Abstract

A simple solution for increasing the slope efficiency of a gain-switched fiber laser based on Yb-doped active fiber is presented. By adding a fiber amplifier stage, which recovers the unabsorbed pump light from the gain-switched oscillator, a significant increase in slope efficiency is achieved. The pulses at 1030-nm wavelength have an FWHM of 28 ns and a peak power of 2.3 kW.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single stage Yb-doped fiber laser based on gain switching with short pulse duration

Rok Petkovšek and Vid Agrež
Opt. Express 22(2) 1366-1371 (2014)

Highly adaptable gain-switched fiber laser with improved efficiency

Vid Agrež and Rok Petkovšek
Opt. Express 27(9) 12100-12109 (2019)

Gain-switched Yb-doped fiber laser for microprocessing

Vid Agrež and Rok Petkovšek
Appl. Opt. 52(13) 3066-3072 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Laurila, J. Saby, T. T. Alkeskjold, L. Scolari, B. Cocquelin, F. Salin, J. Broeng, and J. Lægsgaard, “Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser,” Opt. Express 19(11), 10824–10833 (2011).
    [Crossref] [PubMed]
  2. R. Petkovšek, J. Saby, F. Salin, T. Schumi, and F. Bammer, “SCPEM-Q-switching of a fiber-rod-laser,” Opt. Express 20(7), 7415–7421 (2012).
    [Crossref] [PubMed]
  3. M. Malmström, Z. Yu, W. Margulis, O. Tarasenko, and F. Laurell, “All-fiber cavity dumping,” Opt. Express 17(20), 17596–17602 (2009).
    [Crossref] [PubMed]
  4. D. G. Carlson, “Dynamics of a repetitively pump-pulsed Nd:YAG Laser,” J. Appl. Phys. 39(9), 4369–4374 (1968).
    [Crossref]
  5. L. A. Zenteno, E. Snitzer, H. Po, R. Tumminelli, and F. Hakimi, “Gain switching of a nd+3-doped fiber laser,” Opt. Lett. 14(13), 671–673 (1989).
    [Crossref] [PubMed]
  6. S. D. Jackson, B. C. Dickinson, and T. A. King, “Sequence lasing in a gain-switched Yb3+,Er3+-doped silica double-clad fiber laser,” Appl. Opt. 41(9), 1698–1703 (2002).
    [Crossref] [PubMed]
  7. K. Hattori and T. Kitagawa, “Gain switching of waveguide laser based on Nd-doped silica planar lightwave circuit pumped by laser diodes,” IEEE Photon. Technol. Lett. 4(9), 973–975 (1992).
    [Crossref]
  8. K. S. Wu, D. Ottaway, J. Munch, D. G. Lancaster, S. Bennetts, and S. D. Jackson, “Gain-switched holmium-doped fibre laser,” Opt. Express 17(23), 20872–20877 (2009).
    [Crossref] [PubMed]
  9. N. Simakov, A. Hemming, S. Bennetts, and J. Haub, “Efficient, polarised, gain-switched operation of a Tm-doped fibre laser,” Opt. Express 19(16), 14949–14954 (2011).
    [Crossref] [PubMed]
  10. M. Jiang and P. Tayebati, “Stable 10 ns, kilowatt peak-power pulse generation from a gain-switched Tm-doped fiber laser,” Opt. Lett. 32(13), 1797–1799 (2007).
    [Crossref] [PubMed]
  11. T. Yulong, L. Feng, and X. Jianqiu, “High peak-power gain-switched Tm doped fiber laser,” Photonics Technology Letters, IEEE 23(13), 893–895 (2011).
    [Crossref]
  12. V. Agrež and R. Petkovšek, “Gain-switched Yb-doped fiber laser for microprocessing,” Appl. Opt. 52(13), 3066–3072 (2013).
    [Crossref] [PubMed]
  13. C. Larsen, K. P. Hansen, K. E. Mattsson, and O. Bang, “The all-fiber cladding-pumped Yb-doped gain-switched laser,” Opt. Express 22(2), 1490–1499 (2014).
    [Crossref] [PubMed]
  14. S. Maryashin, A. Unt, and V. P. Gapontsev, “10-mJ pulse energy and 200 W average power Yb-doped fiber laser,” in Fiber Lasers III, (SPIE, 2006), 61020O61021–61020O61025.
  15. T.-Y. Tsai, Y.-C. Fang, H.-M. Huang, H.-X. Tsao, and S.-T. Lin, “Saturable absorber Q- and gain-switched all-Yb3+ all-fiber laser at 976 and 1064 nm,” Opt. Express 18(23), 23523–23528 (2010).
    [Crossref] [PubMed]
  16. C. Larsen, D. Noordegraaf, P. M. W. Skovgaard, K. P. Hansen, K. E. Mattsson, and O. Bang, “Gain-switched CW fiber laser for improved supercontinuum generation in a PCF,” Opt. Express 19(16), 14883–14891 (2011).
    [Crossref] [PubMed]
  17. C. Larsen, M. Giesberts, S. Nyga, O. Fitzau, B. Jungbluth, H. D. Hoffmann, and O. Bang, “Gain-switched all-fiber laser with narrow bandwidth,” Opt. Express 21(10), 12302–12308 (2013).
    [Crossref] [PubMed]
  18. D. Jin, R. Sun, H. Shi, J. Liu, and P. Wang, “Stable passively Q-switched and gain-switched Yb-doped all-fiber laser based on a dual-cavity with fiber Bragg gratings,” Opt. Express 21(22), 26027–26033 (2013).
    [Crossref] [PubMed]
  19. R. Petkovšek and V. Agrež, “Single stage Yb-doped fiber laser based on gain switching with short pulse duration,” Opt. Express 22(2), 1366–1371 (2014).
    [Crossref] [PubMed]
  20. V. Agrež and R. Petkovšek, “Gain switch laser based on micro-structured Yb-doped active fiber,” Opt. Express 22(5), 5558–5563 (2014).
    [Crossref] [PubMed]
  21. V. Agrež, R. Petkovšek, D. Sangla, J. Saby, R. B. Picard, and F. Salin, “Effect of repetition rate on gain-switched fiber laser output pulses,” Laser Phys. 24(10), 105108 (2014).
    [Crossref]
  22. L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
    [Crossref]

2014 (4)

2013 (3)

2012 (1)

2011 (4)

2010 (1)

2009 (2)

2007 (1)

2002 (1)

1992 (1)

K. Hattori and T. Kitagawa, “Gain switching of waveguide laser based on Nd-doped silica planar lightwave circuit pumped by laser diodes,” IEEE Photon. Technol. Lett. 4(9), 973–975 (1992).
[Crossref]

1989 (1)

1968 (1)

D. G. Carlson, “Dynamics of a repetitively pump-pulsed Nd:YAG Laser,” J. Appl. Phys. 39(9), 4369–4374 (1968).
[Crossref]

1963 (1)

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[Crossref]

Agrež, V.

Alkeskjold, T. T.

Bammer, F.

Bang, O.

Bennetts, S.

Broeng, J.

Carlson, D. G.

D. G. Carlson, “Dynamics of a repetitively pump-pulsed Nd:YAG Laser,” J. Appl. Phys. 39(9), 4369–4374 (1968).
[Crossref]

Cocquelin, B.

Dickinson, B. C.

Fang, Y.-C.

Feng, L.

T. Yulong, L. Feng, and X. Jianqiu, “High peak-power gain-switched Tm doped fiber laser,” Photonics Technology Letters, IEEE 23(13), 893–895 (2011).
[Crossref]

Fitzau, O.

Frantz, L. M.

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[Crossref]

Giesberts, M.

Hakimi, F.

Hansen, K. P.

Hattori, K.

K. Hattori and T. Kitagawa, “Gain switching of waveguide laser based on Nd-doped silica planar lightwave circuit pumped by laser diodes,” IEEE Photon. Technol. Lett. 4(9), 973–975 (1992).
[Crossref]

Haub, J.

Hemming, A.

Hoffmann, H. D.

Huang, H.-M.

Jackson, S. D.

Jiang, M.

Jianqiu, X.

T. Yulong, L. Feng, and X. Jianqiu, “High peak-power gain-switched Tm doped fiber laser,” Photonics Technology Letters, IEEE 23(13), 893–895 (2011).
[Crossref]

Jin, D.

Jungbluth, B.

King, T. A.

Kitagawa, T.

K. Hattori and T. Kitagawa, “Gain switching of waveguide laser based on Nd-doped silica planar lightwave circuit pumped by laser diodes,” IEEE Photon. Technol. Lett. 4(9), 973–975 (1992).
[Crossref]

Lægsgaard, J.

Lancaster, D. G.

Larsen, C.

Laurell, F.

Laurila, M.

Lin, S.-T.

Liu, J.

Malmström, M.

Margulis, W.

Mattsson, K. E.

Munch, J.

Nodvik, J. S.

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[Crossref]

Noordegraaf, D.

Nyga, S.

Ottaway, D.

Petkovšek, R.

Picard, R. B.

V. Agrež, R. Petkovšek, D. Sangla, J. Saby, R. B. Picard, and F. Salin, “Effect of repetition rate on gain-switched fiber laser output pulses,” Laser Phys. 24(10), 105108 (2014).
[Crossref]

Po, H.

Saby, J.

Salin, F.

Sangla, D.

V. Agrež, R. Petkovšek, D. Sangla, J. Saby, R. B. Picard, and F. Salin, “Effect of repetition rate on gain-switched fiber laser output pulses,” Laser Phys. 24(10), 105108 (2014).
[Crossref]

Schumi, T.

Scolari, L.

Shi, H.

Simakov, N.

Skovgaard, P. M. W.

Snitzer, E.

Sun, R.

Tarasenko, O.

Tayebati, P.

Tsai, T.-Y.

Tsao, H.-X.

Tumminelli, R.

Wang, P.

Wu, K. S.

Yu, Z.

Yulong, T.

T. Yulong, L. Feng, and X. Jianqiu, “High peak-power gain-switched Tm doped fiber laser,” Photonics Technology Letters, IEEE 23(13), 893–895 (2011).
[Crossref]

Zenteno, L. A.

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (1)

K. Hattori and T. Kitagawa, “Gain switching of waveguide laser based on Nd-doped silica planar lightwave circuit pumped by laser diodes,” IEEE Photon. Technol. Lett. 4(9), 973–975 (1992).
[Crossref]

J. Appl. Phys. (2)

D. G. Carlson, “Dynamics of a repetitively pump-pulsed Nd:YAG Laser,” J. Appl. Phys. 39(9), 4369–4374 (1968).
[Crossref]

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[Crossref]

Laser Phys. (1)

V. Agrež, R. Petkovšek, D. Sangla, J. Saby, R. B. Picard, and F. Salin, “Effect of repetition rate on gain-switched fiber laser output pulses,” Laser Phys. 24(10), 105108 (2014).
[Crossref]

Opt. Express (12)

C. Larsen, K. P. Hansen, K. E. Mattsson, and O. Bang, “The all-fiber cladding-pumped Yb-doped gain-switched laser,” Opt. Express 22(2), 1490–1499 (2014).
[Crossref] [PubMed]

M. Malmström, Z. Yu, W. Margulis, O. Tarasenko, and F. Laurell, “All-fiber cavity dumping,” Opt. Express 17(20), 17596–17602 (2009).
[Crossref] [PubMed]

T.-Y. Tsai, Y.-C. Fang, H.-M. Huang, H.-X. Tsao, and S.-T. Lin, “Saturable absorber Q- and gain-switched all-Yb3+ all-fiber laser at 976 and 1064 nm,” Opt. Express 18(23), 23523–23528 (2010).
[Crossref] [PubMed]

M. Laurila, J. Saby, T. T. Alkeskjold, L. Scolari, B. Cocquelin, F. Salin, J. Broeng, and J. Lægsgaard, “Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser,” Opt. Express 19(11), 10824–10833 (2011).
[Crossref] [PubMed]

R. Petkovšek and V. Agrež, “Single stage Yb-doped fiber laser based on gain switching with short pulse duration,” Opt. Express 22(2), 1366–1371 (2014).
[Crossref] [PubMed]

R. Petkovšek, J. Saby, F. Salin, T. Schumi, and F. Bammer, “SCPEM-Q-switching of a fiber-rod-laser,” Opt. Express 20(7), 7415–7421 (2012).
[Crossref] [PubMed]

D. Jin, R. Sun, H. Shi, J. Liu, and P. Wang, “Stable passively Q-switched and gain-switched Yb-doped all-fiber laser based on a dual-cavity with fiber Bragg gratings,” Opt. Express 21(22), 26027–26033 (2013).
[Crossref] [PubMed]

C. Larsen, M. Giesberts, S. Nyga, O. Fitzau, B. Jungbluth, H. D. Hoffmann, and O. Bang, “Gain-switched all-fiber laser with narrow bandwidth,” Opt. Express 21(10), 12302–12308 (2013).
[Crossref] [PubMed]

K. S. Wu, D. Ottaway, J. Munch, D. G. Lancaster, S. Bennetts, and S. D. Jackson, “Gain-switched holmium-doped fibre laser,” Opt. Express 17(23), 20872–20877 (2009).
[Crossref] [PubMed]

C. Larsen, D. Noordegraaf, P. M. W. Skovgaard, K. P. Hansen, K. E. Mattsson, and O. Bang, “Gain-switched CW fiber laser for improved supercontinuum generation in a PCF,” Opt. Express 19(16), 14883–14891 (2011).
[Crossref] [PubMed]

N. Simakov, A. Hemming, S. Bennetts, and J. Haub, “Efficient, polarised, gain-switched operation of a Tm-doped fibre laser,” Opt. Express 19(16), 14949–14954 (2011).
[Crossref] [PubMed]

V. Agrež and R. Petkovšek, “Gain switch laser based on micro-structured Yb-doped active fiber,” Opt. Express 22(5), 5558–5563 (2014).
[Crossref] [PubMed]

Opt. Lett. (2)

Photonics Technology Letters, IEEE (1)

T. Yulong, L. Feng, and X. Jianqiu, “High peak-power gain-switched Tm doped fiber laser,” Photonics Technology Letters, IEEE 23(13), 893–895 (2011).
[Crossref]

Other (1)

S. Maryashin, A. Unt, and V. P. Gapontsev, “10-mJ pulse energy and 200 W average power Yb-doped fiber laser,” in Fiber Lasers III, (SPIE, 2006), 61020O61021–61020O61025.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematics of the experimental setup. The control unit monitors the signal from the photodiode and consists of a user interface, switching logic, and temperature control. Fresnel reflection from the straight-cleaved fiber end is marked as R2. The pump and laser light were split by a dichroic mirror with high transmissivity (HT) at 976 nm and high reflectivity (HR) at 1030/1064 nm. The output of the oscillator (consisting of the laser and unabsorbed pump light) were coupled into an Yb-doped fiber amplifier.
Fig. 2
Fig. 2 Output power of the oscillator (blue squares) and a 108-cm fiber amplifier (green circles). The wavelength of the oscillator was set to 1064 nm (using a diffraction grating). The bars denote the fraction of the laser (blue) and unabsorbed pump (red) power at the oscillator output. The slope efficiency increased from 25% of the oscillator alone (blue line) to 41% of the entire laser system (green line).
Fig. 3
Fig. 3 Shape of the output laser pulse of the oscillator at 1030 nm for three different pump powers. The pulse durations for 3.5-W, 5.3-W, and 8.6-W pump powers are 48 ns, 33 ns, and 24.5 ns, respectively.
Fig. 4
Fig. 4 Pump-enabled signal and pulse output of the oscillator alone (blue, green), and that of the oscillator after it is coupled to the amplifier (red, cyan). The laser pulse appears around 34 ns sooner if the oscillator is coupled to the 172-cm-long amplifier.
Fig. 5
Fig. 5 (a) Laser pulse duration at 1030 nm of the oscillator without amplifier (blue circles), pulse duration of the oscillator after it is coupled to a 172-cm-long amplifier (green squares), and numerical model results for the oscillator without amplifier (blue line) and the oscillator after it is coupled to a 172-cm-long amplifier (green line). (b) Pulse duration at the input (green squares) and output (red diamonds) of the amplifier. The red line shows the predicted pulse duration at the output of the amplifier using our numerical model.
Fig. 6
Fig. 6 Pulse train at the output of the 172-cm amplifier at 1030-nm wavelength and 8.6-W pump power. High pulse–to-pulse stability was achieved as the measured standard deviation of the pulse FWHM and pulse energy were 2% and 0.8%, respectively, on a sample of around 100 pulses.
Fig. 7
Fig. 7 The output of the laser system with a total active fiber length (oscillator + amplifier) of 225 cm with regard to the length of the oscillators’ active fiber length. (a) Laser pulse duration of the oscillator (blue), amplifier with no coupling losses (green) and amplifier with 70% coupling efficiency. (b) Laser peak power of the oscillator (blue), amplifier with no coupling losses (green) and amplifier with 70% coupling efficiency.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

t Lp t p P pa .

Metrics