Abstract

We investigate the spatio-temporal scanning of a single-pixel row for building up synthetic interferograms or digital holograms, shifted each other of a desired phase step. This unusual recording modality exploits the object movement to synthesize interferograms with extended Field of View and improved noise contrast. We report the theoretical formulation of the synthetizing recording process and experimental evidence of various cases demonstrating quantitative phase retrieval by adopting this intrinsic phase-shifting procedure. The proposed method could be particularly suited in all cases where the object shift is an intrinsic feature of the investigated system, as e.g. in microfluidics imaging.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surpassing digital holography limits by lensless object scanning holography

Vicente Micó, Carlos Ferreira, and Javier García
Opt. Express 20(9) 9382-9395 (2012)

Temporal phase unwrapping of digital hologram sequences

Giancarlo Pedrini, Igor Alexeenko, Wolfgang Osten, and Hans J. Tiziani
Appl. Opt. 42(29) 5846-5854 (2003)

Harmonics rejection in pixelated interferograms using spatio-temporal demodulation

J. M. Padilla, M. Servin, and J. C. Estrada
Opt. Express 19(20) 19508-19513 (2011)

References

  • View by:
  • |
  • |
  • |

  1. W. Osten, “Fringe2013, 7th International Workshop on Advanced Optical Imaging and Metrology,” Springer, New York, 2014.
  2. J. E. Greivenkamp and J. H. Bruning, “Phase shifting interferometry,” in Optical Shop Testing, 2nd ed., D. Malacara, ed. (Wiley, 1992), Chap. 14.
  3. K. Creath, “Phase-shifting speckle interferometry,” Appl. Opt. 24(18), 3053–3058 (1985).
    [Crossref] [PubMed]
  4. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, “Image Formation in Phase-Shifting Digital Holography and Applications to Microscopy,” Appl. Opt. 40(34), 6177–6186 (2001).
    [Crossref] [PubMed]
  5. X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett. 31(10), 1414–1416 (2006).
    [Crossref] [PubMed]
  6. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods, 1st ed. (Wiley-VCH, 2004).
  7. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997).
    [Crossref] [PubMed]
  8. J. P. Liu and T. C. Poon, “Two-step-only quadrature phase-shifting digital holography,” Opt. Lett. 34(3), 250–252 (2009).
    [Crossref] [PubMed]
  9. M. Lin, K. Nitta, O. Matoba, and Y. Awatsuji, “Parallel phase-shifting digital holography with adaptive function using phase-mode spatial light modulator,” Appl. Opt. 51(14), 2633–2637 (2012).
    [Crossref] [PubMed]
  10. T. Nomura and B. Javidi, “Object recognition by use of polarimetric phase-shifting digital holography,” Opt. Lett. 32(15), 2146–2148 (2007).
    [Crossref] [PubMed]
  11. I. Yamaguchi, T. Ida, M. Yokota, and K. Yamashita, “Surface shape measurement by phase-shifting digital holography with a wavelength shift,” Appl. Opt. 45(29), 7610–7616 (2006).
    [Crossref] [PubMed]
  12. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Reviews 1, 018005 (2010).
  13. L. Zhu, M. Sun, J. Chen, Y. Yu, and C. Zhou, “Synthesis aperture femtosecond-pulsed digital holography,” Opt. Eng. 52(9), 091703 (2013).
    [Crossref]
  14. T. C. Poon, “Scanning holography and two-dimensional image-processing by acoustooptic 2-pupil synthesis,” J. Opt. Soc. Am A. 2(4), 521–527 (1985).
    [Crossref]
  15. T. C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical-scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
    [Crossref]
  16. J. Swoger, M. Martínez-Corral, J. Huisken, and E. H. K. Stelzer, “Optical scanning holography as a technique for high-resolution three-dimensional biological microscopy,” J. Opt. Soc. Am. A 19(9), 1910–1918 (2002).
    [Crossref] [PubMed]
  17. V. Micó, C. Ferreira, and J. García, “Surpassing digital holography limits by lensless object scanning holography,” Opt. Express 20(9), 9382–9395 (2012).
    [Crossref] [PubMed]
  18. V. Micó, C. Ferreira, and J. García, “Lensless object scanning holography for two-dimensional mirror-like and diffuse reflective objects,” Appl. Opt. 52(25), 6390–6400 (2013).
    [Crossref] [PubMed]
  19. J. García, Z. Zalevsky, and D. Fixler, “Synthetic aperture superresolution by speckle pattern projection,” Opt. Express 13(16), 6073–6078 (2005).
    [Crossref] [PubMed]
  20. M. Dierolf, P. Thibault, A. Menzel, C. M. Kewish, K. Jefimovs, I. Schlichting, K. von König, O. Bunk, and F. Pfeiffer, “Ptychographic coherent diffractive imaging of weakly scattering specimens,” New J. Phys. 12(3), 035017 (2010).
    [Crossref]
  21. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
    [Crossref]
  22. V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37(20), 4212–4214 (2012).
    [Crossref] [PubMed]
  23. V. Bianco, M. Paturzo, O. Gennari, A. Finizio, and P. Ferraro, “Imaging through scattering microfluidic channels by digital holography for information recovery in lab on chip,” Opt. Express 21(20), 23985–23996 (2013).
    [Crossref] [PubMed]
  24. V. Bianco, M. Paturzo, A. Finizio, A. Calabuig, B. Javidi, and P. Ferraro, “Clear microfluidics imaging through flowing blood by digital holography,” IEEE J. Sel. Top. Quantum Electron. 20, 6801507 (2013).
  25. V. Bianco, F. Merola, L. Miccio, P. Memmolo, O. Gennari, M. Paturzo, P. A. Netti, and P. Ferraro, “Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method,” Lab Chip 14(14), 2499–2504 (2014).
    [Crossref] [PubMed]
  26. P. Memmolo, V. Bianco, F. Merola, L. Miccio, M. Paturzo, and P. Ferraro, “Breakthroughs in Photonics 2013: Holographic Imaging,” IEEE Photonics Journal 6(2), 1–6 (2014).
    [Crossref]
  27. Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchida, “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” J. Opt. Soc. Am. A 27(8), 1812–1817 (2010).
    [Crossref] [PubMed]
  28. S. Kubota and J. W. Goodman, “Very efficient speckle contrast reduction realized by moving diffuser device,” Appl. Opt. 49(23), 4385–4391 (2010).
    [Crossref] [PubMed]
  29. H. Jiang, J. Zhao, and J. Di, “Digital color holographic recording and reconstruction using synthetic aperture and multiple reference waves,” Opt. Commun. 285(13-14), 3046–3049 (2012).
    [Crossref]
  30. L. Rong, W. Xiao, F. Pan, S. Liu, and R. Li, “Speckle noise reduction in digital holography by use of multiple polarization holograms,” Chin. Opt. Lett. 8(7), 653–655 (2010).
    [Crossref]
  31. Patent: http://www.google.com/patents/CN202385165U?cl=en
  32. D. Schneider and H. G. Maas, “A geometric model for linear-array-based terrestrial panoramic cameras,” Photogramm. Rec. 21(115), 198–210 (2006).
    [Crossref]
  33. M. Lemmens, “Digital Aerial Cameras New Developments,” Gim-international 28(4), (2011).
  34. F. Merola, L. Miccio, M. Paturzo, A. Finizio, S. Grilli, and P. Ferraro, “Driving and analysis of micro-objects by digital holographic microscope in microfluidics,” Opt. Lett. 36(16), 3079–3081 (2011).
    [Crossref] [PubMed]
  35. E. Watanabe, T. Hoshiba, and B. Javidi, “High-precision microscopic phase imaging without phase unwrapping for cancer cell identification,” Opt. Lett. 38(8), 1319–1321 (2013).
    [Crossref] [PubMed]
  36. A. Greenbaum, A. Feizi, N. Akbari, and A. Ozcan, “Wide-field computational color imaging using pixel super-resolved on-chip microscopy,” Opt. Express 21(10), 12469–12483 (2013).
    [Crossref] [PubMed]
  37. Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
    [Crossref]
  38. Q. S. Wei, E. McLeod, H. F. Qi, Z. Wan, R. Sun, and A. Ozcan, “On-chip cytometry using plasmonic nanoparticle enhanced lensfree holography,” Sci. Rep. 3, 1699 (2013).
    [Crossref] [PubMed]
  39. Z. Zalevsky and D. Mendlovic, Optical Superresolution (Springer, 2004).
  40. J. M. Bioucas-Dias and G. Valadão, “Phase Unwrapping via Graph Cuts,” IEEE Trans. Image Process. 16(3), 698–709 (2007).
    [Crossref] [PubMed]
  41. J. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am. 44(8), 592–597 (1954).
    [Crossref]
  42. F. Merola, S. Coppola, V. Vespini, S. Grilli, and P. Ferraro, “Characterization of Bessel beams generated by polymeric microaxicons,” Meas. Sci. Technol. 23(6), 065204 (2012).
    [Crossref]
  43. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
    [Crossref]
  44. W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
    [Crossref]
  45. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
    [Crossref] [PubMed]
  46. D. McGloin, V. Garcés-Chávez, and K. Dholakia, “Interfering Bessel beams for optical micromanipulation,” Opt. Lett. 28(8), 657–659 (2003).
    [Crossref] [PubMed]
  47. B. Shao, S. C. Esener, J. M. Nascimento, M. W. Berns, E. L. Botvinick, and M. Ozkan, “Size tunable three-dimensional annular laser trap based on axicons,” Opt. Lett. 31(22), 3375–3377 (2006).
    [Crossref] [PubMed]
  48. Y. Z. Yoon and P. Cicuta, “Optical trapping of colloidal particles and cells by focused evanescent fields using conical lenses,” Opt. Express 18(7), 7076–7084 (2010).
    [Crossref] [PubMed]
  49. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27(4), 243–245 (2002).
    [Crossref] [PubMed]
  50. J. H. Massig, “Digital off-axis holography with a synthetic aperture,” Opt. Lett. 27(24), 2179–2181 (2002).
    [Crossref] [PubMed]

2014 (2)

V. Bianco, F. Merola, L. Miccio, P. Memmolo, O. Gennari, M. Paturzo, P. A. Netti, and P. Ferraro, “Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method,” Lab Chip 14(14), 2499–2504 (2014).
[Crossref] [PubMed]

P. Memmolo, V. Bianco, F. Merola, L. Miccio, M. Paturzo, and P. Ferraro, “Breakthroughs in Photonics 2013: Holographic Imaging,” IEEE Photonics Journal 6(2), 1–6 (2014).
[Crossref]

2013 (9)

L. Zhu, M. Sun, J. Chen, Y. Yu, and C. Zhou, “Synthesis aperture femtosecond-pulsed digital holography,” Opt. Eng. 52(9), 091703 (2013).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref]

V. Bianco, M. Paturzo, A. Finizio, A. Calabuig, B. Javidi, and P. Ferraro, “Clear microfluidics imaging through flowing blood by digital holography,” IEEE J. Sel. Top. Quantum Electron. 20, 6801507 (2013).

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Q. S. Wei, E. McLeod, H. F. Qi, Z. Wan, R. Sun, and A. Ozcan, “On-chip cytometry using plasmonic nanoparticle enhanced lensfree holography,” Sci. Rep. 3, 1699 (2013).
[Crossref] [PubMed]

E. Watanabe, T. Hoshiba, and B. Javidi, “High-precision microscopic phase imaging without phase unwrapping for cancer cell identification,” Opt. Lett. 38(8), 1319–1321 (2013).
[Crossref] [PubMed]

A. Greenbaum, A. Feizi, N. Akbari, and A. Ozcan, “Wide-field computational color imaging using pixel super-resolved on-chip microscopy,” Opt. Express 21(10), 12469–12483 (2013).
[Crossref] [PubMed]

V. Micó, C. Ferreira, and J. García, “Lensless object scanning holography for two-dimensional mirror-like and diffuse reflective objects,” Appl. Opt. 52(25), 6390–6400 (2013).
[Crossref] [PubMed]

V. Bianco, M. Paturzo, O. Gennari, A. Finizio, and P. Ferraro, “Imaging through scattering microfluidic channels by digital holography for information recovery in lab on chip,” Opt. Express 21(20), 23985–23996 (2013).
[Crossref] [PubMed]

2012 (5)

2011 (1)

2010 (6)

2009 (1)

2007 (2)

T. Nomura and B. Javidi, “Object recognition by use of polarimetric phase-shifting digital holography,” Opt. Lett. 32(15), 2146–2148 (2007).
[Crossref] [PubMed]

J. M. Bioucas-Dias and G. Valadão, “Phase Unwrapping via Graph Cuts,” IEEE Trans. Image Process. 16(3), 698–709 (2007).
[Crossref] [PubMed]

2006 (4)

2005 (2)

J. García, Z. Zalevsky, and D. Fixler, “Synthetic aperture superresolution by speckle pattern projection,” Opt. Express 13(16), 6073–6078 (2005).
[Crossref] [PubMed]

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

2003 (1)

2002 (4)

2001 (2)

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, “Image Formation in Phase-Shifting Digital Holography and Applications to Microscopy,” Appl. Opt. 40(34), 6177–6186 (2001).
[Crossref] [PubMed]

1997 (1)

1995 (1)

T. C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical-scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[Crossref]

1985 (2)

T. C. Poon, “Scanning holography and two-dimensional image-processing by acoustooptic 2-pupil synthesis,” J. Opt. Soc. Am A. 2(4), 521–527 (1985).
[Crossref]

K. Creath, “Phase-shifting speckle interferometry,” Appl. Opt. 24(18), 3053–3058 (1985).
[Crossref] [PubMed]

1954 (1)

Ahluwalia, B. P. S.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

Akbari, N.

Arlt, J.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

Awatsuji, Y.

Balduzzi, D.

Berns, M. W.

Bianco, V.

P. Memmolo, V. Bianco, F. Merola, L. Miccio, M. Paturzo, and P. Ferraro, “Breakthroughs in Photonics 2013: Holographic Imaging,” IEEE Photonics Journal 6(2), 1–6 (2014).
[Crossref]

V. Bianco, F. Merola, L. Miccio, P. Memmolo, O. Gennari, M. Paturzo, P. A. Netti, and P. Ferraro, “Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method,” Lab Chip 14(14), 2499–2504 (2014).
[Crossref] [PubMed]

V. Bianco, M. Paturzo, A. Finizio, A. Calabuig, B. Javidi, and P. Ferraro, “Clear microfluidics imaging through flowing blood by digital holography,” IEEE J. Sel. Top. Quantum Electron. 20, 6801507 (2013).

V. Bianco, M. Paturzo, O. Gennari, A. Finizio, and P. Ferraro, “Imaging through scattering microfluidic channels by digital holography for information recovery in lab on chip,” Opt. Express 21(20), 23985–23996 (2013).
[Crossref] [PubMed]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37(20), 4212–4214 (2012).
[Crossref] [PubMed]

Bioucas-Dias, J. M.

J. M. Bioucas-Dias and G. Valadão, “Phase Unwrapping via Graph Cuts,” IEEE Trans. Image Process. 16(3), 698–709 (2007).
[Crossref] [PubMed]

Boss, D.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Botvinick, E. L.

Bunk, O.

M. Dierolf, P. Thibault, A. Menzel, C. M. Kewish, K. Jefimovs, I. Schlichting, K. von König, O. Bunk, and F. Pfeiffer, “Ptychographic coherent diffractive imaging of weakly scattering specimens,” New J. Phys. 12(3), 035017 (2010).
[Crossref]

Cai, L. Z.

Calabuig, A.

V. Bianco, M. Paturzo, A. Finizio, A. Calabuig, B. Javidi, and P. Ferraro, “Clear microfluidics imaging through flowing blood by digital holography,” IEEE J. Sel. Top. Quantum Electron. 20, 6801507 (2013).

Chen, J.

L. Zhu, M. Sun, J. Chen, Y. Yu, and C. Zhou, “Synthesis aperture femtosecond-pulsed digital holography,” Opt. Eng. 52(9), 091703 (2013).
[Crossref]

Chen, Z.

Cheong, W. C.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

Cicuta, P.

Coppola, S.

F. Merola, S. Coppola, V. Vespini, S. Grilli, and P. Ferraro, “Characterization of Bessel beams generated by polymeric microaxicons,” Meas. Sci. Technol. 23(6), 065204 (2012).
[Crossref]

Cotte, Y.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Creath, K.

Depeursinge, C.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Dholakia, K.

D. McGloin, V. Garcés-Chávez, and K. Dholakia, “Interfering Bessel beams for optical micromanipulation,” Opt. Lett. 28(8), 657–659 (2003).
[Crossref] [PubMed]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

Di, J.

H. Jiang, J. Zhao, and J. Di, “Digital color holographic recording and reconstruction using synthetic aperture and multiple reference waves,” Opt. Commun. 285(13-14), 3046–3049 (2012).
[Crossref]

Dierolf, M.

M. Dierolf, P. Thibault, A. Menzel, C. M. Kewish, K. Jefimovs, I. Schlichting, K. von König, O. Bunk, and F. Pfeiffer, “Ptychographic coherent diffractive imaging of weakly scattering specimens,” New J. Phys. 12(3), 035017 (2010).
[Crossref]

Ding, Z.

Doh, K. B.

T. C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical-scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[Crossref]

Dong, G. Y.

Esener, S. C.

Feizi, A.

Ferraro, P.

V. Bianco, F. Merola, L. Miccio, P. Memmolo, O. Gennari, M. Paturzo, P. A. Netti, and P. Ferraro, “Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method,” Lab Chip 14(14), 2499–2504 (2014).
[Crossref] [PubMed]

P. Memmolo, V. Bianco, F. Merola, L. Miccio, M. Paturzo, and P. Ferraro, “Breakthroughs in Photonics 2013: Holographic Imaging,” IEEE Photonics Journal 6(2), 1–6 (2014).
[Crossref]

V. Bianco, M. Paturzo, A. Finizio, A. Calabuig, B. Javidi, and P. Ferraro, “Clear microfluidics imaging through flowing blood by digital holography,” IEEE J. Sel. Top. Quantum Electron. 20, 6801507 (2013).

V. Bianco, M. Paturzo, O. Gennari, A. Finizio, and P. Ferraro, “Imaging through scattering microfluidic channels by digital holography for information recovery in lab on chip,” Opt. Express 21(20), 23985–23996 (2013).
[Crossref] [PubMed]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37(20), 4212–4214 (2012).
[Crossref] [PubMed]

F. Merola, S. Coppola, V. Vespini, S. Grilli, and P. Ferraro, “Characterization of Bessel beams generated by polymeric microaxicons,” Meas. Sci. Technol. 23(6), 065204 (2012).
[Crossref]

F. Merola, L. Miccio, M. Paturzo, A. Finizio, S. Grilli, and P. Ferraro, “Driving and analysis of micro-objects by digital holographic microscope in microfluidics,” Opt. Lett. 36(16), 3079–3081 (2011).
[Crossref] [PubMed]

Ferreira, C.

Finizio, A.

Fixler, D.

Galli, A.

Garces-Chavez, V.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

Garcés-Chávez, V.

D. McGloin, V. Garcés-Chávez, and K. Dholakia, “Interfering Bessel beams for optical micromanipulation,” Opt. Lett. 28(8), 657–659 (2003).
[Crossref] [PubMed]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

García, J.

Gennari, O.

V. Bianco, F. Merola, L. Miccio, P. Memmolo, O. Gennari, M. Paturzo, P. A. Netti, and P. Ferraro, “Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method,” Lab Chip 14(14), 2499–2504 (2014).
[Crossref] [PubMed]

V. Bianco, M. Paturzo, O. Gennari, A. Finizio, and P. Ferraro, “Imaging through scattering microfluidic channels by digital holography for information recovery in lab on chip,” Opt. Express 21(20), 23985–23996 (2013).
[Crossref] [PubMed]

Goodman, J. W.

Greenbaum, A.

Grilli, S.

F. Merola, S. Coppola, V. Vespini, S. Grilli, and P. Ferraro, “Characterization of Bessel beams generated by polymeric microaxicons,” Meas. Sci. Technol. 23(6), 065204 (2012).
[Crossref]

F. Merola, L. Miccio, M. Paturzo, A. Finizio, S. Grilli, and P. Ferraro, “Driving and analysis of micro-objects by digital holographic microscope in microfluidics,” Opt. Lett. 36(16), 3079–3081 (2011).
[Crossref] [PubMed]

Horstmeyer, R.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref]

Hoshiba, T.

Huisken, J.

Ida, T.

Javidi, B.

Jefimovs, K.

M. Dierolf, P. Thibault, A. Menzel, C. M. Kewish, K. Jefimovs, I. Schlichting, K. von König, O. Bunk, and F. Pfeiffer, “Ptychographic coherent diffractive imaging of weakly scattering specimens,” New J. Phys. 12(3), 035017 (2010).
[Crossref]

Jiang, H.

H. Jiang, J. Zhao, and J. Di, “Digital color holographic recording and reconstruction using synthetic aperture and multiple reference waves,” Opt. Commun. 285(13-14), 3046–3049 (2012).
[Crossref]

Jourdain, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Katagiri, B.

Kato, J.

Kawakami, T.

Kewish, C. M.

M. Dierolf, P. Thibault, A. Menzel, C. M. Kewish, K. Jefimovs, I. Schlichting, K. von König, O. Bunk, and F. Pfeiffer, “Ptychographic coherent diffractive imaging of weakly scattering specimens,” New J. Phys. 12(3), 035017 (2010).
[Crossref]

Kim, M. K.

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Reviews 1, 018005 (2010).

Kubota, S.

Kuratomi, Y.

Li, R.

Lin, M.

Liu, J. P.

Liu, S.

Maas, H. G.

D. Schneider and H. G. Maas, “A geometric model for linear-array-based terrestrial panoramic cameras,” Photogramm. Rec. 21(115), 198–210 (2006).
[Crossref]

Magistretti, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Marquet, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Martínez-Corral, M.

Massig, J. H.

Matoba, O.

McGloin, D.

D. McGloin, V. Garcés-Chávez, and K. Dholakia, “Interfering Bessel beams for optical micromanipulation,” Opt. Lett. 28(8), 657–659 (2003).
[Crossref] [PubMed]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

McLeod, E.

Q. S. Wei, E. McLeod, H. F. Qi, Z. Wan, R. Sun, and A. Ozcan, “On-chip cytometry using plasmonic nanoparticle enhanced lensfree holography,” Sci. Rep. 3, 1699 (2013).
[Crossref] [PubMed]

McLeod, J.

Melville, H.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

Memmolo, P.

P. Memmolo, V. Bianco, F. Merola, L. Miccio, M. Paturzo, and P. Ferraro, “Breakthroughs in Photonics 2013: Holographic Imaging,” IEEE Photonics Journal 6(2), 1–6 (2014).
[Crossref]

V. Bianco, F. Merola, L. Miccio, P. Memmolo, O. Gennari, M. Paturzo, P. A. Netti, and P. Ferraro, “Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method,” Lab Chip 14(14), 2499–2504 (2014).
[Crossref] [PubMed]

Meng, X. F.

Menzel, A.

M. Dierolf, P. Thibault, A. Menzel, C. M. Kewish, K. Jefimovs, I. Schlichting, K. von König, O. Bunk, and F. Pfeiffer, “Ptychographic coherent diffractive imaging of weakly scattering specimens,” New J. Phys. 12(3), 035017 (2010).
[Crossref]

Merola, F.

V. Bianco, F. Merola, L. Miccio, P. Memmolo, O. Gennari, M. Paturzo, P. A. Netti, and P. Ferraro, “Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method,” Lab Chip 14(14), 2499–2504 (2014).
[Crossref] [PubMed]

P. Memmolo, V. Bianco, F. Merola, L. Miccio, M. Paturzo, and P. Ferraro, “Breakthroughs in Photonics 2013: Holographic Imaging,” IEEE Photonics Journal 6(2), 1–6 (2014).
[Crossref]

F. Merola, S. Coppola, V. Vespini, S. Grilli, and P. Ferraro, “Characterization of Bessel beams generated by polymeric microaxicons,” Meas. Sci. Technol. 23(6), 065204 (2012).
[Crossref]

F. Merola, L. Miccio, M. Paturzo, A. Finizio, S. Grilli, and P. Ferraro, “Driving and analysis of micro-objects by digital holographic microscope in microfluidics,” Opt. Lett. 36(16), 3079–3081 (2011).
[Crossref] [PubMed]

Miccio, L.

P. Memmolo, V. Bianco, F. Merola, L. Miccio, M. Paturzo, and P. Ferraro, “Breakthroughs in Photonics 2013: Holographic Imaging,” IEEE Photonics Journal 6(2), 1–6 (2014).
[Crossref]

V. Bianco, F. Merola, L. Miccio, P. Memmolo, O. Gennari, M. Paturzo, P. A. Netti, and P. Ferraro, “Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method,” Lab Chip 14(14), 2499–2504 (2014).
[Crossref] [PubMed]

F. Merola, L. Miccio, M. Paturzo, A. Finizio, S. Grilli, and P. Ferraro, “Driving and analysis of micro-objects by digital holographic microscope in microfluidics,” Opt. Lett. 36(16), 3079–3081 (2011).
[Crossref] [PubMed]

Micó, V.

Mizuno, J.

Nascimento, J. M.

Nelson, J. S.

Netti, P. A.

V. Bianco, F. Merola, L. Miccio, P. Memmolo, O. Gennari, M. Paturzo, P. A. Netti, and P. Ferraro, “Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method,” Lab Chip 14(14), 2499–2504 (2014).
[Crossref] [PubMed]

Nitta, K.

Niu, H. B.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

Nomura, T.

Ohta, S.

Ozcan, A.

Q. S. Wei, E. McLeod, H. F. Qi, Z. Wan, R. Sun, and A. Ozcan, “On-chip cytometry using plasmonic nanoparticle enhanced lensfree holography,” Sci. Rep. 3, 1699 (2013).
[Crossref] [PubMed]

A. Greenbaum, A. Feizi, N. Akbari, and A. Ozcan, “Wide-field computational color imaging using pixel super-resolved on-chip microscopy,” Opt. Express 21(10), 12469–12483 (2013).
[Crossref] [PubMed]

Ozkan, M.

Pan, F.

Paturzo, M.

P. Memmolo, V. Bianco, F. Merola, L. Miccio, M. Paturzo, and P. Ferraro, “Breakthroughs in Photonics 2013: Holographic Imaging,” IEEE Photonics Journal 6(2), 1–6 (2014).
[Crossref]

V. Bianco, F. Merola, L. Miccio, P. Memmolo, O. Gennari, M. Paturzo, P. A. Netti, and P. Ferraro, “Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method,” Lab Chip 14(14), 2499–2504 (2014).
[Crossref] [PubMed]

V. Bianco, M. Paturzo, A. Finizio, A. Calabuig, B. Javidi, and P. Ferraro, “Clear microfluidics imaging through flowing blood by digital holography,” IEEE J. Sel. Top. Quantum Electron. 20, 6801507 (2013).

V. Bianco, M. Paturzo, O. Gennari, A. Finizio, and P. Ferraro, “Imaging through scattering microfluidic channels by digital holography for information recovery in lab on chip,” Opt. Express 21(20), 23985–23996 (2013).
[Crossref] [PubMed]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37(20), 4212–4214 (2012).
[Crossref] [PubMed]

F. Merola, L. Miccio, M. Paturzo, A. Finizio, S. Grilli, and P. Ferraro, “Driving and analysis of micro-objects by digital holographic microscope in microfluidics,” Opt. Lett. 36(16), 3079–3081 (2011).
[Crossref] [PubMed]

Pavillon, N.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Peng, X.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

Pfeiffer, F.

M. Dierolf, P. Thibault, A. Menzel, C. M. Kewish, K. Jefimovs, I. Schlichting, K. von König, O. Bunk, and F. Pfeiffer, “Ptychographic coherent diffractive imaging of weakly scattering specimens,” New J. Phys. 12(3), 035017 (2010).
[Crossref]

Poon, T. C.

J. P. Liu and T. C. Poon, “Two-step-only quadrature phase-shifting digital holography,” Opt. Lett. 34(3), 250–252 (2009).
[Crossref] [PubMed]

T. C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical-scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[Crossref]

T. C. Poon, “Scanning holography and two-dimensional image-processing by acoustooptic 2-pupil synthesis,” J. Opt. Soc. Am A. 2(4), 521–527 (1985).
[Crossref]

Puglisi, R.

Qi, H. F.

Q. S. Wei, E. McLeod, H. F. Qi, Z. Wan, R. Sun, and A. Ozcan, “On-chip cytometry using plasmonic nanoparticle enhanced lensfree holography,” Sci. Rep. 3, 1699 (2013).
[Crossref] [PubMed]

Ren, H.

Rong, L.

Satoh, H.

Schilling, B. W.

T. C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical-scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[Crossref]

Schlichting, I.

M. Dierolf, P. Thibault, A. Menzel, C. M. Kewish, K. Jefimovs, I. Schlichting, K. von König, O. Bunk, and F. Pfeiffer, “Ptychographic coherent diffractive imaging of weakly scattering specimens,” New J. Phys. 12(3), 035017 (2010).
[Crossref]

Schneider, D.

D. Schneider and H. G. Maas, “A geometric model for linear-array-based terrestrial panoramic cameras,” Photogramm. Rec. 21(115), 198–210 (2006).
[Crossref]

Sekiya, K.

Shao, B.

Shen, X. X.

Shinoda, K.

T. C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical-scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[Crossref]

Sibbett, W.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

Stelzer, E. H. K.

Sun, M.

L. Zhu, M. Sun, J. Chen, Y. Yu, and C. Zhou, “Synthesis aperture femtosecond-pulsed digital holography,” Opt. Eng. 52(9), 091703 (2013).
[Crossref]

Sun, R.

Q. S. Wei, E. McLeod, H. F. Qi, Z. Wan, R. Sun, and A. Ozcan, “On-chip cytometry using plasmonic nanoparticle enhanced lensfree holography,” Sci. Rep. 3, 1699 (2013).
[Crossref] [PubMed]

Suzuki, Y.

Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchida, “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” J. Opt. Soc. Am. A 27(8), 1812–1817 (2010).
[Crossref] [PubMed]

T. C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical-scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[Crossref]

Swoger, J.

Thibault, P.

M. Dierolf, P. Thibault, A. Menzel, C. M. Kewish, K. Jefimovs, I. Schlichting, K. von König, O. Bunk, and F. Pfeiffer, “Ptychographic coherent diffractive imaging of weakly scattering specimens,” New J. Phys. 12(3), 035017 (2010).
[Crossref]

Tomiyama, T.

Toy, F.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Uchida, T.

Valadão, G.

J. M. Bioucas-Dias and G. Valadão, “Phase Unwrapping via Graph Cuts,” IEEE Trans. Image Process. 16(3), 698–709 (2007).
[Crossref] [PubMed]

Vespini, V.

F. Merola, S. Coppola, V. Vespini, S. Grilli, and P. Ferraro, “Characterization of Bessel beams generated by polymeric microaxicons,” Meas. Sci. Technol. 23(6), 065204 (2012).
[Crossref]

von König, K.

M. Dierolf, P. Thibault, A. Menzel, C. M. Kewish, K. Jefimovs, I. Schlichting, K. von König, O. Bunk, and F. Pfeiffer, “Ptychographic coherent diffractive imaging of weakly scattering specimens,” New J. Phys. 12(3), 035017 (2010).
[Crossref]

Wan, Z.

Q. S. Wei, E. McLeod, H. F. Qi, Z. Wan, R. Sun, and A. Ozcan, “On-chip cytometry using plasmonic nanoparticle enhanced lensfree holography,” Sci. Rep. 3, 1699 (2013).
[Crossref] [PubMed]

Wang, H.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

Wang, Y. R.

Watanabe, E.

Wei, Q. S.

Q. S. Wei, E. McLeod, H. F. Qi, Z. Wan, R. Sun, and A. Ozcan, “On-chip cytometry using plasmonic nanoparticle enhanced lensfree holography,” Sci. Rep. 3, 1699 (2013).
[Crossref] [PubMed]

Wu, M. H.

T. C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical-scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[Crossref]

Xiao, W.

Xu, X. F.

Yamaguchi, I.

Yamashita, K.

Yang, C.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref]

Yang, X. L.

Yokota, M.

Yoon, Y. Z.

Yu, Y.

L. Zhu, M. Sun, J. Chen, Y. Yu, and C. Zhou, “Synthesis aperture femtosecond-pulsed digital holography,” Opt. Eng. 52(9), 091703 (2013).
[Crossref]

Yuan, X. C.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

Zalevsky, Z.

Zhang, L. S.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

Zhang, T.

Zhao, J.

H. Jiang, J. Zhao, and J. Di, “Digital color holographic recording and reconstruction using synthetic aperture and multiple reference waves,” Opt. Commun. 285(13-14), 3046–3049 (2012).
[Crossref]

Zhao, Y.

Zheng, G.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref]

Zhou, C.

L. Zhu, M. Sun, J. Chen, Y. Yu, and C. Zhou, “Synthesis aperture femtosecond-pulsed digital holography,” Opt. Eng. 52(9), 091703 (2013).
[Crossref]

Zhu, L.

L. Zhu, M. Sun, J. Chen, Y. Yu, and C. Zhou, “Synthesis aperture femtosecond-pulsed digital holography,” Opt. Eng. 52(9), 091703 (2013).
[Crossref]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

V. Bianco, M. Paturzo, A. Finizio, A. Calabuig, B. Javidi, and P. Ferraro, “Clear microfluidics imaging through flowing blood by digital holography,” IEEE J. Sel. Top. Quantum Electron. 20, 6801507 (2013).

IEEE Photonics Journal (1)

P. Memmolo, V. Bianco, F. Merola, L. Miccio, M. Paturzo, and P. Ferraro, “Breakthroughs in Photonics 2013: Holographic Imaging,” IEEE Photonics Journal 6(2), 1–6 (2014).
[Crossref]

IEEE Trans. Image Process. (1)

J. M. Bioucas-Dias and G. Valadão, “Phase Unwrapping via Graph Cuts,” IEEE Trans. Image Process. 16(3), 698–709 (2007).
[Crossref] [PubMed]

J. Opt. Soc. Am A. (1)

T. C. Poon, “Scanning holography and two-dimensional image-processing by acoustooptic 2-pupil synthesis,” J. Opt. Soc. Am A. 2(4), 521–527 (1985).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Lab Chip (1)

V. Bianco, F. Merola, L. Miccio, P. Memmolo, O. Gennari, M. Paturzo, P. A. Netti, and P. Ferraro, “Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method,” Lab Chip 14(14), 2499–2504 (2014).
[Crossref] [PubMed]

Meas. Sci. Technol. (1)

F. Merola, S. Coppola, V. Vespini, S. Grilli, and P. Ferraro, “Characterization of Bessel beams generated by polymeric microaxicons,” Meas. Sci. Technol. 23(6), 065204 (2012).
[Crossref]

Nat. Photonics (2)

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref]

Nature (1)

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

New J. Phys. (1)

M. Dierolf, P. Thibault, A. Menzel, C. M. Kewish, K. Jefimovs, I. Schlichting, K. von König, O. Bunk, and F. Pfeiffer, “Ptychographic coherent diffractive imaging of weakly scattering specimens,” New J. Phys. 12(3), 035017 (2010).
[Crossref]

Opt. Commun. (2)

H. Jiang, J. Zhao, and J. Di, “Digital color holographic recording and reconstruction using synthetic aperture and multiple reference waves,” Opt. Commun. 285(13-14), 3046–3049 (2012).
[Crossref]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

Opt. Eng. (2)

L. Zhu, M. Sun, J. Chen, Y. Yu, and C. Zhou, “Synthesis aperture femtosecond-pulsed digital holography,” Opt. Eng. 52(9), 091703 (2013).
[Crossref]

T. C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical-scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[Crossref]

Opt. Express (5)

Opt. Lett. (11)

Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27(4), 243–245 (2002).
[Crossref] [PubMed]

J. H. Massig, “Digital off-axis holography with a synthetic aperture,” Opt. Lett. 27(24), 2179–2181 (2002).
[Crossref] [PubMed]

D. McGloin, V. Garcés-Chávez, and K. Dholakia, “Interfering Bessel beams for optical micromanipulation,” Opt. Lett. 28(8), 657–659 (2003).
[Crossref] [PubMed]

B. Shao, S. C. Esener, J. M. Nascimento, M. W. Berns, E. L. Botvinick, and M. Ozkan, “Size tunable three-dimensional annular laser trap based on axicons,” Opt. Lett. 31(22), 3375–3377 (2006).
[Crossref] [PubMed]

F. Merola, L. Miccio, M. Paturzo, A. Finizio, S. Grilli, and P. Ferraro, “Driving and analysis of micro-objects by digital holographic microscope in microfluidics,” Opt. Lett. 36(16), 3079–3081 (2011).
[Crossref] [PubMed]

E. Watanabe, T. Hoshiba, and B. Javidi, “High-precision microscopic phase imaging without phase unwrapping for cancer cell identification,” Opt. Lett. 38(8), 1319–1321 (2013).
[Crossref] [PubMed]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37(20), 4212–4214 (2012).
[Crossref] [PubMed]

T. Nomura and B. Javidi, “Object recognition by use of polarimetric phase-shifting digital holography,” Opt. Lett. 32(15), 2146–2148 (2007).
[Crossref] [PubMed]

X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett. 31(10), 1414–1416 (2006).
[Crossref] [PubMed]

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997).
[Crossref] [PubMed]

J. P. Liu and T. C. Poon, “Two-step-only quadrature phase-shifting digital holography,” Opt. Lett. 34(3), 250–252 (2009).
[Crossref] [PubMed]

Photogramm. Rec. (1)

D. Schneider and H. G. Maas, “A geometric model for linear-array-based terrestrial panoramic cameras,” Photogramm. Rec. 21(115), 198–210 (2006).
[Crossref]

Sci. Rep. (1)

Q. S. Wei, E. McLeod, H. F. Qi, Z. Wan, R. Sun, and A. Ozcan, “On-chip cytometry using plasmonic nanoparticle enhanced lensfree holography,” Sci. Rep. 3, 1699 (2013).
[Crossref] [PubMed]

SPIE Reviews (1)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Reviews 1, 018005 (2010).

Other (6)

W. Osten, “Fringe2013, 7th International Workshop on Advanced Optical Imaging and Metrology,” Springer, New York, 2014.

J. E. Greivenkamp and J. H. Bruning, “Phase shifting interferometry,” in Optical Shop Testing, 2nd ed., D. Malacara, ed. (Wiley, 1992), Chap. 14.

T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods, 1st ed. (Wiley-VCH, 2004).

M. Lemmens, “Digital Aerial Cameras New Developments,” Gim-international 28(4), (2011).

Patent: http://www.google.com/patents/CN202385165U?cl=en

Z. Zalevsky and D. Mendlovic, Optical Superresolution (Springer, 2004).

Supplementary Material (2)

» Media 1: MP4 (1054 KB)     
» Media 2: MP4 (2409 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Set-up employed to build-up synthetic interferograms. BS: Beam Splitter. M: Mirror. MO: Microscope Objective. BC: Beam Combiner. MS: Moving Stage. S: Sample. D: Detector. On the bottom the process of synthesis of an extended FoV space-time interferogram is sketched. The red line indicates the active sensor elements at each acquisition in case a linear detector is employed. The interferometric fringes are reported with the blue solid lines.
Fig. 2
Fig. 2 Interferometric imaging of a test resolution target. (a) Acquired limited FoV interferogram. (b) Extended FoV synthetic interferogram built from the red column in Fig. 2(a) while scanning the target along the x direction.
Fig. 3
Fig. 3 Interferogram synthesis from one single detector row (red line). Extended FoV is achievable exploiting the object shift. Improved visualization is also obtained as the noise is constant along the t axis.
Fig. 4
Fig. 4 (Media 1) Synthetic interferogram of a PDMS drop. The red circled zones show the areas where the fringe spacing is too small to properly sample the high slope object parts.
Fig. 5
Fig. 5 (Media 1) Flow chart illustrating the processing blocks of the proposed technique.
Fig. 6
Fig. 6 PS technique applied to a synthetic interferogram. (a) Microscope image of a complex shape PDMS drop deposited on a plane substrate. (b-c) Synthetic amplitude (b) and wrapped phase (c) of the drop, obtained applying the three step PS algorithm. (d) Unwrapped phase-contast map of the drop [40].
Fig. 7
Fig. 7 Pseudo 3D phase-contrast map of the PDMS drop obtained unwrapping the signal reported in Fig. 6(c) [40].
Fig. 8
Fig. 8 (Media 2) A PDMS micro-axicon and a PDMS drop are deposited on a plane substrate. (a-b) Space-time amplitude (a) and wrapped phase (b) of the objects obtained applying the three step PS algorithm. (c) Microscope image of the micro-axicon.
Fig. 9
Fig. 9 (a) Syntetic interferogram of a PDMS circular drop. (b) Unwrapped phase-contrast map of the object obtained after applying the four step PS formula of Eq. (9) [40].
Fig. 10
Fig. 10 Pseudo 3D unwrapped phase-contrast map of the PDMS circular drop of Fig. 9 [40].

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

[ S 1 ( x , y , t = t 1 ) , ... , S K ( x , y , t = t K ) ] x = 1 , ... , N ; y = 1 , ... , M
c 01 = S 1 ( x = x 0 , y , t = t 1 ) c 02 = S 2 ( x = x 0 , y , t = t 2 ) c 0 K = S K ( x = x 0 , y , t = t K ) .
C = [ c 0 1 c 02 c 0 K c 11 c 12 c 1 K c N 1 c N 2 c N K ] = [ I 0 ( y , t ) I 1 ( y , t ) I N ( y , t ) ] ,
Δ Ψ m i n = 2 π Δ x sin ϑ p
t g 1 ( Δ y N Δ x ) ϑ t g 1 ( M Δ y Δ x )
E O ( x , y ) = | E O ( x , y ) | exp [ i φ ( x , y ) ] E R ( x , y ) = E R exp [ i ψ ( x , y ) ] ,
S ( x , y , t = t 0 ) = | E 0 + E R | 2 = = | E 0 ( x , y ) | 2 + E R 2 + 2 | E 0 ( x , y ) | E R cos [ φ ( x , y ) + ψ ( x , y ) ] .
{ S 0 = | E 0 | 2 + E R 2 + 2 | E 0 | E R cos φ S π / 2 = | E 0 | 2 + E R 2 2 | E 0 | E R sin φ S π = | E 0 | 2 + E R 2 2 | E 0 | E R cos φ S 3 π / 2 = | E 0 | 2 + E R 2 + 2 | E 0 | E R sin φ ,
E 0 = 1 4 E R [ ( S 0 S π ) + i ( S 3 π / 2 S π / 2 ) ] .
E 0 = 1 + i 4 [ ( S 0 S π / 2 ) + i ( S π S π / 2 ) ] ,
I 0 ( y , t ) = I Δ ψ = 0 I 1 ( y , t ) = I Δ ψ = π / 2 I 2 ( y , t ) = I Δ ψ = π

Metrics