Abstract

This study presents and validates an optimized method of simultaneous compression and encryption designed to process images with close spectra. This approach is well adapted to the compression and encryption of images of a time-varying scene but also to static polarimetric images. We use the recently developed spectral fusion method [Opt. Lett. 35, 1914–1916 (2010)] to deal with the close resemblance of the images. The spectral plane (containing the information to send and/or to store) is decomposed in several independent areas which are assigned according a specific way. In addition, each spectrum is shifted in order to minimize their overlap. The dual purpose of these operations is to optimize the spectral plane allowing us to keep the low- and high-frequency information (compression) and to introduce an additional noise for reconstructing the images (encryption). Our results show that not only can the control of the spectral plane enhance the number of spectra to be merged, but also that a compromise between the compression rate and the quality of the reconstructed images can be tuned. We use a root-mean-square (RMS) optimization criterion to treat compression. Image encryption is realized at different security levels. Firstly, we add a specific encryption level which is related to the different areas of the spectral plane, and then, we make use of several random phase keys. An in-depth analysis at the spectral fusion methodology is done in order to find a good trade-off between the compression rate and the quality of the reconstructed images. Our new proposal spectral shift allows us to minimize the image overlap. We further analyze the influence of the spectral shift on the reconstructed image quality and compression rate. The performance of the multiple-image optical compression and encryption method is verified by analyzing several video sequences and polarimetric images.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous fusion, compression, and encryption of multiple images

A. Alfalou, C. Brosseau, N. Abdallah, and M. Jridi
Opt. Express 19(24) 24023-24029 (2011)

Optical image compression and encryption methods

A. Alfalou and C. Brosseau
Adv. Opt. Photon. 1(3) 589-636 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photon. 1(3), 589–636 (2009).
    [Crossref]
  2. P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20(7), 767–769 (1995).
    [PubMed]
  3. Q. Wang, Q. Guo, and L. Lei, “Asymmetric multiple-image hiding using phase retrieval technique based on amplitude- and phase-truncation in fractional Fourier domain,” Optik (Stuttg.) 124(19), 3898–3902 (2013).
    [Crossref]
  4. Z. Liu, L. Xu, T. Liu, H. Chen, P. Li, C. Lin, and S. Liu, “Color image encryption by using Arnold transform and color-blend operation in discrete cosine transform domains,” Opt. Commun. 284(1), 123–128 (2011).
    [Crossref]
  5. Z. Liu, Y. Zhang, S. Li, W. Liu, W. Liu, Y. Wang, and S. Liu, “Double image encryption scheme by using random phase encoding and pixel exchanging in the gyrator transform domains,” Opt. Laser Technol. 47, 152–158 (2013).
    [Crossref]
  6. S. K. Rajput and N. K. Nishchal, “Known-plaintext attack-based optical cryptosystem using phase-truncated Fresnel transform,” Appl. Opt. 52(4), 871–878 (2013).
    [Crossref] [PubMed]
  7. Q. Wang, “Optical image encryption with silhouette removal based on interference and phase blend processing,” Opt. Commun. 285(21-22), 4294–4301 (2012).
    [Crossref]
  8. A. Alfalou and C. Brosseau, “Exploiting root-mean-square time-frequency structure for multiple-image optical compression and encryption,” Opt. Lett. 35(11), 1914–1916 (2010).
    [Crossref] [PubMed]
  9. A. Alfalou, A. Mansour, M. Elbouz, and C. Brosseau, “Optical compression scheme to multiplex and simultaneously encode images”, in Optical and Digital Image Processing Fundamentals and Applications (Wiley, 2011), pp. 463–483.
  10. A. Alfalou, C. Brosseau, N. Abdallah, and M. Jridi, “Simultaneous fusion, compression, and encryption of multiple images,” Opt. Express 19(24), 24023–24029 (2011).
    [Crossref] [PubMed]
  11. A. Alfalou, C. Brosseau, N. Abdallah, and M. Jridi, “Assessing the performance of a method of simultaneous compression and encryption of multiple images and its resistance against various attacks,” Opt. Express 21(7), 8025–8043 (2013).
    [Crossref] [PubMed]
  12. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1966).
  13. A. Alfalou, C. Brosseau, and M. S. Alam, “Smart pattern recognition,” Proc. SPIE 8748, Optical Pattern Recognition XXIV, 874809 (2013).
  14. P. Katz, A. Alfalou, C. Brosseau, and M. S. Alam, “Correlation and independent component analysis based approaches for biometric recognition,” in Face Recognition: Methods, Applications and Technology, Adamo Quaglia and Calogera M. Epifano, eds. (2012), Chap 11, pp. 201–229.
  15. M. R. Abuturab, “Color image security system using double random-structured phase encoding in gyrator transform domain,” Appl. Opt. 51(15), 3006–3016 (2012).
    [Crossref] [PubMed]
  16. M. R. Abuturab, “Color information cryptosystem based on optical superposition principle and phase-truncated gyrator transform,” Appl. Opt. 51(33), 7994–8002 (2012).
    [Crossref] [PubMed]
  17. S. K. Rajput and N. K. Nishchal, “Image encryption using polarized light encoding and amplitude and phase truncation in the Fresnel domain,” Appl. Opt. 52(18), 4343–4352 (2013).
    [Crossref] [PubMed]
  18. M. Paturzo, P. Memmolo, L. Miccio, A. Finizio, P. Ferraro, A. Tulino, and B. Javidi, “Numerical multiplexing and demultiplexing of digital holographic information for remote reconstruction in amplitude and phase,” Opt. Lett. 33(22), 2629–2631 (2008).
    [Crossref] [PubMed]
  19. T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41(20), 4124–4132 (2002).
    [Crossref] [PubMed]
  20. E. Darakis and J. J. Soraghan, “Reconstruction domain compression of phase-shifting digital holograms,” Appl. Opt. 46(3), 351–356 (2007).
    [Crossref] [PubMed]
  21. T. Tahara, K. Ito, T. Kakue, M. Fujii, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting digital holographic microscopy,” Biomed. Opt. Express 1(2), 610–616 (2010).
    [Crossref] [PubMed]
  22. P. Xia, Y. Shimozato, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Image reconstruction algorithm for recovering high-frequency information in parallel phase-shifting digital holography [Invited],” Appl. Opt. 52(1), A210–A215 (2013).
    [PubMed]
  23. A. Alfalou and C. Brosseau, “Implementing compression and encryption of phase-shifting digital holograms for three-dimensional object reconstruction,” Opt. Commun. 307, 67–72 (2013).
    [Crossref]
  24. F. Mosso, J. F. Barrera, M. Tebaldi, N. Bolognini, and R. Torroba, “All-optical encrypted movie,” Opt. Express 19(6), 5706–5712 (2011).
    [PubMed]
  25. W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photon. 6(2), 120–155 (2014).
    [Crossref]
  26. W. Chen, X. Chen, A. Stern, and B. Javidi, “Phase-modulated optical system with sparse representation for information encoding and authentication,” IEEE Photon. J. 5(2), 6900113 (2013).
    [Crossref]
  27. E. Pérez-Cabré, M. Cho, and B. Javidi, “Information authentication using photon-counting double-random-phase encrypted images,” Opt. Lett. 36(1), 22–24 (2011).
    [Crossref] [PubMed]
  28. W. Chen and X. Chen, “Double random phase encoding using phase reservation and compression,” J. Opt. 16(2), 025402 (2014).
    [Crossref]
  29. N. Neji, M. Jridi, A. Alfalou, and N. Masmoudi, “A CABAC codec of H.264AVC with secure arithmetic coding,” Proc. SPIE 8656, Real-Time Image and Video Processing 2013, 86560G (2013).
  30. N. Neji, M. Jridi, A. Alfalou, and N. Masmoudi, “Evaluation and Implementation of Simultaneous Binary Arithmetic Coding and Encryption for HD H264/AVC Codec. SSD’13-IEEE, (2013).
  31. M. Dubreuil, P. Delrot, I. Leonard, A. Alfalou, C. Brosseau, and A. Dogariu, “Exploring underwater target detection by imaging polarimetry and correlation techniques,” Appl. Opt. 52(5), 997–1005 (2013).
    [Crossref] [PubMed]
  32. https://www.youtube.com/watch?v=5CS1rNLyALs

2014 (2)

W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photon. 6(2), 120–155 (2014).
[Crossref]

W. Chen and X. Chen, “Double random phase encoding using phase reservation and compression,” J. Opt. 16(2), 025402 (2014).
[Crossref]

2013 (11)

N. Neji, M. Jridi, A. Alfalou, and N. Masmoudi, “A CABAC codec of H.264AVC with secure arithmetic coding,” Proc. SPIE 8656, Real-Time Image and Video Processing 2013, 86560G (2013).

M. Dubreuil, P. Delrot, I. Leonard, A. Alfalou, C. Brosseau, and A. Dogariu, “Exploring underwater target detection by imaging polarimetry and correlation techniques,” Appl. Opt. 52(5), 997–1005 (2013).
[Crossref] [PubMed]

W. Chen, X. Chen, A. Stern, and B. Javidi, “Phase-modulated optical system with sparse representation for information encoding and authentication,” IEEE Photon. J. 5(2), 6900113 (2013).
[Crossref]

P. Xia, Y. Shimozato, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Image reconstruction algorithm for recovering high-frequency information in parallel phase-shifting digital holography [Invited],” Appl. Opt. 52(1), A210–A215 (2013).
[PubMed]

A. Alfalou and C. Brosseau, “Implementing compression and encryption of phase-shifting digital holograms for three-dimensional object reconstruction,” Opt. Commun. 307, 67–72 (2013).
[Crossref]

Q. Wang, Q. Guo, and L. Lei, “Asymmetric multiple-image hiding using phase retrieval technique based on amplitude- and phase-truncation in fractional Fourier domain,” Optik (Stuttg.) 124(19), 3898–3902 (2013).
[Crossref]

Z. Liu, Y. Zhang, S. Li, W. Liu, W. Liu, Y. Wang, and S. Liu, “Double image encryption scheme by using random phase encoding and pixel exchanging in the gyrator transform domains,” Opt. Laser Technol. 47, 152–158 (2013).
[Crossref]

S. K. Rajput and N. K. Nishchal, “Known-plaintext attack-based optical cryptosystem using phase-truncated Fresnel transform,” Appl. Opt. 52(4), 871–878 (2013).
[Crossref] [PubMed]

A. Alfalou, C. Brosseau, N. Abdallah, and M. Jridi, “Assessing the performance of a method of simultaneous compression and encryption of multiple images and its resistance against various attacks,” Opt. Express 21(7), 8025–8043 (2013).
[Crossref] [PubMed]

A. Alfalou, C. Brosseau, and M. S. Alam, “Smart pattern recognition,” Proc. SPIE 8748, Optical Pattern Recognition XXIV, 874809 (2013).

S. K. Rajput and N. K. Nishchal, “Image encryption using polarized light encoding and amplitude and phase truncation in the Fresnel domain,” Appl. Opt. 52(18), 4343–4352 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (4)

2010 (2)

2009 (1)

2008 (1)

2007 (1)

2002 (1)

1995 (1)

Abdallah, N.

Abuturab, M. R.

Alam, M. S.

A. Alfalou, C. Brosseau, and M. S. Alam, “Smart pattern recognition,” Proc. SPIE 8748, Optical Pattern Recognition XXIV, 874809 (2013).

Alfalou, A.

A. Alfalou and C. Brosseau, “Implementing compression and encryption of phase-shifting digital holograms for three-dimensional object reconstruction,” Opt. Commun. 307, 67–72 (2013).
[Crossref]

A. Alfalou, C. Brosseau, and M. S. Alam, “Smart pattern recognition,” Proc. SPIE 8748, Optical Pattern Recognition XXIV, 874809 (2013).

N. Neji, M. Jridi, A. Alfalou, and N. Masmoudi, “A CABAC codec of H.264AVC with secure arithmetic coding,” Proc. SPIE 8656, Real-Time Image and Video Processing 2013, 86560G (2013).

M. Dubreuil, P. Delrot, I. Leonard, A. Alfalou, C. Brosseau, and A. Dogariu, “Exploring underwater target detection by imaging polarimetry and correlation techniques,” Appl. Opt. 52(5), 997–1005 (2013).
[Crossref] [PubMed]

A. Alfalou, C. Brosseau, N. Abdallah, and M. Jridi, “Assessing the performance of a method of simultaneous compression and encryption of multiple images and its resistance against various attacks,” Opt. Express 21(7), 8025–8043 (2013).
[Crossref] [PubMed]

A. Alfalou, C. Brosseau, N. Abdallah, and M. Jridi, “Simultaneous fusion, compression, and encryption of multiple images,” Opt. Express 19(24), 24023–24029 (2011).
[Crossref] [PubMed]

A. Alfalou and C. Brosseau, “Exploiting root-mean-square time-frequency structure for multiple-image optical compression and encryption,” Opt. Lett. 35(11), 1914–1916 (2010).
[Crossref] [PubMed]

A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photon. 1(3), 589–636 (2009).
[Crossref]

Awatsuji, Y.

Barrera, J. F.

Bolognini, N.

Brosseau, C.

Chen, H.

Z. Liu, L. Xu, T. Liu, H. Chen, P. Li, C. Lin, and S. Liu, “Color image encryption by using Arnold transform and color-blend operation in discrete cosine transform domains,” Opt. Commun. 284(1), 123–128 (2011).
[Crossref]

Chen, W.

W. Chen and X. Chen, “Double random phase encoding using phase reservation and compression,” J. Opt. 16(2), 025402 (2014).
[Crossref]

W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photon. 6(2), 120–155 (2014).
[Crossref]

W. Chen, X. Chen, A. Stern, and B. Javidi, “Phase-modulated optical system with sparse representation for information encoding and authentication,” IEEE Photon. J. 5(2), 6900113 (2013).
[Crossref]

Chen, X.

W. Chen and X. Chen, “Double random phase encoding using phase reservation and compression,” J. Opt. 16(2), 025402 (2014).
[Crossref]

W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photon. 6(2), 120–155 (2014).
[Crossref]

W. Chen, X. Chen, A. Stern, and B. Javidi, “Phase-modulated optical system with sparse representation for information encoding and authentication,” IEEE Photon. J. 5(2), 6900113 (2013).
[Crossref]

Cho, M.

Darakis, E.

Delrot, P.

Dogariu, A.

Dubreuil, M.

Ferraro, P.

Finizio, A.

Frauel, Y.

Fujii, M.

Guo, Q.

Q. Wang, Q. Guo, and L. Lei, “Asymmetric multiple-image hiding using phase retrieval technique based on amplitude- and phase-truncation in fractional Fourier domain,” Optik (Stuttg.) 124(19), 3898–3902 (2013).
[Crossref]

Ito, K.

Javidi, B.

Jridi, M.

Kakue, T.

Kubota, T.

Lei, L.

Q. Wang, Q. Guo, and L. Lei, “Asymmetric multiple-image hiding using phase retrieval technique based on amplitude- and phase-truncation in fractional Fourier domain,” Optik (Stuttg.) 124(19), 3898–3902 (2013).
[Crossref]

Leonard, I.

Li, P.

Z. Liu, L. Xu, T. Liu, H. Chen, P. Li, C. Lin, and S. Liu, “Color image encryption by using Arnold transform and color-blend operation in discrete cosine transform domains,” Opt. Commun. 284(1), 123–128 (2011).
[Crossref]

Li, S.

Z. Liu, Y. Zhang, S. Li, W. Liu, W. Liu, Y. Wang, and S. Liu, “Double image encryption scheme by using random phase encoding and pixel exchanging in the gyrator transform domains,” Opt. Laser Technol. 47, 152–158 (2013).
[Crossref]

Lin, C.

Z. Liu, L. Xu, T. Liu, H. Chen, P. Li, C. Lin, and S. Liu, “Color image encryption by using Arnold transform and color-blend operation in discrete cosine transform domains,” Opt. Commun. 284(1), 123–128 (2011).
[Crossref]

Liu, S.

Z. Liu, Y. Zhang, S. Li, W. Liu, W. Liu, Y. Wang, and S. Liu, “Double image encryption scheme by using random phase encoding and pixel exchanging in the gyrator transform domains,” Opt. Laser Technol. 47, 152–158 (2013).
[Crossref]

Z. Liu, L. Xu, T. Liu, H. Chen, P. Li, C. Lin, and S. Liu, “Color image encryption by using Arnold transform and color-blend operation in discrete cosine transform domains,” Opt. Commun. 284(1), 123–128 (2011).
[Crossref]

Liu, T.

Z. Liu, L. Xu, T. Liu, H. Chen, P. Li, C. Lin, and S. Liu, “Color image encryption by using Arnold transform and color-blend operation in discrete cosine transform domains,” Opt. Commun. 284(1), 123–128 (2011).
[Crossref]

Liu, W.

Z. Liu, Y. Zhang, S. Li, W. Liu, W. Liu, Y. Wang, and S. Liu, “Double image encryption scheme by using random phase encoding and pixel exchanging in the gyrator transform domains,” Opt. Laser Technol. 47, 152–158 (2013).
[Crossref]

Z. Liu, Y. Zhang, S. Li, W. Liu, W. Liu, Y. Wang, and S. Liu, “Double image encryption scheme by using random phase encoding and pixel exchanging in the gyrator transform domains,” Opt. Laser Technol. 47, 152–158 (2013).
[Crossref]

Liu, Z.

Z. Liu, Y. Zhang, S. Li, W. Liu, W. Liu, Y. Wang, and S. Liu, “Double image encryption scheme by using random phase encoding and pixel exchanging in the gyrator transform domains,” Opt. Laser Technol. 47, 152–158 (2013).
[Crossref]

Z. Liu, L. Xu, T. Liu, H. Chen, P. Li, C. Lin, and S. Liu, “Color image encryption by using Arnold transform and color-blend operation in discrete cosine transform domains,” Opt. Commun. 284(1), 123–128 (2011).
[Crossref]

Masmoudi, N.

N. Neji, M. Jridi, A. Alfalou, and N. Masmoudi, “A CABAC codec of H.264AVC with secure arithmetic coding,” Proc. SPIE 8656, Real-Time Image and Video Processing 2013, 86560G (2013).

Matoba, O.

Memmolo, P.

Miccio, L.

Mosso, F.

Naughton, T. J.

Neji, N.

N. Neji, M. Jridi, A. Alfalou, and N. Masmoudi, “A CABAC codec of H.264AVC with secure arithmetic coding,” Proc. SPIE 8656, Real-Time Image and Video Processing 2013, 86560G (2013).

Nishchal, N. K.

Nishio, K.

Paturzo, M.

Pérez-Cabré, E.

Rajput, S. K.

Refregier, P.

Shimozato, Y.

Soraghan, J. J.

Stern, A.

W. Chen, X. Chen, A. Stern, and B. Javidi, “Phase-modulated optical system with sparse representation for information encoding and authentication,” IEEE Photon. J. 5(2), 6900113 (2013).
[Crossref]

Tahara, T.

Tajahuerce, E.

Tebaldi, M.

Torroba, R.

Tulino, A.

Ura, S.

Wang, Q.

Q. Wang, Q. Guo, and L. Lei, “Asymmetric multiple-image hiding using phase retrieval technique based on amplitude- and phase-truncation in fractional Fourier domain,” Optik (Stuttg.) 124(19), 3898–3902 (2013).
[Crossref]

Q. Wang, “Optical image encryption with silhouette removal based on interference and phase blend processing,” Opt. Commun. 285(21-22), 4294–4301 (2012).
[Crossref]

Wang, Y.

Z. Liu, Y. Zhang, S. Li, W. Liu, W. Liu, Y. Wang, and S. Liu, “Double image encryption scheme by using random phase encoding and pixel exchanging in the gyrator transform domains,” Opt. Laser Technol. 47, 152–158 (2013).
[Crossref]

Xia, P.

Xu, L.

Z. Liu, L. Xu, T. Liu, H. Chen, P. Li, C. Lin, and S. Liu, “Color image encryption by using Arnold transform and color-blend operation in discrete cosine transform domains,” Opt. Commun. 284(1), 123–128 (2011).
[Crossref]

Zhang, Y.

Z. Liu, Y. Zhang, S. Li, W. Liu, W. Liu, Y. Wang, and S. Liu, “Double image encryption scheme by using random phase encoding and pixel exchanging in the gyrator transform domains,” Opt. Laser Technol. 47, 152–158 (2013).
[Crossref]

Adv. Opt. Photon. (2)

Appl. Opt. (8)

T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41(20), 4124–4132 (2002).
[Crossref] [PubMed]

E. Darakis and J. J. Soraghan, “Reconstruction domain compression of phase-shifting digital holograms,” Appl. Opt. 46(3), 351–356 (2007).
[Crossref] [PubMed]

P. Xia, Y. Shimozato, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Image reconstruction algorithm for recovering high-frequency information in parallel phase-shifting digital holography [Invited],” Appl. Opt. 52(1), A210–A215 (2013).
[PubMed]

M. Dubreuil, P. Delrot, I. Leonard, A. Alfalou, C. Brosseau, and A. Dogariu, “Exploring underwater target detection by imaging polarimetry and correlation techniques,” Appl. Opt. 52(5), 997–1005 (2013).
[Crossref] [PubMed]

S. K. Rajput and N. K. Nishchal, “Known-plaintext attack-based optical cryptosystem using phase-truncated Fresnel transform,” Appl. Opt. 52(4), 871–878 (2013).
[Crossref] [PubMed]

M. R. Abuturab, “Color image security system using double random-structured phase encoding in gyrator transform domain,” Appl. Opt. 51(15), 3006–3016 (2012).
[Crossref] [PubMed]

M. R. Abuturab, “Color information cryptosystem based on optical superposition principle and phase-truncated gyrator transform,” Appl. Opt. 51(33), 7994–8002 (2012).
[Crossref] [PubMed]

S. K. Rajput and N. K. Nishchal, “Image encryption using polarized light encoding and amplitude and phase truncation in the Fresnel domain,” Appl. Opt. 52(18), 4343–4352 (2013).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

IEEE Photon. J. (1)

W. Chen, X. Chen, A. Stern, and B. Javidi, “Phase-modulated optical system with sparse representation for information encoding and authentication,” IEEE Photon. J. 5(2), 6900113 (2013).
[Crossref]

J. Opt. (1)

W. Chen and X. Chen, “Double random phase encoding using phase reservation and compression,” J. Opt. 16(2), 025402 (2014).
[Crossref]

Opt. Commun. (3)

A. Alfalou and C. Brosseau, “Implementing compression and encryption of phase-shifting digital holograms for three-dimensional object reconstruction,” Opt. Commun. 307, 67–72 (2013).
[Crossref]

Q. Wang, “Optical image encryption with silhouette removal based on interference and phase blend processing,” Opt. Commun. 285(21-22), 4294–4301 (2012).
[Crossref]

Z. Liu, L. Xu, T. Liu, H. Chen, P. Li, C. Lin, and S. Liu, “Color image encryption by using Arnold transform and color-blend operation in discrete cosine transform domains,” Opt. Commun. 284(1), 123–128 (2011).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

Z. Liu, Y. Zhang, S. Li, W. Liu, W. Liu, Y. Wang, and S. Liu, “Double image encryption scheme by using random phase encoding and pixel exchanging in the gyrator transform domains,” Opt. Laser Technol. 47, 152–158 (2013).
[Crossref]

Opt. Lett. (4)

Optik (Stuttg.) (1)

Q. Wang, Q. Guo, and L. Lei, “Asymmetric multiple-image hiding using phase retrieval technique based on amplitude- and phase-truncation in fractional Fourier domain,” Optik (Stuttg.) 124(19), 3898–3902 (2013).
[Crossref]

Proc. SPIE 8656, Real-Time Image and Video Processing (1)

N. Neji, M. Jridi, A. Alfalou, and N. Masmoudi, “A CABAC codec of H.264AVC with secure arithmetic coding,” Proc. SPIE 8656, Real-Time Image and Video Processing 2013, 86560G (2013).

Proc. SPIE 8748, Optical Pattern Recognition (1)

A. Alfalou, C. Brosseau, and M. S. Alam, “Smart pattern recognition,” Proc. SPIE 8748, Optical Pattern Recognition XXIV, 874809 (2013).

Other (5)

P. Katz, A. Alfalou, C. Brosseau, and M. S. Alam, “Correlation and independent component analysis based approaches for biometric recognition,” in Face Recognition: Methods, Applications and Technology, Adamo Quaglia and Calogera M. Epifano, eds. (2012), Chap 11, pp. 201–229.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1966).

A. Alfalou, A. Mansour, M. Elbouz, and C. Brosseau, “Optical compression scheme to multiplex and simultaneously encode images”, in Optical and Digital Image Processing Fundamentals and Applications (Wiley, 2011), pp. 463–483.

N. Neji, M. Jridi, A. Alfalou, and N. Masmoudi, “Evaluation and Implementation of Simultaneous Binary Arithmetic Coding and Encryption for HD H264/AVC Codec. SSD’13-IEEE, (2013).

https://www.youtube.com/watch?v=5CS1rNLyALs

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (24)

Fig. 1
Fig. 1 (a) A spectrum of a typical image, (b) Schematic of typical spectral fusion.
Fig. 2
Fig. 2 (a) Schematic illustration of the MIOCE (multiple-image optical compression and encryption) method, (b) An example showing four shifted and merged spectra.
Fig. 3
Fig. 3 Segmentation criterion and spectral assignment.
Fig. 4
Fig. 4 Synoptic diagram of the MIOCE method optimized by making use of the shifted (RMS) criterion.
Fig. 5
Fig. 5 Influence of the spectrum’s position on the quality of reconstructed images.
Fig. 6
Fig. 6 Filter fabrication in the Fourier plane.
Fig. 7
Fig. 7 Spectrum corresponding to four merged, shifted, and filtered target images.
Fig. 8
Fig. 8 Influence of the spectral shift on the reconstructed image quality: MSE as a function of the number of shifting pixels.
Fig. 9
Fig. 9 (a) Compression rate and MSE as a function of the number of shifting pixels, (b) reconstructed image with a spectral shift set to 16 bits.
Fig. 10
Fig. 10 Synoptic diagram of the compression scheme par conjugate symmetry.
Fig. 11
Fig. 11 Two by two grouping of a video sequence with 26 images.
Fig. 12
Fig. 12 Synoptic diagram of our compression technique adapted to video sequences.
Fig. 13
Fig. 13 An example dealing with the merging of 26 compressed spectra.
Fig. 14
Fig. 14 (a) MSE as a function of the number of target images, (b) Examples of input and reconstructed images.
Fig. 15
Fig. 15 Example of target spectrum resulting from the merging of two target images.
Fig. 16
Fig. 16 Illustrating the fabrication of the encryption mask.
Fig. 17
Fig. 17 Target spectrum encrypted with a random mask.
Fig. 18
Fig. 18 Division of the encryption mask in three regions (M1, M2, and M3).
Fig. 19
Fig. 19 Fabrication of the encrypted mask: C = S1cryp + S2cryp + S3cryp.
Fig. 20
Fig. 20 (a) Target spectrum merging two images, (b) encrypted spectrum with key C = S1cryp + S2cryp + S3cryp
Fig. 21
Fig. 21 Illustrating the second level of encryption.
Fig. 22
Fig. 22 Compression and encryption results with tank video: Example (See d_15sec.avi [32] for details).
Fig. 23
Fig. 23 (a) Scheme of the experimental setup for obtaining polarimetric images ( θ = 10 ° ). POL: polarizer; QWP: quarterwave plate; L: lens; (b) The sample considered (see text).
Fig. 24
Fig. 24 Experimental results of simultaneous compression and encryption of polarimetric images.

Tables (4)

Tables Icon

Table 1 Reconstructed images obtained by making use of our fusion criterion. Columns 3 and 4 correspond respectively to without and with spectral shifting.

Tables Icon

Table 2 Simulation results for the second video sequence (15sec.avi).

Tables Icon

Table 3 Compression results with tank video (See d_15sec.avi for details in [32]).

Tables Icon

Table 4 Simulation results with two target images.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Δ I = n + + ( u 2 + v 2 ) | S I ( u , v ) | 2 d u d v ,
{ P i x e l ( i , j ) = S p e c t r u m _ A ( i , j ) i f X i j A X i j B P i x e l ( i , j ) = S p e c t r u m _ B ( i , j ) i f X i j A X i j B
M S E = 1 N 2 i = 1 N j = 1 N | I d ( i , j ) I ( i , j ) | 2
t = 2 Δ I + x = 2 Δ I + 2 d
T c = ( 1 256 × 256 × P r i × B i t d 256 × 256 × n × B i t c ) × 100
T c = ( 1 4 n ) × 100
S 1 c r y p = r a n d [ min ( M 1 ) , max ( M 1 ) ] S 2 c r y p = r a n d [ min ( M 2 ) , max ( M 2 ) ] S 3 c r y p = r a n d [ min ( M 3 ) , max ( M 3 ) ]
C ' = ( S 1 E n c r y p + S 2 E n c r y p + S 3 E n c r y p ) exp ( i ϕ R a n 1 ) = S E n c r y p exp [ i ( ϕ E n c r y p + ϕ R a n 1 ) ] .
C ' ' = F T ( C ' ) exp ( i ϕ R a n 2 ) = F T { S c r y p exp [ i ( ϕ E n c r y p + ϕ R a n 1 ) ] } exp ( i ϕ R a n 2 ) .
T t w o _ l e v e l = F T F T { S E n c r y p exp [ i ( ϕ E n c r y p + ϕ R a n 1 ) ] } × exp ( i ϕ R a n 2 ) .

Metrics