by nanosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 83(2), 329–332 (2006).
[Crossref]

2005 (1)

Y. N. Yang, N. Zhao, and X. W. Ni, “Reflection effects of spherical shock wave,” Mod. Phys. Lett. B 19(28n29), 1451–1454 (2005).
[Crossref]

2004 (2)

Y. Ogata, T. Yabe, T. Ookubo, M. Yamaguchi, H. Oozono, and T. Oku, “Numerical and experimental investigation of laser propulsion,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 829–831 (2004).
[Crossref]

C. Phipps, J. Luke, and T. Lippert, “Laser ablation of organic coatings as a basis for micropropulsion,” Thin Solid Films 453, 573–583 (2004).
[Crossref]

2003 (1)

T. Yabe, C. Phipps, K. Aoki, M. Yamaguchi, R. Nakagawa, C. Baasandash, Y. Ogata, M. Shiho, G. Inoue, and M. Onda, “Laser-driven vehicles–from inner-space to outer-space,” Appl. Phys., A Mater. Sci. Process. 77, 243–249 (2003).

2002 (3)

A. V. Pakhomov, D. A. Gregory, and M. S. Thompson, “Specific impulse and other characteristics of elementary propellants for ablative laser propulsion,” AIAA J. 40, 947–952 (2002).
[Crossref]

T. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
[Crossref]

C. Phipps and J. Luke, “Diode laser-driven microthrusters: a new departure for micropropulsion,” AIAA J. 40(2), 310–318 (2002).
[Crossref]

2000 (1)

A. V. Pakhomov and D. A. Gregory, “Ablative laser propulsion: an old concept revisited,” AIAA J. 38(4), 725–727 (2000).
[Crossref]

1994 (1)

J. Lu, X. W. Ni, and A. Z. He, “Mechanical response of high-power YAG laser upon metal targets (in Chinese),” Laser Technol. 18, 361–365 (1994).

1980 (1)

D. Steinberg, S. Cochran, and M. Guinan, “A constitutive model for metals applicable at high‐strain rate,” J. Appl. Phys. 51(3), 1498–1504 (1980).
[Crossref]

1977 (1)

G. A. Simons and A. N. Pirri, “The fluid mechanics of pulsed laser propulsion,” AIAA J. 15(6), 835–842 (1977).
[Crossref]

1976 (1)

T. Yabe and K. Niu, “Numerical analysis on implosion of laser-driven target plasma,” J. Phys. Soc. Jpn. 40(3), 863–868 (1976).
[Crossref]

1972 (1)

A. Kantrowitz, “Propulsion to orbit by ground based lasers,” Astronaut. Aeronaut. 10, 74–76 (1972).

1970 (1)

N. C. Anderholm, “Laser-generated stress waves,” Appl. Phys. Lett. 16(3), 113–115 (1970).
[Crossref]

1917 (1)

L. Rayleigh, “Pressure due to collapse of bubbles,” Philos. Mag. 34, 94–98 (1917).
[Crossref]

Anderholm, N. C.

N. C. Anderholm, “Laser-generated stress waves,” Appl. Phys. Lett. 16(3), 113–115 (1970).
[Crossref]

Aoki, K.

T. Yabe, C. Phipps, K. Aoki, M. Yamaguchi, R. Nakagawa, C. Baasandash, Y. Ogata, M. Shiho, G. Inoue, and M. Onda, “Laser-driven vehicles–from inner-space to outer-space,” Appl. Phys., A Mater. Sci. Process. 77, 243–249 (2003).

T. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
[Crossref]

Baasandash, C.

T. Yabe, C. Phipps, K. Aoki, M. Yamaguchi, R. Nakagawa, C. Baasandash, Y. Ogata, M. Shiho, G. Inoue, and M. Onda, “Laser-driven vehicles–from inner-space to outer-space,” Appl. Phys., A Mater. Sci. Process. 77, 243–249 (2003).

T. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
[Crossref]

Cao, Z. R.

Y. J. Hong, M. Wen, and Z. R. Cao, “Investigation on Mechanism of Altitude Characteristic for Air-breathing Pulsed Laser Thruster,” Chin. J. Aeronaut. 23(1), 33–38 (2010).
[Crossref]

Chen, J.

J. Chen, H. Qian, B. Han, Z. H. Shen, and X. W. Ni, “Investigation of the momentum coupling coefficient for propulsion by Nd: YAG laser at 1064nm in atmospheric and water environment,” Optik 124(13), 1650–1655 (2013).
[Crossref]

J. Chen, B. B. Li, H. C. Zhang, H. Qiang, Z. H. Shen, and X. W. Ni, “Enhancement of momentum coupling coefficient by cavity with toroidal bubble for underwater laser propulsion,” J. Appl. Phys. 113(6), 063107 (2013).
[Crossref]

B. Han, Y. X. Pan, Y. L. Xue, J. Chen, Z. H. Shen, J. Lu, and X. W. Ni, “Mechanical effects of laser-induced cavitation bubble on different geometrical confinements for laser propulsion in water,” Opt. Lasers Eng. 49(3), 428–433 (2011).
[Crossref]

J. Chen, B. Han, B. B. Li, Z. H. Shen, J. Lu, and X. W. Ni, “The collapse of a bubble against infinite and finite rigid boundaries for underwater laser propulsion,” J. Appl. Phys. 109(8), 083101 (2011).
[Crossref]

B. Han, J. Chen, H. C. Zhang, Z. H. Shen, J. Lu, and X. W. Ni, “Influence of different interfaces on laser propulsion in water environment,” Opt. Laser Technol. 42(6), 1049–1053 (2010).
[Crossref]

Cochran, S.

D. Steinberg, S. Cochran, and M. Guinan, “A constitutive model for metals applicable at high‐strain rate,” J. Appl. Phys. 51(3), 1498–1504 (1980).
[Crossref]

Fujiwara, E.

T. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
[Crossref]

Gregory, D. A.

A. V. Pakhomov, D. A. Gregory, and M. S. Thompson, “Specific impulse and other characteristics of elementary propellants for ablative laser propulsion,” AIAA J. 40, 947–952 (2002).
[Crossref]

A. V. Pakhomov and D. A. Gregory, “Ablative laser propulsion: an old concept revisited,” AIAA J. 38(4), 725–727 (2000).
[Crossref]

Guinan, M.

D. Steinberg, S. Cochran, and M. Guinan, “A constitutive model for metals applicable at high‐strain rate,” J. Appl. Phys. 51(3), 1498–1504 (1980).
[Crossref]

Han, B.

J. Chen, H. Qian, B. Han, Z. H. Shen, and X. W. Ni, “Investigation of the momentum coupling coefficient for propulsion by Nd: YAG laser at 1064nm in atmospheric and water environment,” Optik 124(13), 1650–1655 (2013).
[Crossref]

B. Han, Y. X. Pan, Y. L. Xue, J. Chen, Z. H. Shen, J. Lu, and X. W. Ni, “Mechanical effects of laser-induced cavitation bubble on different geometrical confinements for laser propulsion in water,” Opt. Lasers Eng. 49(3), 428–433 (2011).
[Crossref]

J. Chen, B. Han, B. B. Li, Z. H. Shen, J. Lu, and X. W. Ni, “The collapse of a bubble against infinite and finite rigid boundaries for underwater laser propulsion,” J. Appl. Phys. 109(8), 083101 (2011).
[Crossref]

B. Han, Z. H. Shen, J. Lu, and X. W. Ni, “Laser propulsion for transport in water environment,” Mod. Phys. Lett. B 24(07), 641–648 (2010).
[Crossref]

B. Han, J. Chen, H. C. Zhang, Z. H. Shen, J. Lu, and X. W. Ni, “Influence of different interfaces on laser propulsion in water environment,” Opt. Laser Technol. 42(6), 1049–1053 (2010).
[Crossref]

Hao, Z. Q.

Z. Y. Zheng, J. Zhang, X. Lu, Z. Q. Hao, X. H. Yuan, Z. H. Wang, and Z. Y. Wei, “Characteristic investigation of ablative laser propulsion driven by nanosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 83(2), 329–332 (2006).
[Crossref]

He, A. Z.

J. Lu, X. W. Ni, and A. Z. He, “Mechanical response of high-power YAG laser upon metal targets (in Chinese),” Laser Technol. 18, 361–365 (1994).

Hong, Y. J.

Y. J. Hong, M. Wen, and Z. R. Cao, “Investigation on Mechanism of Altitude Characteristic for Air-breathing Pulsed Laser Thruster,” Chin. J. Aeronaut. 23(1), 33–38 (2010).
[Crossref]

Inoue, G.

T. Yabe, C. Phipps, K. Aoki, M. Yamaguchi, R. Nakagawa, C. Baasandash, Y. Ogata, M. Shiho, G. Inoue, and M. Onda, “Laser-driven vehicles–from inner-space to outer-space,” Appl. Phys., A Mater. Sci. Process. 77, 243–249 (2003).

Kajiwara, I.

T. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
[Crossref]

Kantrowitz, A.

A. Kantrowitz, “Propulsion to orbit by ground based lasers,” Astronaut. Aeronaut. 10, 74–76 (1972).

Li, B. B.

J. Chen, B. B. Li, H. C. Zhang, H. Qiang, Z. H. Shen, and X. W. Ni, “Enhancement of momentum coupling coefficient by cavity with toroidal bubble for underwater laser propulsion,” J. Appl. Phys. 113(6), 063107 (2013).
[Crossref]

J. Chen, B. Han, B. B. Li, Z. H. Shen, J. Lu, and X. W. Ni, “The collapse of a bubble against infinite and finite rigid boundaries for underwater laser propulsion,” J. Appl. Phys. 109(8), 083101 (2011).
[Crossref]

Li, H. M.

Y. Zhang, X. Lu, Z. Y. Zheng, F. Liu, P. F. Zhu, H. M. Li, Y. T. Li, Y. J. Li, and J. Zhang, “Transmitted laser propulsion in confined geometry using liquid propellant,” Appl. Phys., A Mater. Sci. Process. 91(2), 357–360 (2008).
[Crossref]

Li, Y. J.

Y. Zhang, X. Lu, Z. Y. Zheng, F. Liu, P. F. Zhu, H. M. Li, Y. T. Li, Y. J. Li, and J. Zhang, “Transmitted laser propulsion in confined geometry using liquid propellant,” Appl. Phys., A Mater. Sci. Process. 91(2), 357–360 (2008).
[Crossref]

Li, Y. T.

Y. Zhang, X. Lu, Z. Y. Zheng, F. Liu, P. F. Zhu, H. M. Li, Y. T. Li, Y. J. Li, and J. Zhang, “Transmitted laser propulsion in confined geometry using liquid propellant,” Appl. Phys., A Mater. Sci. Process. 91(2), 357–360 (2008).
[Crossref]

Lippert, T.

C. Phipps, J. Luke, and T. Lippert, “Laser ablation of organic coatings as a basis for micropropulsion,” Thin Solid Films 453, 573–583 (2004).
[Crossref]

Liu, F.

Y. Zhang, X. Lu, Z. Y. Zheng, F. Liu, P. F. Zhu, H. M. Li, Y. T. Li, Y. J. Li, and J. Zhang, “Transmitted laser propulsion in confined geometry using liquid propellant,” Appl. Phys., A Mater. Sci. Process. 91(2), 357–360 (2008).
[Crossref]

Lu, J.

J. Chen, B. Han, B. B. Li, Z. H. Shen, J. Lu, and X. W. Ni, “The collapse of a bubble against infinite and finite rigid boundaries for underwater laser propulsion,” J. Appl. Phys. 109(8), 083101 (2011).
[Crossref]

B. Han, Y. X. Pan, Y. L. Xue, J. Chen, Z. H. Shen, J. Lu, and X. W. Ni, “Mechanical effects of laser-induced cavitation bubble on different geometrical confinements for laser propulsion in water,” Opt. Lasers Eng. 49(3), 428–433 (2011).
[Crossref]

B. Han, J. Chen, H. C. Zhang, Z. H. Shen, J. Lu, and X. W. Ni, “Influence of different interfaces on laser propulsion in water environment,” Opt. Laser Technol. 42(6), 1049–1053 (2010).
[Crossref]

B. Han, Z. H. Shen, J. Lu, and X. W. Ni, “Laser propulsion for transport in water environment,” Mod. Phys. Lett. B 24(07), 641–648 (2010).
[Crossref]

J. Lu, X. W. Ni, and A. Z. He, “Mechanical response of high-power YAG laser upon metal targets (in Chinese),” Laser Technol. 18, 361–365 (1994).

Lu, X.

Y. Zhang, X. Lu, Z. Y. Zheng, F. Liu, P. F. Zhu, H. M. Li, Y. T. Li, Y. J. Li, and J. Zhang, “Transmitted laser propulsion in confined geometry using liquid propellant,” Appl. Phys., A Mater. Sci. Process. 91(2), 357–360 (2008).
[Crossref]

Z. Y. Zheng, J. Zhang, X. Lu, Z. Q. Hao, X. H. Yuan, Z. H. Wang, and Z. Y. Wei, “Characteristic investigation of ablative laser propulsion driven by nanosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 83(2), 329–332 (2006).
[Crossref]

Luke, J.

C. Phipps, J. Luke, and T. Lippert, “Laser ablation of organic coatings as a basis for micropropulsion,” Thin Solid Films 453, 573–583 (2004).
[Crossref]

C. Phipps and J. Luke, “Diode laser-driven microthrusters: a new departure for micropropulsion,” AIAA J. 40(2), 310–318 (2002).
[Crossref]

Mine, H.

T. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
[Crossref]

Nakagawa, M.

T. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
[Crossref]

Nakagawa, R.

T. Yabe, C. Phipps, K. Aoki, M. Yamaguchi, R. Nakagawa, C. Baasandash, Y. Ogata, M. Shiho, G. Inoue, and M. Onda, “Laser-driven vehicles–from inner-space to outer-space,” Appl. Phys., A Mater. Sci. Process. 77, 243–249 (2003).

T. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
[Crossref]

Ni, X. W.

J. Chen, H. Qian, B. Han, Z. H. Shen, and X. W. Ni, “Investigation of the momentum coupling coefficient for propulsion by Nd: YAG laser at 1064nm in atmospheric and water environment,” Optik 124(13), 1650–1655 (2013).
[Crossref]

J. Chen, B. B. Li, H. C. Zhang, H. Qiang, Z. H. Shen, and X. W. Ni, “Enhancement of momentum coupling coefficient by cavity with toroidal bubble for underwater laser propulsion,” J. Appl. Phys. 113(6), 063107 (2013).
[Crossref]

B. Han, Y. X. Pan, Y. L. Xue, J. Chen, Z. H. Shen, J. Lu, and X. W. Ni, “Mechanical effects of laser-induced cavitation bubble on different geometrical confinements for laser propulsion in water,” Opt. Lasers Eng. 49(3), 428–433 (2011).
[Crossref]

J. Chen, B. Han, B. B. Li, Z. H. Shen, J. Lu, and X. W. Ni, “The collapse of a bubble against infinite and finite rigid boundaries for underwater laser propulsion,” J. Appl. Phys. 109(8), 083101 (2011).
[Crossref]

B. Han, Z. H. Shen, J. Lu, and X. W. Ni, “Laser propulsion for transport in water environment,” Mod. Phys. Lett. B 24(07), 641–648 (2010).
[Crossref]

B. Han, J. Chen, H. C. Zhang, Z. H. Shen, J. Lu, and X. W. Ni, “Influence of different interfaces on laser propulsion in water environment,” Opt. Laser Technol. 42(6), 1049–1053 (2010).
[Crossref]

Y. N. Yang, N. Zhao, and X. W. Ni, “Reflection effects of spherical shock wave,” Mod. Phys. Lett. B 19(28n29), 1451–1454 (2005).
[Crossref]

J. Lu, X. W. Ni, and A. Z. He, “Mechanical response of high-power YAG laser upon metal targets (in Chinese),” Laser Technol. 18, 361–365 (1994).

Nishiguchi, A.

T. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
[Crossref]

Niu, K.

T. Yabe and K. Niu, “Numerical analysis on implosion of laser-driven target plasma,” J. Phys. Soc. Jpn. 40(3), 863–868 (1976).
[Crossref]

Ogata, Y.

Y. Ogata, T. Yabe, T. Ookubo, M. Yamaguchi, H. Oozono, and T. Oku, “Numerical and experimental investigation of laser propulsion,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 829–831 (2004).
[Crossref]

T. Yabe, C. Phipps, K. Aoki, M. Yamaguchi, R. Nakagawa, C. Baasandash, Y. Ogata, M. Shiho, G. Inoue, and M. Onda, “Laser-driven vehicles–from inner-space to outer-space,” Appl. Phys., A Mater. Sci. Process. 77, 243–249 (2003).

T. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
[Crossref]

Oku, T.

Y. Ogata, T. Yabe, T. Ookubo, M. Yamaguchi, H. Oozono, and T. Oku, “Numerical and experimental investigation of laser propulsion,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 829–831 (2004).
[Crossref]

Onda, M.

T. Yabe, C. Phipps, K. Aoki, M. Yamaguchi, R. Nakagawa, C. Baasandash, Y. Ogata, M. Shiho, G. Inoue, and M. Onda, “Laser-driven vehicles–from inner-space to outer-space,” Appl. Phys., A Mater. Sci. Process. 77, 243–249 (2003).

Ookubo, T.

Y. Ogata, T. Yabe, T. Ookubo, M. Yamaguchi, H. Oozono, and T. Oku, “Numerical and experimental investigation of laser propulsion,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 829–831 (2004).
[Crossref]

Oozono, H.

Y. Ogata, T. Yabe, T. Ookubo, M. Yamaguchi, H. Oozono, and T. Oku, “Numerical and experimental investigation of laser propulsion,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 829–831 (2004).
[Crossref]

Pakhomov, A. V.

A. V. Pakhomov, D. A. Gregory, and M. S. Thompson, “Specific impulse and other characteristics of elementary propellants for ablative laser propulsion,” AIAA J. 40, 947–952 (2002).
[Crossref]

A. V. Pakhomov and D. A. Gregory, “Ablative laser propulsion: an old concept revisited,” AIAA J. 38(4), 725–727 (2000).
[Crossref]

Pan, Y. X.

B. Han, Y. X. Pan, Y. L. Xue, J. Chen, Z. H. Shen, J. Lu, and X. W. Ni, “Mechanical effects of laser-induced cavitation bubble on different geometrical confinements for laser propulsion in water,” Opt. Lasers Eng. 49(3), 428–433 (2011).
[Crossref]

Phipps, C.

C. Phipps, J. Luke, and T. Lippert, “Laser ablation of organic coatings as a basis for micropropulsion,” Thin Solid Films 453, 573–583 (2004).
[Crossref]

T. Yabe, C. Phipps, K. Aoki, M. Yamaguchi, R. Nakagawa, C. Baasandash, Y. Ogata, M. Shiho, G. Inoue, and M. Onda, “Laser-driven vehicles–from inner-space to outer-space,” Appl. Phys., A Mater. Sci. Process. 77, 243–249 (2003).

C. Phipps and J. Luke, “Diode laser-driven microthrusters: a new departure for micropropulsion,” AIAA J. 40(2), 310–318 (2002).
[Crossref]

T. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
[Crossref]

Pirri, A. N.

G. A. Simons and A. N. Pirri, “The fluid mechanics of pulsed laser propulsion,” AIAA J. 15(6), 835–842 (1977).
[Crossref]

Qian, H.

J. Chen, H. Qian, B. Han, Z. H. Shen, and X. W. Ni, “Investigation of the momentum coupling coefficient for propulsion by Nd: YAG laser at 1064nm in atmospheric and water environment,” Optik 124(13), 1650–1655 (2013).
[Crossref]

Qiang, H.

J. Chen, B. B. Li, H. C. Zhang, H. Qiang, Z. H. Shen, and X. W. Ni, “Enhancement of momentum coupling coefficient by cavity with toroidal bubble for underwater laser propulsion,” J. Appl. Phys. 113(6), 063107 (2013).
[Crossref]

Rayleigh, L.

L. Rayleigh, “Pressure due to collapse of bubbles,” Philos. Mag. 34, 94–98 (1917).
[Crossref]

Shen, Z. H.

J. Chen, B. B. Li, H. C. Zhang, H. Qiang, Z. H. Shen, and X. W. Ni, “Enhancement of momentum coupling coefficient by cavity with toroidal bubble for underwater laser propulsion,” J. Appl. Phys. 113(6), 063107 (2013).
[Crossref]

J. Chen, H. Qian, B. Han, Z. H. Shen, and X. W. Ni, “Investigation of the momentum coupling coefficient for propulsion by Nd: YAG laser at 1064nm in atmospheric and water environment,” Optik 124(13), 1650–1655 (2013).
[Crossref]

J. Chen, B. Han, B. B. Li, Z. H. Shen, J. Lu, and X. W. Ni, “The collapse of a bubble against infinite and finite rigid boundaries for underwater laser propulsion,” J. Appl. Phys. 109(8), 083101 (2011).
[Crossref]

B. Han, Y. X. Pan, Y. L. Xue, J. Chen, Z. H. Shen, J. Lu, and X. W. Ni, “Mechanical effects of laser-induced cavitation bubble on different geometrical confinements for laser propulsion in water,” Opt. Lasers Eng. 49(3), 428–433 (2011).
[Crossref]

B. Han, J. Chen, H. C. Zhang, Z. H. Shen, J. Lu, and X. W. Ni, “Influence of different interfaces on laser propulsion in water environment,” Opt. Laser Technol. 42(6), 1049–1053 (2010).
[Crossref]

B. Han, Z. H. Shen, J. Lu, and X. W. Ni, “Laser propulsion for transport in water environment,” Mod. Phys. Lett. B 24(07), 641–648 (2010).
[Crossref]

Shiho, M.

T. Yabe, C. Phipps, K. Aoki, M. Yamaguchi, R. Nakagawa, C. Baasandash, Y. Ogata, M. Shiho, G. Inoue, and M. Onda, “Laser-driven vehicles–from inner-space to outer-space,” Appl. Phys., A Mater. Sci. Process. 77, 243–249 (2003).

Simons, G. A.

G. A. Simons and A. N. Pirri, “The fluid mechanics of pulsed laser propulsion,” AIAA J. 15(6), 835–842 (1977).
[Crossref]

Steinberg, D.

D. Steinberg, S. Cochran, and M. Guinan, “A constitutive model for metals applicable at high‐strain rate,” J. Appl. Phys. 51(3), 1498–1504 (1980).
[Crossref]

Thompson, M. S.

A. V. Pakhomov, D. A. Gregory, and M. S. Thompson, “Specific impulse and other characteristics of elementary propellants for ablative laser propulsion,” AIAA J. 40, 947–952 (2002).
[Crossref]

Wang, Z. H.

Z. Y. Zheng, J. Zhang, X. Lu, Z. Q. Hao, X. H. Yuan, Z. H. Wang, and Z. Y. Wei, “Characteristic investigation of ablative laser propulsion driven by nanosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 83(2), 329–332 (2006).
[Crossref]

Wei, Z. Y.

Z. Y. Zheng, J. Zhang, X. Lu, Z. Q. Hao, X. H. Yuan, Z. H. Wang, and Z. Y. Wei, “Characteristic investigation of ablative laser propulsion driven by nanosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 83(2), 329–332 (2006).
[Crossref]

Wen, M.

Y. J. Hong, M. Wen, and Z. R. Cao, “Investigation on Mechanism of Altitude Characteristic for Air-breathing Pulsed Laser Thruster,” Chin. J. Aeronaut. 23(1), 33–38 (2010).
[Crossref]

Xue, Y. L.

B. Han, Y. X. Pan, Y. L. Xue, J. Chen, Z. H. Shen, J. Lu, and X. W. Ni, “Mechanical effects of laser-induced cavitation bubble on different geometrical confinements for laser propulsion in water,” Opt. Lasers Eng. 49(3), 428–433 (2011).
[Crossref]

Yabe, T.

Y. Ogata, T. Yabe, T. Ookubo, M. Yamaguchi, H. Oozono, and T. Oku, “Numerical and experimental investigation of laser propulsion,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 829–831 (2004).
[Crossref]

T. Yabe, C. Phipps, K. Aoki, M. Yamaguchi, R. Nakagawa, C. Baasandash, Y. Ogata, M. Shiho, G. Inoue, and M. Onda, “Laser-driven vehicles–from inner-space to outer-space,” Appl. Phys., A Mater. Sci. Process. 77, 243–249 (2003).

T. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
[Crossref]

T. Yabe and K. Niu, “Numerical analysis on implosion of laser-driven target plasma,” J. Phys. Soc. Jpn. 40(3), 863–868 (1976).
[Crossref]

Yamaguchi, M.

Y. Ogata, T. Yabe, T. Ookubo, M. Yamaguchi, H. Oozono, and T. Oku, “Numerical and experimental investigation of laser propulsion,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 829–831 (2004).
[Crossref]

T. Yabe, C. Phipps, K. Aoki, M. Yamaguchi, R. Nakagawa, C. Baasandash, Y. Ogata, M. Shiho, G. Inoue, and M. Onda, “Laser-driven vehicles–from inner-space to outer-space,” Appl. Phys., A Mater. Sci. Process. 77, 243–249 (2003).

T. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
[Crossref]

Yang, Y. N.

Y. N. Yang, N. Zhao, and X. W. Ni, “Reflection effects of spherical shock wave,” Mod. Phys. Lett. B 19(28n29), 1451–1454 (2005).
[Crossref]

Yoshida, K.

T. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
[Crossref]

Yuan, X. H.

Z. Y. Zheng, J. Zhang, X. Lu, Z. Q. Hao, X. H. Yuan, Z. H. Wang, and Z. Y. Wei, “Characteristic investigation of ablative laser propulsion driven by nanosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 83(2), 329–332 (2006).
[Crossref]

Zhang, H. C.

J. Chen, B. B. Li, H. C. Zhang, H. Qiang, Z. H. Shen, and X. W. Ni, “Enhancement of momentum coupling coefficient by cavity with toroidal bubble for underwater laser propulsion,” J. Appl. Phys. 113(6), 063107 (2013).
[Crossref]

B. Han, J. Chen, H. C. Zhang, Z. H. Shen, J. Lu, and X. W. Ni, “Influence of different interfaces on laser propulsion in water environment,” Opt. Laser Technol. 42(6), 1049–1053 (2010).
[Crossref]

Zhang, J.

Y. Zhang, X. Lu, Z. Y. Zheng, F. Liu, P. F. Zhu, H. M. Li, Y. T. Li, Y. J. Li, and J. Zhang, “Transmitted laser propulsion in confined geometry using liquid propellant,” Appl. Phys., A Mater. Sci. Process. 91(2), 357–360 (2008).
[Crossref]

Z. Y. Zheng, J. Zhang, X. Lu, Z. Q. Hao, X. H. Yuan, Z. H. Wang, and Z. Y. Wei, “Characteristic investigation of ablative laser propulsion driven by nanosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 83(2), 329–332 (2006).
[Crossref]

Zhang, Y.

Y. Zhang, X. Lu, Z. Y. Zheng, F. Liu, P. F. Zhu, H. M. Li, Y. T. Li, Y. J. Li, and J. Zhang, “Transmitted laser propulsion in confined geometry using liquid propellant,” Appl. Phys., A Mater. Sci. Process. 91(2), 357–360 (2008).
[Crossref]

Zhao, N.

Y. N. Yang, N. Zhao, and X. W. Ni, “Reflection effects of spherical shock wave,” Mod. Phys. Lett. B 19(28n29), 1451–1454 (2005).
[Crossref]

Zheng, Z. Y.

Y. Zhang, X. Lu, Z. Y. Zheng, F. Liu, P. F. Zhu, H. M. Li, Y. T. Li, Y. J. Li, and J. Zhang, “Transmitted laser propulsion in confined geometry using liquid propellant,” Appl. Phys., A Mater. Sci. Process. 91(2), 357–360 (2008).
[Crossref]

Z. Y. Zheng, J. Zhang, X. Lu, Z. Q. Hao, X. H. Yuan, Z. H. Wang, and Z. Y. Wei, “Characteristic investigation of ablative laser propulsion driven by nanosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 83(2), 329–332 (2006).
[Crossref]

Zhu, P. F.

Y. Zhang, X. Lu, Z. Y. Zheng, F. Liu, P. F. Zhu, H. M. Li, Y. T. Li, Y. J. Li, and J. Zhang, “Transmitted laser propulsion in confined geometry using liquid propellant,” Appl. Phys., A Mater. Sci. Process. 91(2), 357–360 (2008).
[Crossref]

AIAA J. (4)

C. Phipps and J. Luke, “Diode laser-driven microthrusters: a new departure for micropropulsion,” AIAA J. 40(2), 310–318 (2002).
[Crossref]

G. A. Simons and A. N. Pirri, “The fluid mechanics of pulsed laser propulsion,” AIAA J. 15(6), 835–842 (1977).
[Crossref]

A. V. Pakhomov and D. A. Gregory, “Ablative laser propulsion: an old concept revisited,” AIAA J. 38(4), 725–727 (2000).
[Crossref]

A. V. Pakhomov, D. A. Gregory, and M. S. Thompson, “Specific impulse and other characteristics of elementary propellants for ablative laser propulsion,” AIAA J. 40, 947–952 (2002).
[Crossref]

Appl. Phys. Lett. (2)

N. C. Anderholm, “Laser-generated stress waves,” Appl. Phys. Lett. 16(3), 113–115 (1970).
[Crossref]

T. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (4)

Y. Ogata, T. Yabe, T. Ookubo, M. Yamaguchi, H. Oozono, and T. Oku, “Numerical and experimental investigation of laser propulsion,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 829–831 (2004).
[Crossref]

Z. Y. Zheng, J. Zhang, X. Lu, Z. Q. Hao, X. H. Yuan, Z. H. Wang, and Z. Y. Wei, “Characteristic investigation of ablative laser propulsion driven by nanosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 83(2), 329–332 (2006).
[Crossref]

Y. Zhang, X. Lu, Z. Y. Zheng, F. Liu, P. F. Zhu, H. M. Li, Y. T. Li, Y. J. Li, and J. Zhang, “Transmitted laser propulsion in confined geometry using liquid propellant,” Appl. Phys., A Mater. Sci. Process. 91(2), 357–360 (2008).
[Crossref]

T. Yabe, C. Phipps, K. Aoki, M. Yamaguchi, R. Nakagawa, C. Baasandash, Y. Ogata, M. Shiho, G. Inoue, and M. Onda, “Laser-driven vehicles–from inner-space to outer-space,” Appl. Phys., A Mater. Sci. Process. 77, 243–249 (2003).

Astronaut. Aeronaut. (1)

A. Kantrowitz, “Propulsion to orbit by ground based lasers,” Astronaut. Aeronaut. 10, 74–76 (1972).

Chin. J. Aeronaut. (1)

Y. J. Hong, M. Wen, and Z. R. Cao, “Investigation on Mechanism of Altitude Characteristic for Air-breathing Pulsed Laser Thruster,” Chin. J. Aeronaut. 23(1), 33–38 (2010).
[Crossref]

J. Appl. Phys. (3)

J. Chen, B. Han, B. B. Li, Z. H. Shen, J. Lu, and X. W. Ni, “The collapse of a bubble against infinite and finite rigid boundaries for underwater laser propulsion,” J. Appl. Phys. 109(8), 083101 (2011).
[Crossref]

J. Chen, B. B. Li, H. C. Zhang, H. Qiang, Z. H. Shen, and X. W. Ni, “Enhancement of momentum coupling coefficient by cavity with toroidal bubble for underwater laser propulsion,” J. Appl. Phys. 113(6), 063107 (2013).
[Crossref]

D. Steinberg, S. Cochran, and M. Guinan, “A constitutive model for metals applicable at high‐strain rate,” J. Appl. Phys. 51(3), 1498–1504 (1980).
[Crossref]

J. Phys. Soc. Jpn. (1)

T. Yabe and K. Niu, “Numerical analysis on implosion of laser-driven target plasma,” J. Phys. Soc. Jpn. 40(3), 863–868 (1976).
[Crossref]

Laser Technol. (1)

J. Lu, X. W. Ni, and A. Z. He, “Mechanical response of high-power YAG laser upon metal targets (in Chinese),” Laser Technol. 18, 361–365 (1994).

Mod. Phys. Lett. B (2)

Y. N. Yang, N. Zhao, and X. W. Ni, “Reflection effects of spherical shock wave,” Mod. Phys. Lett. B 19(28n29), 1451–1454 (2005).
[Crossref]

B. Han, Z. H. Shen, J. Lu, and X. W. Ni, “Laser propulsion for transport in water environment,” Mod. Phys. Lett. B 24(07), 641–648 (2010).
[Crossref]

Opt. Laser Technol. (1)

B. Han, J. Chen, H. C. Zhang, Z. H. Shen, J. Lu, and X. W. Ni, “Influence of different interfaces on laser propulsion in water environment,” Opt. Laser Technol. 42(6), 1049–1053 (2010).
[Crossref]

Opt. Lasers Eng. (1)

B. Han, Y. X. Pan, Y. L. Xue, J. Chen, Z. H. Shen, J. Lu, and X. W. Ni, “Mechanical effects of laser-induced cavitation bubble on different geometrical confinements for laser propulsion in water,” Opt. Lasers Eng. 49(3), 428–433 (2011).
[Crossref]

Optik (1)

J. Chen, H. Qian, B. Han, Z. H. Shen, and X. W. Ni, “Investigation of the momentum coupling coefficient for propulsion by Nd: YAG laser at 1064nm in atmospheric and water environment,” Optik 124(13), 1650–1655 (2013).
[Crossref]

Philos. Mag. (1)

L. Rayleigh, “Pressure due to collapse of bubbles,” Philos. Mag. 34, 94–98 (1917).
[Crossref]

Thin Solid Films (1)

C. Phipps, J. Luke, and T. Lippert, “Laser ablation of organic coatings as a basis for micropropulsion,” Thin Solid Films 453, 573–583 (2004).
[Crossref]

Other (6)

W. L. Bohn and W. O. Schall, “Laser propulsion activities in Germany,” in Proceedings of the First International Symposium on Beamed Energy Propulsion (American Institute of Physics, 2003), pp. 79–94.
[Crossref]

L. N. Myrabo, “World record flights of beam-riding rocket lightcraft: Demonstration of ‘disruptive’ propulsion technology,” AIAA paper 2001–3798.

L. N. Myrabo, M. Libeau, E. Meloney, R. Bracken, and T. Knowles, “Pulsed laser propulsion performance of 11-cm parabolic bell engines within the atmosphere,” in High-Power Laser Ablation 2004 (International Society for Optics and Photonics, 2004), pp. 450–464.

T. Yabe, H. Oozono, K. Taniguchi, T. Ohkubo, S. Miyazaki, S. Uchida, and C. Baasandash, “Proposal of laser-driven automobile,” in High-Power Laser Ablation 2004 (International Society for Optics and Photonics, 2004), pp. 428–431.

M. Rttray, Perturbation Effects in Cavitation Bubble Dynamics (PhD Thesis) (California Institute of Technology, 1951).

B. J. Kohn, “Compilation of Hugoniot equations of state,” Air Force Weapons Laboratory Report, Rept AFWL-TR-69–38 (1969).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Experimental set-up based on high-speed photography method: (1) Nd: YAG laser; (2) beam splitter; (3) concave-convex lens group; (4) focusing lens; (5) glass cuvette; (6) target; (7) energy meter; (8) flash light; (9) concave-convex lens group; (10) high-speed camera; (11) computer; (12) DG535 digital delay/pulse generator. Perspective view of suspended target is shown in dotted circle.
Fig. 2
Fig. 2 (a) The main view of target structure. (b) The left view of target structure. (c) The top view of target structure. (d) Photo of three targets. The unit is mm. (e) Images of moving target captured by high-speed camera.
Fig. 3
Fig. 3 (a) Distance traveled by Ti target that varying with time when incident laser energy is 41.8mJ. (b) Images of Ti target captured by high-speed camera for the former 6 data points in Fig. 3(a).
Fig. 4
Fig. 4 Model used in the numerical simulation.
Fig. 5
Fig. 5 The bubble radius R at t = 100μs under different incident laser energy E obtained by the experiment. Squares, triangles, and circles represent the cases of Al target, Ti target and Cu target, respectively. Each point is an average of 5 measurements.
Fig. 6
Fig. 6 The numerical results of the momentum obtained by the targets in the case of same bubbles when incident laser energy is 45.4mJ. The solid line, dashed line and dotted line represent the cases of Al target, Ti target and Cu target, respectively.
Fig. 7
Fig. 7 The momentum IT of the targets under different incident laser energy E obtained by experiment. Squares, triangles, and circles represent the cases of Al target, Ti target and Cu target, respectively. Each point is an average of 5 measurements.
Fig. 8
Fig. 8 The coefficients including (a) k1, (b) k2 and (c) k3 under different incident laser energy E.
Fig. 9
Fig. 9 Photos of targets after experiment.
Fig. 10
Fig. 10 The momentum coupling coefficient Cm under different laser fluence Ф for underwater laser propulsion. Squares, triangles, and circles represent the cases of Al target, Ti target and Cu target, respectively. The dashed lines represent their fit curves. Фopt is the optimum coupling fluence. Each point is an average of 5 measurements.

Tables (2)

Tables Icon

Table 1 The comparison between the two numerical simulation resultsa

Tables Icon

Table 2 The comparison between experimental and numerical simulation resultsb

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

ρ a U a 2 = ρ b U b 2
W a W b = ρ a U a 3 ρ b U b 3 = ( ρ b ρ a ) 1/2
E 1 E 0 = ( ρ 0 ρ 1 ) 1/2
E 2 E 0 ' = ( ρ 0 ρ 2 ) 1/2
E 1 E 2 = E 0 E 0 ' ( ρ 2 ρ 1 ) 1/2
E= I 2 2m
m=ρV
I 1 I 2 = ( E 0 E 0 ' ) 1/2 ( ρ 1 ρ 2 ) 1/4
k= ( E 0 E 0 ' ) 1/2
I 1 I 2 =k ( ρ 1 ρ 2 ) 1/4
ρ t + z (ρu)+ 1 r r (rρv)=0
t (ρu)+ z (ρ u 2 )+ 1 r r (rρuv)+ ρ z =0
t (ρv)+ z (ρuv)+ 1 r r (rρ v 2 )+ ρ r =0
E t + z [u(E+p)]+ 1 r r [rv(E+p)]={ I z t d <t< t p ,(z,r)Ω 0otherwise
E B = 4π 3 ( P P v ) R max 3
T C =0.915 R max ρ P P v
E B '= 1 2 E B = 2π 3 ( P P v ) R max 3
{ I Ti I Al = k 1 ( ρ Ti ρ Al ) 1/4 I Cu I Al = k 2 ( ρ Cu ρ Al ) 1/4 I Cu I Ti = k 3 ( ρ Cu ρ Ti ) 1/4

Metrics