Abstract

We demonstrate subwavelength electromagnetic resonators operating in the THz spectral range, whose spectral properties and spatial/angular patterns can be engineered in a similar way to an electronic circuit. We discuss the device concept, and we experimentally study the tuning of the resonant frequency as a function of variable capacitances and inductances. We then elucidate the optical coupling properties. The radiation pattern, obtained by angle-resolved reflectance, reveals that the system mainly couples to the outside world via a magnetic dipolar interaction.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional THz lumped-circuit resonators

Yanko Todorov, Pascal Desfonds, Cherif Belacel, Loïc Becerra, and Carlo Sirtori
Opt. Express 23(13) 16838-16845 (2015)

Nanoscale electromagnetic confinement in THz circuit resonators

Alireza Mottaghizadeh, Yanko Todorov, Mathis Cameau, Djamal Gacemi, Angela Vasanelli, and Carlo Sirtori
Opt. Express 25(23) 28718-28730 (2017)

Extremely sub-wavelength THz metal-dielectric wire microcavities

Cheryl Feuillet-Palma, Yanko Todorov, Robert Steed, Angela Vasanelli, Giorgio Biasiol, Lucia Sorba, and Carlo Sirtori
Opt. Express 20(27) 29121-29130 (2012)

References

  • View by:
  • |
  • |
  • |

  1. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photon. 2(5), 295–298 (2008).
    [Crossref]
  2. B. Reinhard, O. Paul, R. Beigang, and M. Rahm, “Experimental and numerical studies of terahertz surface waves on a thin metamaterial film,” Opt. Lett. 35(9), 1320–1322 (2010).
    [Crossref] [PubMed]
  3. G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
    [Crossref] [PubMed]
  4. D. Dietze, A. Benz, G. Strasser, K. Unterrainer, and J. Darmo, “Terahertz meta-atoms coupled to a quantum well intersubband transition,” Opt. Express 19(14), 13700–13706 (2011).
    [Crossref] [PubMed]
  5. E. Strupiechonski, G. Xu, M. Brekenfeld, Y. Todorov, N. Isac, M. Andrews, P. Klang, C. Sirtori, G. Strasser, A. Degiron, and R. Colombelli, “Sub-diffraction-limit semiconductor resonators operating on the fundamental magnetic resonance,” Appl. Phys. Lett. 100(13), 131113 (2012).
    [Crossref]
  6. E. Strupiechonski, G. Xu, P. Cavalié, N. Isac, S. Dhillon, J. Tignon, G. Beaudoin, I. Sagnes, A. Degiron, and R. Colombelli, “Hybrid electronic-photonic subwavelength cavities operating at terahertz frequencies,” Phys. Rev. B 87(4), 041408 (2013).
    [Crossref]
  7. C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327(5972), 1495–1497 (2010).
    [Crossref] [PubMed]
  8. A. A. Tavallaee, P. Hon, K. Mehta, T. Itoh, and B. S. Williams, “Zero-index terahertz quantum-cascade metamaterial lasers,” IEEE J. Quantum Electron. 46(7), 1091–1098 (2010).
    [Crossref]
  9. K. Fan, A. C. Strikwerda, H. Tao, X. Zhang, and R. D. Averitt, “Stand-up magnetic metamaterials at terahertz frequencies,” Opt. Express 19(13), 12619–12627 (2011).
    [Crossref] [PubMed]
  10. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
    [Crossref] [PubMed]
  11. D. H. Staelin, A. W. Morgenthaler, and J. A. Kong, Electromagnetic Waves (Prentice Hall, 1994).
  12. Y. Todorov, L. Tosetto, J. Teissier, A. M. Andrews, P. Klang, R. Colombelli, I. Sagnes, G. Strasser, and C. Sirtori, “Optical properties of metal-dielectric-metal microcavities in the THz frequency range,” Opt. Express 18(13), 13886–13907 (2010).
    [Crossref] [PubMed]
  13. Y. Nga Chen, Y. Todorov, B. Askenazi, A. Vasanelli, G. Biasiol, R. Colombelli, and C. Sirtori, “Antenna-coupled microcavities for enhanced infrared photo-detection,” Appl. Phys. Lett. 104(3), 031113 (2014).
    [Crossref]
  14. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2012).
  15. D. Sievenpiper, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
    [Crossref]
  16. Z. Chen, A. Megrant, J. Kelly, R. Barends, J. Bochmann, Y. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Y. Mutus, P. J. J. O’Malley, C. Neill, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, “Fabrication and characterization of aluminum airbridges for superconducting microwave circuits,” Appl. Phys. Lett. 104(5), 052602 (2014).
    [Crossref]
  17. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
    [Crossref] [PubMed]
  18. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943 (2004).
    [Crossref]
  19. K. Steinberg, M. Scheffler, and M. Dressel, “Microwave inductance of thin metal strips,” J. Appl. Phys. 108(9), 096102 (2010).
    [Crossref]
  20. M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photon. 2(10), 614–617 (2008).
    [Crossref]
  21. P. Lunnemann, I. Sersic, and A. Koenderink, “Optical properties of two-dimensional magnetoelectric point scattering lattices,” Phys. Rev. B 88(24), 245109 (2013).
    [Crossref]
  22. W. Padilla, M. Aronsson, C. Highstrete, M. Lee, A. Taylor, and R. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
    [Crossref]
  23. D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
    [Crossref]

2014 (2)

Y. Nga Chen, Y. Todorov, B. Askenazi, A. Vasanelli, G. Biasiol, R. Colombelli, and C. Sirtori, “Antenna-coupled microcavities for enhanced infrared photo-detection,” Appl. Phys. Lett. 104(3), 031113 (2014).
[Crossref]

Z. Chen, A. Megrant, J. Kelly, R. Barends, J. Bochmann, Y. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Y. Mutus, P. J. J. O’Malley, C. Neill, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, “Fabrication and characterization of aluminum airbridges for superconducting microwave circuits,” Appl. Phys. Lett. 104(5), 052602 (2014).
[Crossref]

2013 (2)

E. Strupiechonski, G. Xu, P. Cavalié, N. Isac, S. Dhillon, J. Tignon, G. Beaudoin, I. Sagnes, A. Degiron, and R. Colombelli, “Hybrid electronic-photonic subwavelength cavities operating at terahertz frequencies,” Phys. Rev. B 87(4), 041408 (2013).
[Crossref]

P. Lunnemann, I. Sersic, and A. Koenderink, “Optical properties of two-dimensional magnetoelectric point scattering lattices,” Phys. Rev. B 88(24), 245109 (2013).
[Crossref]

2012 (3)

E. Strupiechonski, G. Xu, M. Brekenfeld, Y. Todorov, N. Isac, M. Andrews, P. Klang, C. Sirtori, G. Strasser, A. Degiron, and R. Colombelli, “Sub-diffraction-limit semiconductor resonators operating on the fundamental magnetic resonance,” Appl. Phys. Lett. 100(13), 131113 (2012).
[Crossref]

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (5)

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327(5972), 1495–1497 (2010).
[Crossref] [PubMed]

A. A. Tavallaee, P. Hon, K. Mehta, T. Itoh, and B. S. Williams, “Zero-index terahertz quantum-cascade metamaterial lasers,” IEEE J. Quantum Electron. 46(7), 1091–1098 (2010).
[Crossref]

B. Reinhard, O. Paul, R. Beigang, and M. Rahm, “Experimental and numerical studies of terahertz surface waves on a thin metamaterial film,” Opt. Lett. 35(9), 1320–1322 (2010).
[Crossref] [PubMed]

Y. Todorov, L. Tosetto, J. Teissier, A. M. Andrews, P. Klang, R. Colombelli, I. Sagnes, G. Strasser, and C. Sirtori, “Optical properties of metal-dielectric-metal microcavities in the THz frequency range,” Opt. Express 18(13), 13886–13907 (2010).
[Crossref] [PubMed]

K. Steinberg, M. Scheffler, and M. Dressel, “Microwave inductance of thin metal strips,” J. Appl. Phys. 108(9), 096102 (2010).
[Crossref]

2008 (2)

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photon. 2(10), 614–617 (2008).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photon. 2(5), 295–298 (2008).
[Crossref]

2007 (1)

W. Padilla, M. Aronsson, C. Highstrete, M. Lee, A. Taylor, and R. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

2006 (1)

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]

2004 (2)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943 (2004).
[Crossref]

1999 (1)

D. Sievenpiper, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
[Crossref]

Alexopolous, N. G.

D. Sievenpiper, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
[Crossref]

Amanti, M. I.

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327(5972), 1495–1497 (2010).
[Crossref] [PubMed]

Andrews, A. M.

Andrews, M.

E. Strupiechonski, G. Xu, M. Brekenfeld, Y. Todorov, N. Isac, M. Andrews, P. Klang, C. Sirtori, G. Strasser, A. Degiron, and R. Colombelli, “Sub-diffraction-limit semiconductor resonators operating on the fundamental magnetic resonance,” Appl. Phys. Lett. 100(13), 131113 (2012).
[Crossref]

Aronsson, M.

W. Padilla, M. Aronsson, C. Highstrete, M. Lee, A. Taylor, and R. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Askenazi, B.

Y. Nga Chen, Y. Todorov, B. Askenazi, A. Vasanelli, G. Biasiol, R. Colombelli, and C. Sirtori, “Antenna-coupled microcavities for enhanced infrared photo-detection,” Appl. Phys. Lett. 104(3), 031113 (2014).
[Crossref]

Averitt, R.

W. Padilla, M. Aronsson, C. Highstrete, M. Lee, A. Taylor, and R. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Averitt, R. D.

K. Fan, A. C. Strikwerda, H. Tao, X. Zhang, and R. D. Averitt, “Stand-up magnetic metamaterials at terahertz frequencies,” Opt. Express 19(13), 12619–12627 (2011).
[Crossref] [PubMed]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photon. 2(5), 295–298 (2008).
[Crossref]

Azad, A. K.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photon. 2(5), 295–298 (2008).
[Crossref]

Barends, R.

Z. Chen, A. Megrant, J. Kelly, R. Barends, J. Bochmann, Y. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Y. Mutus, P. J. J. O’Malley, C. Neill, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, “Fabrication and characterization of aluminum airbridges for superconducting microwave circuits,” Appl. Phys. Lett. 104(5), 052602 (2014).
[Crossref]

Beaudoin, G.

E. Strupiechonski, G. Xu, P. Cavalié, N. Isac, S. Dhillon, J. Tignon, G. Beaudoin, I. Sagnes, A. Degiron, and R. Colombelli, “Hybrid electronic-photonic subwavelength cavities operating at terahertz frequencies,” Phys. Rev. B 87(4), 041408 (2013).
[Crossref]

Beck, M.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327(5972), 1495–1497 (2010).
[Crossref] [PubMed]

Beigang, R.

Benz, A.

Biasiol, G.

Y. Nga Chen, Y. Todorov, B. Askenazi, A. Vasanelli, G. Biasiol, R. Colombelli, and C. Sirtori, “Antenna-coupled microcavities for enhanced infrared photo-detection,” Appl. Phys. Lett. 104(3), 031113 (2014).
[Crossref]

Bochmann, J.

Z. Chen, A. Megrant, J. Kelly, R. Barends, J. Bochmann, Y. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Y. Mutus, P. J. J. O’Malley, C. Neill, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, “Fabrication and characterization of aluminum airbridges for superconducting microwave circuits,” Appl. Phys. Lett. 104(5), 052602 (2014).
[Crossref]

Brekenfeld, M.

E. Strupiechonski, G. Xu, M. Brekenfeld, Y. Todorov, N. Isac, M. Andrews, P. Klang, C. Sirtori, G. Strasser, A. Degiron, and R. Colombelli, “Sub-diffraction-limit semiconductor resonators operating on the fundamental magnetic resonance,” Appl. Phys. Lett. 100(13), 131113 (2012).
[Crossref]

Broas, R. F. J.

D. Sievenpiper, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
[Crossref]

Busch, K.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photon. 2(10), 614–617 (2008).
[Crossref]

Cavalié, P.

E. Strupiechonski, G. Xu, P. Cavalié, N. Isac, S. Dhillon, J. Tignon, G. Beaudoin, I. Sagnes, A. Degiron, and R. Colombelli, “Hybrid electronic-photonic subwavelength cavities operating at terahertz frequencies,” Phys. Rev. B 87(4), 041408 (2013).
[Crossref]

Chen, H.-T.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photon. 2(5), 295–298 (2008).
[Crossref]

Chen, Y.

Z. Chen, A. Megrant, J. Kelly, R. Barends, J. Bochmann, Y. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Y. Mutus, P. J. J. O’Malley, C. Neill, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, “Fabrication and characterization of aluminum airbridges for superconducting microwave circuits,” Appl. Phys. Lett. 104(5), 052602 (2014).
[Crossref]

Chen, Z.

Z. Chen, A. Megrant, J. Kelly, R. Barends, J. Bochmann, Y. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Y. Mutus, P. J. J. O’Malley, C. Neill, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, “Fabrication and characterization of aluminum airbridges for superconducting microwave circuits,” Appl. Phys. Lett. 104(5), 052602 (2014).
[Crossref]

Chiaro, B.

Z. Chen, A. Megrant, J. Kelly, R. Barends, J. Bochmann, Y. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Y. Mutus, P. J. J. O’Malley, C. Neill, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, “Fabrication and characterization of aluminum airbridges for superconducting microwave circuits,” Appl. Phys. Lett. 104(5), 052602 (2014).
[Crossref]

Ciuti, C.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Cleland, A. N.

Z. Chen, A. Megrant, J. Kelly, R. Barends, J. Bochmann, Y. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Y. Mutus, P. J. J. O’Malley, C. Neill, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, “Fabrication and characterization of aluminum airbridges for superconducting microwave circuits,” Appl. Phys. Lett. 104(5), 052602 (2014).
[Crossref]

Colombelli, R.

Y. Nga Chen, Y. Todorov, B. Askenazi, A. Vasanelli, G. Biasiol, R. Colombelli, and C. Sirtori, “Antenna-coupled microcavities for enhanced infrared photo-detection,” Appl. Phys. Lett. 104(3), 031113 (2014).
[Crossref]

E. Strupiechonski, G. Xu, P. Cavalié, N. Isac, S. Dhillon, J. Tignon, G. Beaudoin, I. Sagnes, A. Degiron, and R. Colombelli, “Hybrid electronic-photonic subwavelength cavities operating at terahertz frequencies,” Phys. Rev. B 87(4), 041408 (2013).
[Crossref]

E. Strupiechonski, G. Xu, M. Brekenfeld, Y. Todorov, N. Isac, M. Andrews, P. Klang, C. Sirtori, G. Strasser, A. Degiron, and R. Colombelli, “Sub-diffraction-limit semiconductor resonators operating on the fundamental magnetic resonance,” Appl. Phys. Lett. 100(13), 131113 (2012).
[Crossref]

Y. Todorov, L. Tosetto, J. Teissier, A. M. Andrews, P. Klang, R. Colombelli, I. Sagnes, G. Strasser, and C. Sirtori, “Optical properties of metal-dielectric-metal microcavities in the THz frequency range,” Opt. Express 18(13), 13886–13907 (2010).
[Crossref] [PubMed]

Darmo, J.

De Liberato, S.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Degiron, A.

E. Strupiechonski, G. Xu, P. Cavalié, N. Isac, S. Dhillon, J. Tignon, G. Beaudoin, I. Sagnes, A. Degiron, and R. Colombelli, “Hybrid electronic-photonic subwavelength cavities operating at terahertz frequencies,” Phys. Rev. B 87(4), 041408 (2013).
[Crossref]

E. Strupiechonski, G. Xu, M. Brekenfeld, Y. Todorov, N. Isac, M. Andrews, P. Klang, C. Sirtori, G. Strasser, A. Degiron, and R. Colombelli, “Sub-diffraction-limit semiconductor resonators operating on the fundamental magnetic resonance,” Appl. Phys. Lett. 100(13), 131113 (2012).
[Crossref]

Dhillon, S.

E. Strupiechonski, G. Xu, P. Cavalié, N. Isac, S. Dhillon, J. Tignon, G. Beaudoin, I. Sagnes, A. Degiron, and R. Colombelli, “Hybrid electronic-photonic subwavelength cavities operating at terahertz frequencies,” Phys. Rev. B 87(4), 041408 (2013).
[Crossref]

Dietze, D.

Dressel, M.

K. Steinberg, M. Scheffler, and M. Dressel, “Microwave inductance of thin metal strips,” J. Appl. Phys. 108(9), 096102 (2010).
[Crossref]

Dunsworth, A.

Z. Chen, A. Megrant, J. Kelly, R. Barends, J. Bochmann, Y. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Y. Mutus, P. J. J. O’Malley, C. Neill, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, “Fabrication and characterization of aluminum airbridges for superconducting microwave circuits,” Appl. Phys. Lett. 104(5), 052602 (2014).
[Crossref]

Economou, E. N.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943 (2004).
[Crossref]

Enkrich, C.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Faist, J.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327(5972), 1495–1497 (2010).
[Crossref] [PubMed]

Fan, K.

Feth, N.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photon. 2(10), 614–617 (2008).
[Crossref]

Hagenmüller, D.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Highstrete, C.

W. Padilla, M. Aronsson, C. Highstrete, M. Lee, A. Taylor, and R. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Hon, P.

A. A. Tavallaee, P. Hon, K. Mehta, T. Itoh, and B. S. Williams, “Zero-index terahertz quantum-cascade metamaterial lasers,” IEEE J. Quantum Electron. 46(7), 1091–1098 (2010).
[Crossref]

Husnik, M.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photon. 2(10), 614–617 (2008).
[Crossref]

Isac, N.

E. Strupiechonski, G. Xu, P. Cavalié, N. Isac, S. Dhillon, J. Tignon, G. Beaudoin, I. Sagnes, A. Degiron, and R. Colombelli, “Hybrid electronic-photonic subwavelength cavities operating at terahertz frequencies,” Phys. Rev. B 87(4), 041408 (2013).
[Crossref]

E. Strupiechonski, G. Xu, M. Brekenfeld, Y. Todorov, N. Isac, M. Andrews, P. Klang, C. Sirtori, G. Strasser, A. Degiron, and R. Colombelli, “Sub-diffraction-limit semiconductor resonators operating on the fundamental magnetic resonance,” Appl. Phys. Lett. 100(13), 131113 (2012).
[Crossref]

Itoh, T.

A. A. Tavallaee, P. Hon, K. Mehta, T. Itoh, and B. S. Williams, “Zero-index terahertz quantum-cascade metamaterial lasers,” IEEE J. Quantum Electron. 46(7), 1091–1098 (2010).
[Crossref]

Jeffrey, E.

Z. Chen, A. Megrant, J. Kelly, R. Barends, J. Bochmann, Y. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Y. Mutus, P. J. J. O’Malley, C. Neill, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, “Fabrication and characterization of aluminum airbridges for superconducting microwave circuits,” Appl. Phys. Lett. 104(5), 052602 (2014).
[Crossref]

Kafesaki, M.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943 (2004).
[Crossref]

Katsarakis, N.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943 (2004).
[Crossref]

Kelly, J.

Z. Chen, A. Megrant, J. Kelly, R. Barends, J. Bochmann, Y. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Y. Mutus, P. J. J. O’Malley, C. Neill, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, “Fabrication and characterization of aluminum airbridges for superconducting microwave circuits,” Appl. Phys. Lett. 104(5), 052602 (2014).
[Crossref]

Kivshar, Y. S.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Klang, P.

E. Strupiechonski, G. Xu, M. Brekenfeld, Y. Todorov, N. Isac, M. Andrews, P. Klang, C. Sirtori, G. Strasser, A. Degiron, and R. Colombelli, “Sub-diffraction-limit semiconductor resonators operating on the fundamental magnetic resonance,” Appl. Phys. Lett. 100(13), 131113 (2012).
[Crossref]

Y. Todorov, L. Tosetto, J. Teissier, A. M. Andrews, P. Klang, R. Colombelli, I. Sagnes, G. Strasser, and C. Sirtori, “Optical properties of metal-dielectric-metal microcavities in the THz frequency range,” Opt. Express 18(13), 13886–13907 (2010).
[Crossref] [PubMed]

Klein, M. W.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photon. 2(10), 614–617 (2008).
[Crossref]

Koenderink, A.

P. Lunnemann, I. Sersic, and A. Koenderink, “Optical properties of two-dimensional magnetoelectric point scattering lattices,” Phys. Rev. B 88(24), 245109 (2013).
[Crossref]

König, M.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photon. 2(10), 614–617 (2008).
[Crossref]

Koschny, T.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943 (2004).
[Crossref]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Lee, M.

W. Padilla, M. Aronsson, C. Highstrete, M. Lee, A. Taylor, and R. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Linden, S.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photon. 2(10), 614–617 (2008).
[Crossref]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Lunnemann, P.

P. Lunnemann, I. Sersic, and A. Koenderink, “Optical properties of two-dimensional magnetoelectric point scattering lattices,” Phys. Rev. B 88(24), 245109 (2013).
[Crossref]

Maissen, C.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Martinis, J. M.

Z. Chen, A. Megrant, J. Kelly, R. Barends, J. Bochmann, Y. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Y. Mutus, P. J. J. O’Malley, C. Neill, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, “Fabrication and characterization of aluminum airbridges for superconducting microwave circuits,” Appl. Phys. Lett. 104(5), 052602 (2014).
[Crossref]

Megrant, A.

Z. Chen, A. Megrant, J. Kelly, R. Barends, J. Bochmann, Y. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Y. Mutus, P. J. J. O’Malley, C. Neill, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, “Fabrication and characterization of aluminum airbridges for superconducting microwave circuits,” Appl. Phys. Lett. 104(5), 052602 (2014).
[Crossref]

Mehta, K.

A. A. Tavallaee, P. Hon, K. Mehta, T. Itoh, and B. S. Williams, “Zero-index terahertz quantum-cascade metamaterial lasers,” IEEE J. Quantum Electron. 46(7), 1091–1098 (2010).
[Crossref]

Mock, J. J.

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]

Mutus, J. Y.

Z. Chen, A. Megrant, J. Kelly, R. Barends, J. Bochmann, Y. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Y. Mutus, P. J. J. O’Malley, C. Neill, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, “Fabrication and characterization of aluminum airbridges for superconducting microwave circuits,” Appl. Phys. Lett. 104(5), 052602 (2014).
[Crossref]

Neill, C.

Z. Chen, A. Megrant, J. Kelly, R. Barends, J. Bochmann, Y. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Y. Mutus, P. J. J. O’Malley, C. Neill, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, “Fabrication and characterization of aluminum airbridges for superconducting microwave circuits,” Appl. Phys. Lett. 104(5), 052602 (2014).
[Crossref]

Nga Chen, Y.

Y. Nga Chen, Y. Todorov, B. Askenazi, A. Vasanelli, G. Biasiol, R. Colombelli, and C. Sirtori, “Antenna-coupled microcavities for enhanced infrared photo-detection,” Appl. Phys. Lett. 104(3), 031113 (2014).
[Crossref]

Niegemann, J.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photon. 2(10), 614–617 (2008).
[Crossref]

O’Hara, J. F.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photon. 2(5), 295–298 (2008).
[Crossref]

O’Malley, P. J. J.

Z. Chen, A. Megrant, J. Kelly, R. Barends, J. Bochmann, Y. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Y. Mutus, P. J. J. O’Malley, C. Neill, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, “Fabrication and characterization of aluminum airbridges for superconducting microwave circuits,” Appl. Phys. Lett. 104(5), 052602 (2014).
[Crossref]

Padilla, W.

W. Padilla, M. Aronsson, C. Highstrete, M. Lee, A. Taylor, and R. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Padilla, W. J.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photon. 2(5), 295–298 (2008).
[Crossref]

Paul, O.

Rahm, M.

Reichl, C.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Reinhard, B.

Roushan, P.

Z. Chen, A. Megrant, J. Kelly, R. Barends, J. Bochmann, Y. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Y. Mutus, P. J. J. O’Malley, C. Neill, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, “Fabrication and characterization of aluminum airbridges for superconducting microwave circuits,” Appl. Phys. Lett. 104(5), 052602 (2014).
[Crossref]

Sagnes, I.

E. Strupiechonski, G. Xu, P. Cavalié, N. Isac, S. Dhillon, J. Tignon, G. Beaudoin, I. Sagnes, A. Degiron, and R. Colombelli, “Hybrid electronic-photonic subwavelength cavities operating at terahertz frequencies,” Phys. Rev. B 87(4), 041408 (2013).
[Crossref]

Y. Todorov, L. Tosetto, J. Teissier, A. M. Andrews, P. Klang, R. Colombelli, I. Sagnes, G. Strasser, and C. Sirtori, “Optical properties of metal-dielectric-metal microcavities in the THz frequency range,” Opt. Express 18(13), 13886–13907 (2010).
[Crossref] [PubMed]

Sank, D.

Z. Chen, A. Megrant, J. Kelly, R. Barends, J. Bochmann, Y. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Y. Mutus, P. J. J. O’Malley, C. Neill, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, “Fabrication and characterization of aluminum airbridges for superconducting microwave circuits,” Appl. Phys. Lett. 104(5), 052602 (2014).
[Crossref]

Scalari, G.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327(5972), 1495–1497 (2010).
[Crossref] [PubMed]

Scheffler, M.

K. Steinberg, M. Scheffler, and M. Dressel, “Microwave inductance of thin metal strips,” J. Appl. Phys. 108(9), 096102 (2010).
[Crossref]

Schuh, D.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]

Sersic, I.

P. Lunnemann, I. Sersic, and A. Koenderink, “Optical properties of two-dimensional magnetoelectric point scattering lattices,” Phys. Rev. B 88(24), 245109 (2013).
[Crossref]

Shrekenhamer, D. B.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photon. 2(5), 295–298 (2008).
[Crossref]

Sievenpiper, D.

D. Sievenpiper, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
[Crossref]

Sirtori, C.

Y. Nga Chen, Y. Todorov, B. Askenazi, A. Vasanelli, G. Biasiol, R. Colombelli, and C. Sirtori, “Antenna-coupled microcavities for enhanced infrared photo-detection,” Appl. Phys. Lett. 104(3), 031113 (2014).
[Crossref]

E. Strupiechonski, G. Xu, M. Brekenfeld, Y. Todorov, N. Isac, M. Andrews, P. Klang, C. Sirtori, G. Strasser, A. Degiron, and R. Colombelli, “Sub-diffraction-limit semiconductor resonators operating on the fundamental magnetic resonance,” Appl. Phys. Lett. 100(13), 131113 (2012).
[Crossref]

Y. Todorov, L. Tosetto, J. Teissier, A. M. Andrews, P. Klang, R. Colombelli, I. Sagnes, G. Strasser, and C. Sirtori, “Optical properties of metal-dielectric-metal microcavities in the THz frequency range,” Opt. Express 18(13), 13886–13907 (2010).
[Crossref] [PubMed]

Smith, D. R.

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]

Soukoulis, C. M.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943 (2004).
[Crossref]

Steinberg, K.

K. Steinberg, M. Scheffler, and M. Dressel, “Microwave inductance of thin metal strips,” J. Appl. Phys. 108(9), 096102 (2010).
[Crossref]

Strasser, G.

Strikwerda, A. C.

Strupiechonski, E.

E. Strupiechonski, G. Xu, P. Cavalié, N. Isac, S. Dhillon, J. Tignon, G. Beaudoin, I. Sagnes, A. Degiron, and R. Colombelli, “Hybrid electronic-photonic subwavelength cavities operating at terahertz frequencies,” Phys. Rev. B 87(4), 041408 (2013).
[Crossref]

E. Strupiechonski, G. Xu, M. Brekenfeld, Y. Todorov, N. Isac, M. Andrews, P. Klang, C. Sirtori, G. Strasser, A. Degiron, and R. Colombelli, “Sub-diffraction-limit semiconductor resonators operating on the fundamental magnetic resonance,” Appl. Phys. Lett. 100(13), 131113 (2012).
[Crossref]

Tao, H.

Tavallaee, A. A.

A. A. Tavallaee, P. Hon, K. Mehta, T. Itoh, and B. S. Williams, “Zero-index terahertz quantum-cascade metamaterial lasers,” IEEE J. Quantum Electron. 46(7), 1091–1098 (2010).
[Crossref]

Taylor, A.

W. Padilla, M. Aronsson, C. Highstrete, M. Lee, A. Taylor, and R. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Taylor, A. J.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photon. 2(5), 295–298 (2008).
[Crossref]

Teissier, J.

Tignon, J.

E. Strupiechonski, G. Xu, P. Cavalié, N. Isac, S. Dhillon, J. Tignon, G. Beaudoin, I. Sagnes, A. Degiron, and R. Colombelli, “Hybrid electronic-photonic subwavelength cavities operating at terahertz frequencies,” Phys. Rev. B 87(4), 041408 (2013).
[Crossref]

Todorov, Y.

Y. Nga Chen, Y. Todorov, B. Askenazi, A. Vasanelli, G. Biasiol, R. Colombelli, and C. Sirtori, “Antenna-coupled microcavities for enhanced infrared photo-detection,” Appl. Phys. Lett. 104(3), 031113 (2014).
[Crossref]

E. Strupiechonski, G. Xu, M. Brekenfeld, Y. Todorov, N. Isac, M. Andrews, P. Klang, C. Sirtori, G. Strasser, A. Degiron, and R. Colombelli, “Sub-diffraction-limit semiconductor resonators operating on the fundamental magnetic resonance,” Appl. Phys. Lett. 100(13), 131113 (2012).
[Crossref]

Y. Todorov, L. Tosetto, J. Teissier, A. M. Andrews, P. Klang, R. Colombelli, I. Sagnes, G. Strasser, and C. Sirtori, “Optical properties of metal-dielectric-metal microcavities in the THz frequency range,” Opt. Express 18(13), 13886–13907 (2010).
[Crossref] [PubMed]

Tosetto, L.

Turcinková, D.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Unterrainer, K.

Vainsencher, A.

Z. Chen, A. Megrant, J. Kelly, R. Barends, J. Bochmann, Y. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Y. Mutus, P. J. J. O’Malley, C. Neill, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, “Fabrication and characterization of aluminum airbridges for superconducting microwave circuits,” Appl. Phys. Lett. 104(5), 052602 (2014).
[Crossref]

Vasanelli, A.

Y. Nga Chen, Y. Todorov, B. Askenazi, A. Vasanelli, G. Biasiol, R. Colombelli, and C. Sirtori, “Antenna-coupled microcavities for enhanced infrared photo-detection,” Appl. Phys. Lett. 104(3), 031113 (2014).
[Crossref]

Walther, C.

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327(5972), 1495–1497 (2010).
[Crossref] [PubMed]

Wegener, M.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photon. 2(10), 614–617 (2008).
[Crossref]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Wegscheider, W.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Wenner, J.

Z. Chen, A. Megrant, J. Kelly, R. Barends, J. Bochmann, Y. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Y. Mutus, P. J. J. O’Malley, C. Neill, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, “Fabrication and characterization of aluminum airbridges for superconducting microwave circuits,” Appl. Phys. Lett. 104(5), 052602 (2014).
[Crossref]

White, T. C.

Z. Chen, A. Megrant, J. Kelly, R. Barends, J. Bochmann, Y. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Y. Mutus, P. J. J. O’Malley, C. Neill, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, “Fabrication and characterization of aluminum airbridges for superconducting microwave circuits,” Appl. Phys. Lett. 104(5), 052602 (2014).
[Crossref]

Williams, B. S.

A. A. Tavallaee, P. Hon, K. Mehta, T. Itoh, and B. S. Williams, “Zero-index terahertz quantum-cascade metamaterial lasers,” IEEE J. Quantum Electron. 46(7), 1091–1098 (2010).
[Crossref]

Xu, G.

E. Strupiechonski, G. Xu, P. Cavalié, N. Isac, S. Dhillon, J. Tignon, G. Beaudoin, I. Sagnes, A. Degiron, and R. Colombelli, “Hybrid electronic-photonic subwavelength cavities operating at terahertz frequencies,” Phys. Rev. B 87(4), 041408 (2013).
[Crossref]

E. Strupiechonski, G. Xu, M. Brekenfeld, Y. Todorov, N. Isac, M. Andrews, P. Klang, C. Sirtori, G. Strasser, A. Degiron, and R. Colombelli, “Sub-diffraction-limit semiconductor resonators operating on the fundamental magnetic resonance,” Appl. Phys. Lett. 100(13), 131113 (2012).
[Crossref]

Yablonovitch, E.

D. Sievenpiper, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
[Crossref]

Zhang, X.

Zheludev, N. I.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Zhou, J.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

E. Strupiechonski, G. Xu, M. Brekenfeld, Y. Todorov, N. Isac, M. Andrews, P. Klang, C. Sirtori, G. Strasser, A. Degiron, and R. Colombelli, “Sub-diffraction-limit semiconductor resonators operating on the fundamental magnetic resonance,” Appl. Phys. Lett. 100(13), 131113 (2012).
[Crossref]

Y. Nga Chen, Y. Todorov, B. Askenazi, A. Vasanelli, G. Biasiol, R. Colombelli, and C. Sirtori, “Antenna-coupled microcavities for enhanced infrared photo-detection,” Appl. Phys. Lett. 104(3), 031113 (2014).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943 (2004).
[Crossref]

Z. Chen, A. Megrant, J. Kelly, R. Barends, J. Bochmann, Y. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Y. Mutus, P. J. J. O’Malley, C. Neill, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, “Fabrication and characterization of aluminum airbridges for superconducting microwave circuits,” Appl. Phys. Lett. 104(5), 052602 (2014).
[Crossref]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

A. A. Tavallaee, P. Hon, K. Mehta, T. Itoh, and B. S. Williams, “Zero-index terahertz quantum-cascade metamaterial lasers,” IEEE J. Quantum Electron. 46(7), 1091–1098 (2010).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

D. Sievenpiper, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
[Crossref]

J. Appl. Phys. (1)

K. Steinberg, M. Scheffler, and M. Dressel, “Microwave inductance of thin metal strips,” J. Appl. Phys. 108(9), 096102 (2010).
[Crossref]

Nat. Mater. (1)

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Nat. Photon. (2)

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photon. 2(10), 614–617 (2008).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photon. 2(5), 295–298 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (3)

E. Strupiechonski, G. Xu, P. Cavalié, N. Isac, S. Dhillon, J. Tignon, G. Beaudoin, I. Sagnes, A. Degiron, and R. Colombelli, “Hybrid electronic-photonic subwavelength cavities operating at terahertz frequencies,” Phys. Rev. B 87(4), 041408 (2013).
[Crossref]

P. Lunnemann, I. Sersic, and A. Koenderink, “Optical properties of two-dimensional magnetoelectric point scattering lattices,” Phys. Rev. B 88(24), 245109 (2013).
[Crossref]

W. Padilla, M. Aronsson, C. Highstrete, M. Lee, A. Taylor, and R. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Science (3)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327(5972), 1495–1497 (2010).
[Crossref] [PubMed]

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Other (2)

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2012).

D. H. Staelin, A. W. Morgenthaler, and J. A. Kong, Electromagnetic Waves (Prentice Hall, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Intuitive idea of the hybrid loop-antenna/patch-cavity resonator. Equivalent circuit: the patch is mainly a capacitive section, while the antenna is mainly inductive. The antenna also features a radiative resistance (Rrad) which is responsible for radiation coupling. (b) Scanning electronic microscope (SEM) image of a real device. The superimposed schematic defines the incidence angles θ and φ.
Fig. 2
Fig. 2 Specifications of the fabricated devices: 16 device geometries were fabricated (a 4x4 matrix) with 4 different patch side (s), and 4 different loop antenna lengths (l). The GaAs thickness t is kept constant at 2 μm. The operating frequency (wavelength) of the fundamental LC mode of each device is reported in the corresponding matrix cell. The colors identify the nominally iso-frequency samples. Details about how the cavities were measured are given in section 3.
Fig. 3
Fig. 3 (a) Experimental configurations for device characterization. The arrangement of the E,H fields with respect to the incidence plane is highlighted for TM, TE polarizations. The twist angle φ identifies the two non-equivalent orientations of the loop antenna: φ = 0° parallel to the incidence plane, φ = 90° normal to the incidence plane. (b) Typical reflectivity spectrum at 45° for a device in the 4 configurations. Spectra are stacked (offset ≈-0.2) for the sake of clarity. The top spectrum is not shifted and it shows that the background reflectivity is close to unity. The dip around f≈7 THz is the patch TM001/TM010 mode. For configurations (ii) - (iv) the LC mode appears at ≈2.6 THz. The Ez field distribution at resonance in the semiconductor is shown in the insets.
Fig. 4
Fig. 4 Experimental wavelengths (frequencies) of the LC mode as a function of the patch side (s) for various inductor lengths (l). For a fixed loop size the trend is linear, as expected from theory. The confinement ratio in the semiconductor, λeff/s, is reported for each inductor size. A value of 2 corresponds to the diffraction limit.
Fig. 5
Fig. 5 Resonant wavelengths (frequencies) of the LC mode obtained with a simple, parameter-free LC model (open stars) compared to the experimental data from the reflectivity measurements (full dots). The inset reports the values of the patch capacitance Cs (fF) and of the loop inductance Ll (pH) as obtained from the sample geometrical parameters.
Fig. 6
Fig. 6 (a) Typical reflectivity spectra at different incidence angles (sample s = 7.5 μm, l = 5 μm) in the experimental configuration shown in the inset (iii). Spectra are stacked (offset ≈-0.1) for the sake of clarity. The top spectrum is not shifted and it shows that the background reflectivity is close to unity. (b) Polar plot of the absorbed intensity vs incidence angle for three devices having constant patch size (s = 7.5 μm) and different loop lengths.
Fig. 7
Fig. 7 (a) Schematics and dimensions of the iso-frequency resonators analyzed. (b) Polar plot of the absorption vs incidence angle. (c) Normalized absorption patterns. For comparison, a cos(θ) fit (black dotted line) and a cos2(θ) fit (purple dotted line) are shown. The data clearly follow a cos(θ) dependence.
Fig. 8
Fig. 8 (a) Reflectivity spectra at different incidence angles (sample s = 6.5 μm, l = 3 μm) in the experimental configuration shown in the inset (ii). Spectra are stacked (offset ≈-0.1) for the sake of clarity. The top spectrum is not shifted and it shows that the background reflectivity is close to unity. (b) Polar plot of the absorbed intensity vs incidence angle
Fig. 9
Fig. 9 Experimental Q-factors of the LC resonance for the three iso-frequency samples of Fig. 7 (red dots: l = 7 μm; blue dots: l = 5 μm; green dots: l = 3 μm), as a function of the angle of incidence of the reflectivity measurement used to extract resonance width. In theory, the Q-factor should not change with the angle, since only the 0-order reflection is involved. The decrease at large angles is probably due to inhomogeneous broadening since the number of explored devices increases.
Fig. 10
Fig. 10 Schematics of 2 and 3 inductor devices based on eSRR concept. The experimental configuration (incidence plane, polarization) used for characterization is also sketched. Equivalent circuits and allowed optical coupling are specified.
Fig. 11
Fig. 11 (a) Reflectivity spectra (normalized) for 2 and 3 loop devices. Tuning of the LC resonance with inductance is shown. (b) LC frequencies (wavelengths) vs loop length for devices (b) Leff = L/2 and (c) Leff = L/3

Metrics