Abstract

We present methodologies for determining the optimum viewing distance (OVD) for a multi-view auto-stereoscopic 3D display system with a parallax barrier. The OVD can be efficiently determined as the viewing distance where statistical deviation of centers of quasi-linear distributions of illuminance at central viewing zones is minimized using local areas of a display panel. This method can offer reduced computation time because it does not use the entire area of the display panel during a simulation, but still secures considerable accuracy. The method is verified in experiments, showing its applicability for efficient optical characterization.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Auto-stereoscopic 3D displays with reduced crosstalk

Chulhee Lee, Guiwon Seo, Jonghwa Lee, Tae-hwan Han, and Jong Geun Park
Opt. Express 19(24) 24762-24774 (2011)

Adaptive viewing distance in super multi-view displays using aperiodic 3-D pixel location and dynamic view indices

Min-Koo Kang, Hoang-Phong Nguyen, Donghoon Kang, Soon-Gi Park, and Sung-Kyu Kim
Opt. Express 26(16) 20661-20679 (2018)

Crosstalk reduction in auto-stereoscopic projection 3D display system

Kwang-Hoon Lee, Youngsik Park, Hyoung Lee, Seon Kyu Yoon, and Sung-Kyu Kim
Opt. Express 20(18) 19757-19768 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Boev, A Gotchev, and K. Eqiazarian, “Crosstalk measurement methodology for auto-stereoscopic screens,” 3DTV Conference, 1–4 (2007).
  2. T. Järvenpää and B. M. Salminaa, “Optical characterization methods for autostereoscopic 3D displays,” Proc. of EuroDisplay132–135 (2007).
  3. M. Salminaa and T. Järvenpää, “Optical characterization and measurements of autostereoscopic 3D displays,” Proc. SPIE,  7001, 700102 (2008).
  4. M. Salminaa and T. Järvenpää, “Objective evaluation of multi-view autostereoscopic 3D displays,” SID Symposium Digest,  20.4, 267–270 (2008).
    [Crossref]
  5. J. Y. Lee, J. S. Lee, S. L. Kim, J. S. Han, T. J. Jun, and S. T. Shin, “Optical performance analysis method of auto-stereoscopic 3D displays,” SID Symposium Digest 41, 327–330 (2010).
    [Crossref]
  6. S. K. Yoon and S. -K. Kim, “Measurement method with moving image sensor in autostereoscopic display,” Proc. SPIE 8384, 83840Y (2012).
    [Crossref]
  7. C.-L. Wu, K.-C. Huang, C.-C. Liao, Y.-H. Chen, and K. Lee, “Autostereoscopic display optical properties evaluation,” Proc. SPIE 7524, 75241L (2010).
    [Crossref]
  8. W.-H. Chang, K.-C. Huang, Y.-H. Chou, H. Y. Lin, and K. Lee, “A novel evaluation method for 3D display viewing-zone,” SID Symposium Digest,  P-57, 1279–1282 (2012).
    [Crossref]
  9. K.-C. Huang, Y.-H. Chou, L.-C. Lin, H. Y. Lin, F.-H. Chen, C.-C. Liao, Y.-H. Chen, K. Lee, and W.-H. Hsu, “A study of optimal viewing distance in a parallax barrier 3D display,” J. SID 21, 263–270 (2013).
  10. K. -C. Huang, Y.-H. Chou, L.-C. Lin, H. Y. Lin, F.-H. Chen, C.-C. Liao, Y.-H. Chen, K. Lee, and W. -H. Hsu, “Investigation of designated eye position and viewing zone for a two-view autostereoscopic display,” Opt. Express 22, 4751–4767 (2014).
    [Crossref] [PubMed]
  11. T. Järvenpää and M. Salmimaa, “Optical characterization of autostereoscopic 3-D displays,” J. SID,  16, 825–833 (2008).
  12. P. Boher, T. Leroux, T. Bignon, and V. Collomb-Patton, “A new way to characterize auto-stereoscopic 3D displays using Fourier optics instrument,” http://www.eldim.fr/library/eldim-publications/paper_3d_displays.pdf .

2014 (1)

2013 (1)

K.-C. Huang, Y.-H. Chou, L.-C. Lin, H. Y. Lin, F.-H. Chen, C.-C. Liao, Y.-H. Chen, K. Lee, and W.-H. Hsu, “A study of optimal viewing distance in a parallax barrier 3D display,” J. SID 21, 263–270 (2013).

2012 (2)

W.-H. Chang, K.-C. Huang, Y.-H. Chou, H. Y. Lin, and K. Lee, “A novel evaluation method for 3D display viewing-zone,” SID Symposium Digest,  P-57, 1279–1282 (2012).
[Crossref]

S. K. Yoon and S. -K. Kim, “Measurement method with moving image sensor in autostereoscopic display,” Proc. SPIE 8384, 83840Y (2012).
[Crossref]

2010 (2)

C.-L. Wu, K.-C. Huang, C.-C. Liao, Y.-H. Chen, and K. Lee, “Autostereoscopic display optical properties evaluation,” Proc. SPIE 7524, 75241L (2010).
[Crossref]

J. Y. Lee, J. S. Lee, S. L. Kim, J. S. Han, T. J. Jun, and S. T. Shin, “Optical performance analysis method of auto-stereoscopic 3D displays,” SID Symposium Digest 41, 327–330 (2010).
[Crossref]

2008 (3)

T. Järvenpää and M. Salmimaa, “Optical characterization of autostereoscopic 3-D displays,” J. SID,  16, 825–833 (2008).

M. Salminaa and T. Järvenpää, “Optical characterization and measurements of autostereoscopic 3D displays,” Proc. SPIE,  7001, 700102 (2008).

M. Salminaa and T. Järvenpää, “Objective evaluation of multi-view autostereoscopic 3D displays,” SID Symposium Digest,  20.4, 267–270 (2008).
[Crossref]

Boev, A.

A. Boev, A Gotchev, and K. Eqiazarian, “Crosstalk measurement methodology for auto-stereoscopic screens,” 3DTV Conference, 1–4 (2007).

Chang, W.-H.

W.-H. Chang, K.-C. Huang, Y.-H. Chou, H. Y. Lin, and K. Lee, “A novel evaluation method for 3D display viewing-zone,” SID Symposium Digest,  P-57, 1279–1282 (2012).
[Crossref]

Chen, F.-H.

K. -C. Huang, Y.-H. Chou, L.-C. Lin, H. Y. Lin, F.-H. Chen, C.-C. Liao, Y.-H. Chen, K. Lee, and W. -H. Hsu, “Investigation of designated eye position and viewing zone for a two-view autostereoscopic display,” Opt. Express 22, 4751–4767 (2014).
[Crossref] [PubMed]

K.-C. Huang, Y.-H. Chou, L.-C. Lin, H. Y. Lin, F.-H. Chen, C.-C. Liao, Y.-H. Chen, K. Lee, and W.-H. Hsu, “A study of optimal viewing distance in a parallax barrier 3D display,” J. SID 21, 263–270 (2013).

Chen, Y.-H.

K. -C. Huang, Y.-H. Chou, L.-C. Lin, H. Y. Lin, F.-H. Chen, C.-C. Liao, Y.-H. Chen, K. Lee, and W. -H. Hsu, “Investigation of designated eye position and viewing zone for a two-view autostereoscopic display,” Opt. Express 22, 4751–4767 (2014).
[Crossref] [PubMed]

K.-C. Huang, Y.-H. Chou, L.-C. Lin, H. Y. Lin, F.-H. Chen, C.-C. Liao, Y.-H. Chen, K. Lee, and W.-H. Hsu, “A study of optimal viewing distance in a parallax barrier 3D display,” J. SID 21, 263–270 (2013).

C.-L. Wu, K.-C. Huang, C.-C. Liao, Y.-H. Chen, and K. Lee, “Autostereoscopic display optical properties evaluation,” Proc. SPIE 7524, 75241L (2010).
[Crossref]

Chou, Y.-H.

K. -C. Huang, Y.-H. Chou, L.-C. Lin, H. Y. Lin, F.-H. Chen, C.-C. Liao, Y.-H. Chen, K. Lee, and W. -H. Hsu, “Investigation of designated eye position and viewing zone for a two-view autostereoscopic display,” Opt. Express 22, 4751–4767 (2014).
[Crossref] [PubMed]

K.-C. Huang, Y.-H. Chou, L.-C. Lin, H. Y. Lin, F.-H. Chen, C.-C. Liao, Y.-H. Chen, K. Lee, and W.-H. Hsu, “A study of optimal viewing distance in a parallax barrier 3D display,” J. SID 21, 263–270 (2013).

W.-H. Chang, K.-C. Huang, Y.-H. Chou, H. Y. Lin, and K. Lee, “A novel evaluation method for 3D display viewing-zone,” SID Symposium Digest,  P-57, 1279–1282 (2012).
[Crossref]

Eqiazarian, K.

A. Boev, A Gotchev, and K. Eqiazarian, “Crosstalk measurement methodology for auto-stereoscopic screens,” 3DTV Conference, 1–4 (2007).

Gotchev, A

A. Boev, A Gotchev, and K. Eqiazarian, “Crosstalk measurement methodology for auto-stereoscopic screens,” 3DTV Conference, 1–4 (2007).

Han, J. S.

J. Y. Lee, J. S. Lee, S. L. Kim, J. S. Han, T. J. Jun, and S. T. Shin, “Optical performance analysis method of auto-stereoscopic 3D displays,” SID Symposium Digest 41, 327–330 (2010).
[Crossref]

Hsu, W. -H.

Hsu, W.-H.

K.-C. Huang, Y.-H. Chou, L.-C. Lin, H. Y. Lin, F.-H. Chen, C.-C. Liao, Y.-H. Chen, K. Lee, and W.-H. Hsu, “A study of optimal viewing distance in a parallax barrier 3D display,” J. SID 21, 263–270 (2013).

Huang, K. -C.

Huang, K.-C.

K.-C. Huang, Y.-H. Chou, L.-C. Lin, H. Y. Lin, F.-H. Chen, C.-C. Liao, Y.-H. Chen, K. Lee, and W.-H. Hsu, “A study of optimal viewing distance in a parallax barrier 3D display,” J. SID 21, 263–270 (2013).

W.-H. Chang, K.-C. Huang, Y.-H. Chou, H. Y. Lin, and K. Lee, “A novel evaluation method for 3D display viewing-zone,” SID Symposium Digest,  P-57, 1279–1282 (2012).
[Crossref]

C.-L. Wu, K.-C. Huang, C.-C. Liao, Y.-H. Chen, and K. Lee, “Autostereoscopic display optical properties evaluation,” Proc. SPIE 7524, 75241L (2010).
[Crossref]

Järvenpää, T.

M. Salminaa and T. Järvenpää, “Objective evaluation of multi-view autostereoscopic 3D displays,” SID Symposium Digest,  20.4, 267–270 (2008).
[Crossref]

M. Salminaa and T. Järvenpää, “Optical characterization and measurements of autostereoscopic 3D displays,” Proc. SPIE,  7001, 700102 (2008).

T. Järvenpää and M. Salmimaa, “Optical characterization of autostereoscopic 3-D displays,” J. SID,  16, 825–833 (2008).

T. Järvenpää and B. M. Salminaa, “Optical characterization methods for autostereoscopic 3D displays,” Proc. of EuroDisplay132–135 (2007).

Jun, T. J.

J. Y. Lee, J. S. Lee, S. L. Kim, J. S. Han, T. J. Jun, and S. T. Shin, “Optical performance analysis method of auto-stereoscopic 3D displays,” SID Symposium Digest 41, 327–330 (2010).
[Crossref]

Kim, S. -K.

S. K. Yoon and S. -K. Kim, “Measurement method with moving image sensor in autostereoscopic display,” Proc. SPIE 8384, 83840Y (2012).
[Crossref]

Kim, S. L.

J. Y. Lee, J. S. Lee, S. L. Kim, J. S. Han, T. J. Jun, and S. T. Shin, “Optical performance analysis method of auto-stereoscopic 3D displays,” SID Symposium Digest 41, 327–330 (2010).
[Crossref]

Lee, J. S.

J. Y. Lee, J. S. Lee, S. L. Kim, J. S. Han, T. J. Jun, and S. T. Shin, “Optical performance analysis method of auto-stereoscopic 3D displays,” SID Symposium Digest 41, 327–330 (2010).
[Crossref]

Lee, J. Y.

J. Y. Lee, J. S. Lee, S. L. Kim, J. S. Han, T. J. Jun, and S. T. Shin, “Optical performance analysis method of auto-stereoscopic 3D displays,” SID Symposium Digest 41, 327–330 (2010).
[Crossref]

Lee, K.

K. -C. Huang, Y.-H. Chou, L.-C. Lin, H. Y. Lin, F.-H. Chen, C.-C. Liao, Y.-H. Chen, K. Lee, and W. -H. Hsu, “Investigation of designated eye position and viewing zone for a two-view autostereoscopic display,” Opt. Express 22, 4751–4767 (2014).
[Crossref] [PubMed]

K.-C. Huang, Y.-H. Chou, L.-C. Lin, H. Y. Lin, F.-H. Chen, C.-C. Liao, Y.-H. Chen, K. Lee, and W.-H. Hsu, “A study of optimal viewing distance in a parallax barrier 3D display,” J. SID 21, 263–270 (2013).

W.-H. Chang, K.-C. Huang, Y.-H. Chou, H. Y. Lin, and K. Lee, “A novel evaluation method for 3D display viewing-zone,” SID Symposium Digest,  P-57, 1279–1282 (2012).
[Crossref]

C.-L. Wu, K.-C. Huang, C.-C. Liao, Y.-H. Chen, and K. Lee, “Autostereoscopic display optical properties evaluation,” Proc. SPIE 7524, 75241L (2010).
[Crossref]

Liao, C.-C.

K. -C. Huang, Y.-H. Chou, L.-C. Lin, H. Y. Lin, F.-H. Chen, C.-C. Liao, Y.-H. Chen, K. Lee, and W. -H. Hsu, “Investigation of designated eye position and viewing zone for a two-view autostereoscopic display,” Opt. Express 22, 4751–4767 (2014).
[Crossref] [PubMed]

K.-C. Huang, Y.-H. Chou, L.-C. Lin, H. Y. Lin, F.-H. Chen, C.-C. Liao, Y.-H. Chen, K. Lee, and W.-H. Hsu, “A study of optimal viewing distance in a parallax barrier 3D display,” J. SID 21, 263–270 (2013).

C.-L. Wu, K.-C. Huang, C.-C. Liao, Y.-H. Chen, and K. Lee, “Autostereoscopic display optical properties evaluation,” Proc. SPIE 7524, 75241L (2010).
[Crossref]

Lin, H. Y.

K. -C. Huang, Y.-H. Chou, L.-C. Lin, H. Y. Lin, F.-H. Chen, C.-C. Liao, Y.-H. Chen, K. Lee, and W. -H. Hsu, “Investigation of designated eye position and viewing zone for a two-view autostereoscopic display,” Opt. Express 22, 4751–4767 (2014).
[Crossref] [PubMed]

K.-C. Huang, Y.-H. Chou, L.-C. Lin, H. Y. Lin, F.-H. Chen, C.-C. Liao, Y.-H. Chen, K. Lee, and W.-H. Hsu, “A study of optimal viewing distance in a parallax barrier 3D display,” J. SID 21, 263–270 (2013).

W.-H. Chang, K.-C. Huang, Y.-H. Chou, H. Y. Lin, and K. Lee, “A novel evaluation method for 3D display viewing-zone,” SID Symposium Digest,  P-57, 1279–1282 (2012).
[Crossref]

Lin, L.-C.

K. -C. Huang, Y.-H. Chou, L.-C. Lin, H. Y. Lin, F.-H. Chen, C.-C. Liao, Y.-H. Chen, K. Lee, and W. -H. Hsu, “Investigation of designated eye position and viewing zone for a two-view autostereoscopic display,” Opt. Express 22, 4751–4767 (2014).
[Crossref] [PubMed]

K.-C. Huang, Y.-H. Chou, L.-C. Lin, H. Y. Lin, F.-H. Chen, C.-C. Liao, Y.-H. Chen, K. Lee, and W.-H. Hsu, “A study of optimal viewing distance in a parallax barrier 3D display,” J. SID 21, 263–270 (2013).

Salmimaa, M.

T. Järvenpää and M. Salmimaa, “Optical characterization of autostereoscopic 3-D displays,” J. SID,  16, 825–833 (2008).

Salminaa, B. M.

T. Järvenpää and B. M. Salminaa, “Optical characterization methods for autostereoscopic 3D displays,” Proc. of EuroDisplay132–135 (2007).

Salminaa, M.

M. Salminaa and T. Järvenpää, “Optical characterization and measurements of autostereoscopic 3D displays,” Proc. SPIE,  7001, 700102 (2008).

M. Salminaa and T. Järvenpää, “Objective evaluation of multi-view autostereoscopic 3D displays,” SID Symposium Digest,  20.4, 267–270 (2008).
[Crossref]

Shin, S. T.

J. Y. Lee, J. S. Lee, S. L. Kim, J. S. Han, T. J. Jun, and S. T. Shin, “Optical performance analysis method of auto-stereoscopic 3D displays,” SID Symposium Digest 41, 327–330 (2010).
[Crossref]

Wu, C.-L.

C.-L. Wu, K.-C. Huang, C.-C. Liao, Y.-H. Chen, and K. Lee, “Autostereoscopic display optical properties evaluation,” Proc. SPIE 7524, 75241L (2010).
[Crossref]

Yoon, S. K.

S. K. Yoon and S. -K. Kim, “Measurement method with moving image sensor in autostereoscopic display,” Proc. SPIE 8384, 83840Y (2012).
[Crossref]

J. SID (2)

K.-C. Huang, Y.-H. Chou, L.-C. Lin, H. Y. Lin, F.-H. Chen, C.-C. Liao, Y.-H. Chen, K. Lee, and W.-H. Hsu, “A study of optimal viewing distance in a parallax barrier 3D display,” J. SID 21, 263–270 (2013).

T. Järvenpää and M. Salmimaa, “Optical characterization of autostereoscopic 3-D displays,” J. SID,  16, 825–833 (2008).

Opt. Express (1)

Proc. SPIE (3)

S. K. Yoon and S. -K. Kim, “Measurement method with moving image sensor in autostereoscopic display,” Proc. SPIE 8384, 83840Y (2012).
[Crossref]

C.-L. Wu, K.-C. Huang, C.-C. Liao, Y.-H. Chen, and K. Lee, “Autostereoscopic display optical properties evaluation,” Proc. SPIE 7524, 75241L (2010).
[Crossref]

M. Salminaa and T. Järvenpää, “Optical characterization and measurements of autostereoscopic 3D displays,” Proc. SPIE,  7001, 700102 (2008).

SID Symposium Digest (3)

M. Salminaa and T. Järvenpää, “Objective evaluation of multi-view autostereoscopic 3D displays,” SID Symposium Digest,  20.4, 267–270 (2008).
[Crossref]

J. Y. Lee, J. S. Lee, S. L. Kim, J. S. Han, T. J. Jun, and S. T. Shin, “Optical performance analysis method of auto-stereoscopic 3D displays,” SID Symposium Digest 41, 327–330 (2010).
[Crossref]

W.-H. Chang, K.-C. Huang, Y.-H. Chou, H. Y. Lin, and K. Lee, “A novel evaluation method for 3D display viewing-zone,” SID Symposium Digest,  P-57, 1279–1282 (2012).
[Crossref]

Other (3)

P. Boher, T. Leroux, T. Bignon, and V. Collomb-Patton, “A new way to characterize auto-stereoscopic 3D displays using Fourier optics instrument,” http://www.eldim.fr/library/eldim-publications/paper_3d_displays.pdf .

A. Boev, A Gotchev, and K. Eqiazarian, “Crosstalk measurement methodology for auto-stereoscopic screens,” 3DTV Conference, 1–4 (2007).

T. Järvenpää and B. M. Salminaa, “Optical characterization methods for autostereoscopic 3D displays,” Proc. of EuroDisplay132–135 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 Schematic of the design of a multi-view auto-stereoscopic 3D display system with a parallax barrier.
Fig. 2
Fig. 2 Schematic of a 3D display structure comprising light source, a display panel, a parallax barrier and a detector in a modeling. VD denotes the distance between a parallax barrier and the detector.
Fig. 3
Fig. 3 Definition of the FWHM of the illuminance distribution. The FWHM is defined as the separation between two points along the x axis, at which illuminance becomes half the maximum value(Im).
Fig. 4
Fig. 4 An example of results of ray tracing simulation based on illuminance from the whole display pixels that provide a single view.
Fig. 5
Fig. 5 OVD determination via minimization of the FWHM of illuminance distribution across the viewing zone, using the entire area of a display panel. The offset (zero in the horizontal axis) corresponds to the designed VD(DVD)= 970 mm.
Fig. 6
Fig. 6 Measured illuminance distribution as a function of x, for 8th, 9th and 10th view images by using the whole display panel is illustrated at various VDs.
Fig. 7
Fig. 7 An example of results of ray tracing simulation based on illuminance from a series of pixels that provide a single view, within a local area of a display. The cases of using a local display area on the left (a), in the middle (b) and on the right (c) are given.
Fig. 8
Fig. 8 (a) Center positions of spatial distributions of individual viewing images for the main-branch images and its subsidiary ones. (b) Averaged deviation vs VD. The OVD can be determined as the VD where the statistical deviations are minimized. The offset corresponds to the designed VD(DVD)= 970 mm.
Fig. 9
Fig. 9 Schematic of the display pixel structure mapped with 10 image views of RGB colors in experiment
Fig. 10
Fig. 10 The three different local areas used for the OVD determination experiments (left, center and right denoted with respect to an observer).
Fig. 11
Fig. 11 Measured spatial distribution of 10-view image illuminance at VD=570 mm, using three different local display areas. (a) represents the case of the left local area of the display panel, (b) the center local area and (c) the right local area.
Fig. 12
Fig. 12 Image aberration due to the inconsistent intersections of rays emitting from different local display areas.
Fig. 13
Fig. 13 The VD of intersection of two rays from two different local display areas, versus individual images numbered along the x-axis.
Fig. 14
Fig. 14 Determination of the effective OVD.
Fig. 15
Fig. 15 OVD determination via minimization of FWHM of illuminance distribution across the viewing zone, using the entire area of the display panel.
Fig. 16
Fig. 16 Least squrare fits to the measured centers of spatial distributions of individual images at the OVD as a function of view image number. The slope gives the estimate of the SV at the OVD.
Fig. 17
Fig. 17 Simulation results for averaged deviation of center positions of spatial distributions of illuminance vs VD using 1st view pixels within local display areas (local areas on the left, center and right). The offset corresponds to the designed VD(DVD)= 970mm. (a) with a parallax barrier convexly curved with respect to a display panel, (b) with a parallax barrier concavely curved with respect to a display panel.

Tables (1)

Tables Icon

Table 1 Designed parameters of the experimental setup for the 3D display

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

W S = S V × W P S V + W P ,
Λ P B = N × S V × W P S V + W P ,
d = DVD + W P S V .
η F = [ Δ F ¯ F Δ ( VD ) ] 1 ,
η V = [ Δ V ¯ V Δ ( VD ) ] 1 ,

Metrics