Abstract

In this work, we propose and demonstrate the performance of silicon-on-insulator (SOI) off-axis microring resonator (MRR) as electro-optic modulator (EOM). Adding an extra off-axis inner-ring in conventional microring structure provides control to compensate thermal effects on EOM. It is shown that dynamically controlled bias-voltage applied to the outer ring has the potency to quell the thermal effects over a wide range of temperature. Thus, besides the appositely biased conventional microring, off-axis inner microring with pre-emphasized electrical input message signal enables our proposed structure suitable for high data-rate dense wavelength division multiplexing scheme of optical communication within a very compact device size.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Promising compact wavelength-tunable optical add–drop multiplexer in dense wavelength-division multiplexing systems

Yinian Zhu, Ping Shum, Chao Lu, Pieter L. Swart, Beatrys M. Lacquet, and Stephanus J. Spammer
Opt. Lett. 29(7) 682-684 (2004)

Compact on-chip 1 × 2 wavelength selective switch based on silicon microring resonator with nested pairs of subrings

Jiayang Wu, Pan Cao, Ting Pan, Yuxing Yang, Ciyuan Qiu, Christine Tremblay, and Yikai Su
Photon. Res. 3(1) 9-14 (2015)

Design and analysis of ultra-compact EO polymer modulators based on hybrid plasmonic microring resonators

Fei Lou, Daoxin Dai, Lars Thylen, and Lech Wosinski
Opt. Express 21(17) 20041-20051 (2013)

References

  • View by:
  • |
  • |
  • |

  1. L. C. Kimerling, “Photons to the rescue: Microelectronics becomes microphotonics,” Electrochemical Society Interface 9, 28–31 (2000).
  2. D. A. B. Miller, “Optical Interconnects to Silicon,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1312–1317 (2000).
    [Crossref]
  3. A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
    [Crossref]
  4. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
    [Crossref]
  5. J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, “Interconnect opportunities for gigascale integration,” IBM J. Res. Develop. 46(2.3), 245–265 (2002).
    [Crossref]
  6. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
    [Crossref]
  7. M. Lipson, “Compact Electro-Optic Modulators on a Silicon Chip,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1520–1526 (2006).
    [Crossref]
  8. C. Gunn, “CMOs photonics—SOI learns a new trick,” in Proc. IEEE 2005 Int. Silicon on Insulator (SOI) Conf. Oct. 3–6, 7–13 (2005).
  9. B. Jalali, “Silicon Photonics,” Proc. SPIE 3290, 238–245 (1997).
    [Crossref]
  10. Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [Crossref] [PubMed]
  11. R. A. Soref and B. R. Bennett, “Kramers–Kronig analysis of electro-optical switching in silicon,” Proc. SPIE 704, 32–37 (1987).
    [Crossref]
  12. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica (Amsterdam) 34(1), 149–154 (1967).
    [Crossref]
  13. K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 13(0), 1–14 (2013).
    [Crossref]
  14. K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, “Integrated thermal stabilization of a microring modulator,” Opt. Express 21(12), 14342–14350 (2013).
    [Crossref] [PubMed]
  15. C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon Microring Modulator with Integrated Heater and Temperature Sensor for Thermal Control,” in Proc. Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (CLEO/QELS), OSA Technical Digest (CD) (Optical Society of America, May 2010), San Jose, paper CA,CThJ3.
    [Crossref]
  16. S. Manipatruni, R. K. Dokania, B. Schmidt, N. Sherwood-Droz, C. B. Poitras, A. B. Apsel, and M. Lipson, “Wide temperature range operation of micrometer-scale silicon electro-optic modulators,” Opt. Lett. 33(19), 2185–2187 (2008).
    [Crossref] [PubMed]
  17. K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express 20(27), 27999–28008 (2012).
    [Crossref] [PubMed]
  18. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
    [Crossref] [PubMed]
  19. Y. Kokobun, N. Funato, and M. Takizawa, “Athermal waveguides for temperature-independent lightwave devices,” IEEE Photon. Technol. Lett. 5(11), 1297–1300 (1993).
    [Crossref]
  20. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
    [Crossref] [PubMed]
  21. J. Lee, D. Kim, H. Ahn, S. Park, and G. Kim, “Temperature dependence of silicon nanophotonic ring resonator with a polymeric overlayer,” J. Lightwave Technol. 25(8), 2236–2243 (2007).
    [Crossref]
  22. B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21(22), 26557–26563 (2013).
    [Crossref] [PubMed]
  23. B. Guha, B. B. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18(4), 3487–3493 (2010).
    [Crossref] [PubMed]
  24. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
    [Crossref]
  25. A. Biberman, E. Timurdogan, W. A. Zortman, D. C. Trotter, and M. R. Watts, “Adiabatic microring modulators,” Opt. Express 20(28), 29223–29236 (2012).
    [Crossref] [PubMed]
  26. Y. Hu, X. Xiao, H. Xu, X. Li, K. Xiong, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed silicon modulator based on cascaded microring resonators,” Opt. Express 20(14), 15079–15085 (2012).
    [Crossref] [PubMed]
  27. Q. Deng, X. Li, Z. Zhou, and Y. Huaxiang, “Athermal scheme based on resonance splitting for silicon-on-insulator microring resonators,” Photon. Res. 2(2), 71–74 (2014).
    [Crossref]
  28. R. Haldar, S. Das, and S. K. Varshney, “Theory and design of off-axis microring resonator for high-density on-chip photonic applications,” J. Lightwave Technol. 31(24), 3976–3986 (2013).
    [Crossref]
  29. R. E. Pierret, Semiconductor Device Fundamentals (Addison-Wesley, 1996).
  30. D. Neamen, Semiconductor Physics And Devices: Basic Principles (McGraw-Hill, 2003).
  31. K. Okamoto, Fundamentals of Optical Waveguides (Elsevier, 2006) p. 37.
  32. R. Haldar, A. D. Banik, M. S. Sanathanan, and S. K. Varshney, “Compact Athermal Electro-optic Modulator Design Based on SOI Off-axis Microring Resonator,” in Proc. Conference on Lasers and Electro-Optics (CLEO:2014), (Optical Society of America, 2010), San Jose, CA, USA, 8–13 June 2014, paper JW2A.37.
    [Crossref]

2014 (1)

2013 (4)

2012 (3)

2010 (1)

2009 (1)

2008 (3)

S. Manipatruni, R. K. Dokania, B. Schmidt, N. Sherwood-Droz, C. B. Poitras, A. B. Apsel, and M. Lipson, “Wide temperature range operation of micrometer-scale silicon electro-optic modulators,” Opt. Lett. 33(19), 2185–2187 (2008).
[Crossref] [PubMed]

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[Crossref]

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[Crossref]

2007 (3)

2006 (1)

M. Lipson, “Compact Electro-Optic Modulators on a Silicon Chip,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1520–1526 (2006).
[Crossref]

2005 (1)

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

2002 (1)

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, “Interconnect opportunities for gigascale integration,” IBM J. Res. Develop. 46(2.3), 245–265 (2002).
[Crossref]

2000 (3)

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[Crossref]

L. C. Kimerling, “Photons to the rescue: Microelectronics becomes microphotonics,” Electrochemical Society Interface 9, 28–31 (2000).

D. A. B. Miller, “Optical Interconnects to Silicon,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1312–1317 (2000).
[Crossref]

1997 (1)

B. Jalali, “Silicon Photonics,” Proc. SPIE 3290, 238–245 (1997).
[Crossref]

1993 (1)

Y. Kokobun, N. Funato, and M. Takizawa, “Athermal waveguides for temperature-independent lightwave devices,” IEEE Photon. Technol. Lett. 5(11), 1297–1300 (1993).
[Crossref]

1987 (1)

R. A. Soref and B. R. Bennett, “Kramers–Kronig analysis of electro-optical switching in silicon,” Proc. SPIE 704, 32–37 (1987).
[Crossref]

1967 (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica (Amsterdam) 34(1), 149–154 (1967).
[Crossref]

Ackert, J. J.

Ahn, H.

Alduino, A.

A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
[Crossref]

Apsel, A. B.

Baets, R.

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Kramers–Kronig analysis of electro-optical switching in silicon,” Proc. SPIE 704, 32–37 (1987).
[Crossref]

Bergman, K.

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 13(0), 1–14 (2013).
[Crossref]

K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, “Integrated thermal stabilization of a microring modulator,” Opt. Express 21(12), 14342–14350 (2013).
[Crossref] [PubMed]

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express 20(27), 27999–28008 (2012).
[Crossref] [PubMed]

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[Crossref]

Biberman, A.

Bogaerts, W.

Cardenas, J.

Carloni, L. P.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[Crossref]

Chan, J.

Chen, L.

Chu, T.

Das, S.

Davis, J. A.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, “Interconnect opportunities for gigascale integration,” IBM J. Res. Develop. 46(2.3), 245–265 (2002).
[Crossref]

Deng, Q.

Dokania, R. K.

Dumon, P.

Funato, N.

Y. Kokobun, N. Funato, and M. Takizawa, “Athermal waveguides for temperature-independent lightwave devices,” IEEE Photon. Technol. Lett. 5(11), 1297–1300 (1993).
[Crossref]

Green, W. M. J.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[Crossref]

Guha, B.

Haldar, R.

Han, X.

Hu, Y.

Huaxiang, Y.

Jalali, B.

B. Jalali, “Silicon Photonics,” Proc. SPIE 3290, 238–245 (1997).
[Crossref]

Jian, X.

Kim, D.

Kim, G.

Kimerling, L. C.

L. C. Kimerling, “Photons to the rescue: Microelectronics becomes microphotonics,” Electrochemical Society Interface 9, 28–31 (2000).

Knights, A. P.

Kohl, P. A.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, “Interconnect opportunities for gigascale integration,” IBM J. Res. Develop. 46(2.3), 245–265 (2002).
[Crossref]

Kokobun, Y.

Y. Kokobun, N. Funato, and M. Takizawa, “Athermal waveguides for temperature-independent lightwave devices,” IEEE Photon. Technol. Lett. 5(11), 1297–1300 (1993).
[Crossref]

Kyotoku, B. B.

Lee, J.

Li, X.

Li, Z.

Lipson, M.

Logan, D. F.

Manipatruni, S.

Martin, K. P.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, “Interconnect opportunities for gigascale integration,” IBM J. Res. Develop. 46(2.3), 245–265 (2002).
[Crossref]

Meindl, J. D.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, “Interconnect opportunities for gigascale integration,” IBM J. Res. Develop. 46(2.3), 245–265 (2002).
[Crossref]

Miller, D. A. B.

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[Crossref]

D. A. B. Miller, “Optical Interconnects to Silicon,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1312–1317 (2000).
[Crossref]

Morthier, G.

Padmaraju, K.

Paniccia, M.

A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
[Crossref]

Park, S.

Patel, C. S.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, “Interconnect opportunities for gigascale integration,” IBM J. Res. Develop. 46(2.3), 245–265 (2002).
[Crossref]

Poitras, C. B.

Pradhan, S.

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Schmidt, B.

Shacham, A.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[Crossref]

Shakya, J.

Sherwood-Droz, N.

Soref, R. A.

R. A. Soref and B. R. Bennett, “Kramers–Kronig analysis of electro-optical switching in silicon,” Proc. SPIE 704, 32–37 (1987).
[Crossref]

Takizawa, M.

Y. Kokobun, N. Funato, and M. Takizawa, “Athermal waveguides for temperature-independent lightwave devices,” IEEE Photon. Technol. Lett. 5(11), 1297–1300 (1993).
[Crossref]

Teng, J.

Timurdogan, E.

Trotter, D. C.

Varshney, S. K.

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica (Amsterdam) 34(1), 149–154 (1967).
[Crossref]

Vlasov, Y.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[Crossref]

Watts, M. R.

Xia, F.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[Crossref]

Xiao, X.

Xiong, K.

Xu, H.

Xu, Q.

Xu, Q. F.

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Yu, J.

Yu, Y.

Zarkesh-Ha, P.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, “Interconnect opportunities for gigascale integration,” IBM J. Res. Develop. 46(2.3), 245–265 (2002).
[Crossref]

Zhang, H.

Zhao, M.

Zhou, Z.

Zhu, X.

Zortman, W. A.

Electrochemical Society Interface (1)

L. C. Kimerling, “Photons to the rescue: Microelectronics becomes microphotonics,” Electrochemical Society Interface 9, 28–31 (2000).

IBM J. Res. Develop. (1)

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, “Interconnect opportunities for gigascale integration,” IBM J. Res. Develop. 46(2.3), 245–265 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. Lipson, “Compact Electro-Optic Modulators on a Silicon Chip,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1520–1526 (2006).
[Crossref]

D. A. B. Miller, “Optical Interconnects to Silicon,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1312–1317 (2000).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Y. Kokobun, N. Funato, and M. Takizawa, “Athermal waveguides for temperature-independent lightwave devices,” IEEE Photon. Technol. Lett. 5(11), 1297–1300 (1993).
[Crossref]

IEEE Trans. Comput. (1)

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[Crossref]

J. Lightwave Technol. (2)

Nanophotonics (1)

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 13(0), 1–14 (2013).
[Crossref]

Nat. Photonics (2)

A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
[Crossref]

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[Crossref]

Nature (1)

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Opt. Express (8)

K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, “Integrated thermal stabilization of a microring modulator,” Opt. Express 21(12), 14342–14350 (2013).
[Crossref] [PubMed]

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express 20(27), 27999–28008 (2012).
[Crossref] [PubMed]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
[Crossref] [PubMed]

A. Biberman, E. Timurdogan, W. A. Zortman, D. C. Trotter, and M. R. Watts, “Adiabatic microring modulators,” Opt. Express 20(28), 29223–29236 (2012).
[Crossref] [PubMed]

Y. Hu, X. Xiao, H. Xu, X. Li, K. Xiong, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed silicon modulator based on cascaded microring resonators,” Opt. Express 20(14), 15079–15085 (2012).
[Crossref] [PubMed]

B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21(22), 26557–26563 (2013).
[Crossref] [PubMed]

B. Guha, B. B. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18(4), 3487–3493 (2010).
[Crossref] [PubMed]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
[Crossref] [PubMed]

Opt. Lett. (1)

Photon. Res. (1)

Physica (Amsterdam) (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica (Amsterdam) 34(1), 149–154 (1967).
[Crossref]

Proc. IEEE (1)

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[Crossref]

Proc. SPIE (2)

B. Jalali, “Silicon Photonics,” Proc. SPIE 3290, 238–245 (1997).
[Crossref]

R. A. Soref and B. R. Bennett, “Kramers–Kronig analysis of electro-optical switching in silicon,” Proc. SPIE 704, 32–37 (1987).
[Crossref]

Other (6)

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon Microring Modulator with Integrated Heater and Temperature Sensor for Thermal Control,” in Proc. Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (CLEO/QELS), OSA Technical Digest (CD) (Optical Society of America, May 2010), San Jose, paper CA,CThJ3.
[Crossref]

C. Gunn, “CMOs photonics—SOI learns a new trick,” in Proc. IEEE 2005 Int. Silicon on Insulator (SOI) Conf. Oct. 3–6, 7–13 (2005).

R. E. Pierret, Semiconductor Device Fundamentals (Addison-Wesley, 1996).

D. Neamen, Semiconductor Physics And Devices: Basic Principles (McGraw-Hill, 2003).

K. Okamoto, Fundamentals of Optical Waveguides (Elsevier, 2006) p. 37.

R. Haldar, A. D. Banik, M. S. Sanathanan, and S. K. Varshney, “Compact Athermal Electro-optic Modulator Design Based on SOI Off-axis Microring Resonator,” in Proc. Conference on Lasers and Electro-Optics (CLEO:2014), (Optical Society of America, 2010), San Jose, CA, USA, 8–13 June 2014, paper JW2A.37.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of MRR with off-axis inner ring structure used as a modulator, rsh, rse and RT represent the shunt, series and temperature dependent equivalent resistances of the device, Vm and VB are voltage sources. (b) Cross-section of p+n-n+ SOI waveguide structure.
Fig. 2
Fig. 2 (a) Schematic of an off-axis MRR with necessary design parameters. (b) Effective refractive index variation of outer and inner rings with respect to bias voltage, VB at 1.55μm, (c) spectral variation of guided mode index for different ring radii at different biasing voltages, and (d) loss as a function of applied voltage Vm, at wavelength 1.55μm.
Fig. 3
Fig. 3 Normalized power transmission (in dB) characteristics of an off-axis MRR with change in (a) Vm, (b) VB and (c) transmission characteristics of thermally-compensated off-axis MRR.
Fig. 4
Fig. 4 (a) Pre-emphasized modulating signal waveform. (b) Eye-diagram of transmission at room temperature (c) Eye-diagram at ΔT = 5K and VB = 0V. (d) Voltage compensated eye-diagram of the transmission at ΔT = 5K. (e) Eye-diagram at ΔT = 10K. (f) Voltage compensated eye-diagram at ΔT = 10K.

Tables (1)

Tables Icon

Table 1 Applied voltage at outer and inner MRRs and corresponding resonant notch shifts

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Δ n = Δ n e + Δ n h = [ 8.8 × 10 22 Δ N + 8.5 × 10 18 ( Δ P ) 0.8 ]
Δ α = Δ α e + Δ α h = [ 8.5 × 10 18 Δ N + 6 × 10 18 Δ P ]
d λ d T = ( n e f f α s u b + n e f f T ) λ 0 n g
d λ d T = n e f f T λ 0 n g
n e f f T = Γ c o r e ( S i ) n c o r e T + Γ c l a d ( p o l y m e r ) n c l a d T + Γ s u b n s u b T
Δ N ( x ) = n p 0 ( e e V k T 1 ) exp ( x p + x L p )
Δ P ( x ) = p n 0 ( e e V k T 1 ) exp ( x n + x L n )
P = [ e j ϕ 1 0 0 e j ϕ 1 χ ]
χ = τ 2 + ( j κ 2 ) 2 ( e j ϕ 2 τ 2 ) 1
ϕ 1 = 2 π 2 n e f f 1 R 1 λ
ϕ 2 = 4 π 2 n e f f 2 R 2 λ
ϕ 1 = 2 π 2 n e f f 1 R 1 f c = m π
ϕ 1 + κ 2 2 sin ( ϕ 2 ) τ 2 ( 1 + τ 2 ) cos ( ϕ 2 ) ( 1 + τ 2 2 ) = m π
Δ λ V m = 1 V = Δ λ Δ T = 20 K + Δ λ V B = 3.4 V + Δ λ V m = 1 V
S N R = μ 2 μ 1 σ 1 + σ 2
Δ V B 1 > Δ V B 2

Metrics