Abstract

Based on a novel phase-sieve method by in-plane interference processes, a well-designed nonperiodic nanogroove array on gold surface is proposed as a multifunctional and multi-output plasmonic meta-element (MPM) for surface plasmon polariton waves. An MPM functions as a plasmonic lens (PL) as well as a plasmonic array illuminator (PAI), and another MPM acts as two PLs with an intersection angle of π/4 are fabricated and validated by leakage radiation microscopy measurements. Our proposed scheme with implemented functionalities could promote potential applications in high density integrated optical circuits.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sub-one-third wavelength focusing of surface plasmon polaritons excited by linearly polarized light

Jiayuan Wang and Jiasen Zhang
Opt. Express 26(11) 14626-14635 (2018)

Plasmonic quadrant lens for beam-position sensing

Jiayuan Wang, Jing Yang, Zhenjian Bai, and Jiasen Zhang
Opt. Express 24(19) 21566-21576 (2016)

Polarization-switchable and wavelength-controllable multi-functional metasurface for focusing and surface-plasmon-polariton wave excitation

Yonghong Ling, Lirong Huang, Wei Hong, Tongjun Liu, Luan Jing, Wenbin Liu, and Ziyong Wang
Opt. Express 25(24) 29812-29821 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
    [Crossref]
  2. H. Raether, Surface plasmons on smooth and rough surfaces and on grating (Springer, 1988, Chap. 2).
  3. A. V. Zayatsa, I. I. Smolyaninovb, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
    [Crossref]
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  5. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
    [Crossref] [PubMed]
  6. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
    [Crossref] [PubMed]
  7. J. Wang, J. Zhang, X. Wu, H. Luo, and Q. Gong, “Subwavelength-resolved bidirectional imaging between two and three dimensions using a surface plasmon launching lens,” Appl. Phys. Lett. 94(8), 081116 (2009).
    [Crossref]
  8. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
    [Crossref] [PubMed]
  9. W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22(45), 5120–5124 (2010).
    [Crossref] [PubMed]
  10. J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonz’alez, and A.-L. Baudrion, “Near-field characterization of bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
    [Crossref]
  11. A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Surface plasmon polariton microscope with parabolic reflectors,” Opt. Lett. 32(16), 2414–2416 (2007).
    [Crossref] [PubMed]
  12. J.-C. Weeber, M. U. González, A.-L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” Appl. Phys. Lett. 87(22), 221101 (2005).
    [Crossref]
  13. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
    [Crossref] [PubMed]
  14. A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
    [Crossref]
  15. Y. Liu and X. Zhang, “Metasurfaces for manipulating surface plasmons,” Appl. Phys. Lett. 103(14), 141101 (2013).
    [Crossref]
  16. L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
    [Crossref] [PubMed]
  17. L. Li, T. Li, S. Wang, S. Zhu, and X. Zhang, “Broad band focusing and demultiplexing of in-plane propagating surface plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
    [Crossref] [PubMed]
  18. T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
    [Crossref] [PubMed]
  19. L. Li, T. Li, S. M. Wang, and S. N. Zhu, “Collimated Plasmon beam: Nondiffracting versus linearly focused,” Phys. Rev. Lett. 110(4), 046807 (2013).
    [Crossref] [PubMed]
  20. S.-H. Chang, S. K. Gray, and G. C. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13(8), 3150–3165 (2005).
    [Crossref] [PubMed]
  21. A. Giannattasio, I. R. Hooper, and W. L. Barnes, “Dependence on surface profile in grating-assisted coupling of light to surface plasmon-polaritons,” Opt. Commun. 261(2), 291–295 (2006).
    [Crossref]
  22. W. Zhang, C. Zhao, J. Wang, and J. Zhang, “An experimental study of the plasmonic Talbot effect,” Opt. Express 17(22), 19757–19762 (2009).
    [Crossref] [PubMed]
  23. A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
    [Crossref]
  24. J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons,” Science 340(6130), 331–334 (2013).
    [Crossref] [PubMed]
  25. L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, ““Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Scie. Appl. 2(3), e70 (2013).
    [Crossref]

2013 (4)

Y. Liu and X. Zhang, “Metasurfaces for manipulating surface plasmons,” Appl. Phys. Lett. 103(14), 141101 (2013).
[Crossref]

L. Li, T. Li, S. M. Wang, and S. N. Zhu, “Collimated Plasmon beam: Nondiffracting versus linearly focused,” Phys. Rev. Lett. 110(4), 046807 (2013).
[Crossref] [PubMed]

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, ““Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Scie. Appl. 2(3), e70 (2013).
[Crossref]

2011 (3)

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[Crossref] [PubMed]

L. Li, T. Li, S. Wang, S. Zhu, and X. Zhang, “Broad band focusing and demultiplexing of in-plane propagating surface plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
[Crossref] [PubMed]

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[Crossref] [PubMed]

2010 (1)

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22(45), 5120–5124 (2010).
[Crossref] [PubMed]

2009 (2)

J. Wang, J. Zhang, X. Wu, H. Luo, and Q. Gong, “Subwavelength-resolved bidirectional imaging between two and three dimensions using a surface plasmon launching lens,” Appl. Phys. Lett. 94(8), 081116 (2009).
[Crossref]

W. Zhang, C. Zhao, J. Wang, and J. Zhang, “An experimental study of the plasmonic Talbot effect,” Opt. Express 17(22), 19757–19762 (2009).
[Crossref] [PubMed]

2007 (1)

2006 (4)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[Crossref]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[Crossref]

A. Giannattasio, I. R. Hooper, and W. L. Barnes, “Dependence on surface profile in grating-assisted coupling of light to surface plasmon-polaritons,” Opt. Commun. 261(2), 291–295 (2006).
[Crossref]

2005 (7)

S.-H. Chang, S. K. Gray, and G. C. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13(8), 3150–3165 (2005).
[Crossref] [PubMed]

A. V. Zayatsa, I. I. Smolyaninovb, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
[Crossref]

J.-C. Weeber, M. U. González, A.-L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” Appl. Phys. Lett. 87(22), 221101 (2005).
[Crossref]

2004 (1)

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonz’alez, and A.-L. Baudrion, “Near-field characterization of bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Antoniou, N.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Aussenegg, F. R.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Surface plasmon polariton microscope with parabolic reflectors,” Opt. Lett. 32(16), 2414–2416 (2007).
[Crossref] [PubMed]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[Crossref]

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
[Crossref]

Bai, B.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, ““Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Scie. Appl. 2(3), e70 (2013).
[Crossref]

Balram, K. C.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[Crossref] [PubMed]

Barnes, W. L.

A. Giannattasio, I. R. Hooper, and W. L. Barnes, “Dependence on surface profile in grating-assisted coupling of light to surface plasmon-polaritons,” Opt. Commun. 261(2), 291–295 (2006).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Baudrion, A.-L.

J.-C. Weeber, M. U. González, A.-L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” Appl. Phys. Lett. 87(22), 221101 (2005).
[Crossref]

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonz’alez, and A.-L. Baudrion, “Near-field characterization of bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[Crossref]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

Brongersma, M. L.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[Crossref] [PubMed]

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22(45), 5120–5124 (2010).
[Crossref] [PubMed]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[Crossref]

Brown, D. E.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Cai, W.

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22(45), 5120–5124 (2010).
[Crossref] [PubMed]

Capasso, F.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Chandran, A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[Crossref]

Chang, S.-H.

Chen, X.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, ““Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Scie. Appl. 2(3), e70 (2013).
[Crossref]

Dereux, A.

J.-C. Weeber, M. U. González, A.-L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” Appl. Phys. Lett. 87(22), 221101 (2005).
[Crossref]

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonz’alez, and A.-L. Baudrion, “Near-field characterization of bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonz’alez, and A.-L. Baudrion, “Near-field characterization of bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[Crossref]

Ditlbacher, H.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[Crossref]

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
[Crossref]

Drezet, A.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Surface plasmon polariton microscope with parabolic reflectors,” Opt. Lett. 32(16), 2414–2416 (2007).
[Crossref] [PubMed]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[Crossref]

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
[Crossref]

Ebbesen, T.

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonz’alez, and A.-L. Baudrion, “Near-field characterization of bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[Crossref]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Fan, S.

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22(45), 5120–5124 (2010).
[Crossref] [PubMed]

Galler, N.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[Crossref]

Giannattasio, A.

A. Giannattasio, I. R. Hooper, and W. L. Barnes, “Dependence on surface profile in grating-assisted coupling of light to surface plasmon-polaritons,” Opt. Commun. 261(2), 291–295 (2006).
[Crossref]

Girard, C.

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonz’alez, and A.-L. Baudrion, “Near-field characterization of bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[Crossref]

Gong, Q.

J. Wang, J. Zhang, X. Wu, H. Luo, and Q. Gong, “Subwavelength-resolved bidirectional imaging between two and three dimensions using a surface plasmon launching lens,” Appl. Phys. Lett. 94(8), 081116 (2009).
[Crossref]

Gonz’alez, M. U.

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonz’alez, and A.-L. Baudrion, “Near-field characterization of bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[Crossref]

González, M. U.

J.-C. Weeber, M. U. González, A.-L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” Appl. Phys. Lett. 87(22), 221101 (2005).
[Crossref]

Gray, S. K.

Hiller, J. M.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Hohenau, A.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Surface plasmon polariton microscope with parabolic reflectors,” Opt. Lett. 32(16), 2414–2416 (2007).
[Crossref] [PubMed]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[Crossref]

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
[Crossref]

Hooper, I. R.

A. Giannattasio, I. R. Hooper, and W. L. Barnes, “Dependence on surface profile in grating-assisted coupling of light to surface plasmon-polaritons,” Opt. Commun. 261(2), 291–295 (2006).
[Crossref]

Hua, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Huang, L.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, ““Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Scie. Appl. 2(3), e70 (2013).
[Crossref]

Jin, G.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, ““Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Scie. Appl. 2(3), e70 (2013).
[Crossref]

Kimball, C. W.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Koller, D.

Krenn, J. R.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Surface plasmon polariton microscope with parabolic reflectors,” Opt. Lett. 32(16), 2414–2416 (2007).
[Crossref] [PubMed]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[Crossref]

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
[Crossref]

Lacroute, Y.

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonz’alez, and A.-L. Baudrion, “Near-field characterization of bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[Crossref]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Leitner, A.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Surface plasmon polariton microscope with parabolic reflectors,” Opt. Lett. 32(16), 2414–2416 (2007).
[Crossref] [PubMed]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[Crossref]

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
[Crossref]

Li, L.

L. Li, T. Li, S. M. Wang, and S. N. Zhu, “Collimated Plasmon beam: Nondiffracting versus linearly focused,” Phys. Rev. Lett. 110(4), 046807 (2013).
[Crossref] [PubMed]

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[Crossref] [PubMed]

L. Li, T. Li, S. Wang, S. Zhu, and X. Zhang, “Broad band focusing and demultiplexing of in-plane propagating surface plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
[Crossref] [PubMed]

Li, T.

L. Li, T. Li, S. M. Wang, and S. N. Zhu, “Collimated Plasmon beam: Nondiffracting versus linearly focused,” Phys. Rev. Lett. 110(4), 046807 (2013).
[Crossref] [PubMed]

L. Li, T. Li, S. Wang, S. Zhu, and X. Zhang, “Broad band focusing and demultiplexing of in-plane propagating surface plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
[Crossref] [PubMed]

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[Crossref] [PubMed]

Lin, J.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Liu, Y.

Y. Liu and X. Zhang, “Metasurfaces for manipulating surface plasmons,” Appl. Phys. Lett. 103(14), 141101 (2013).
[Crossref]

Liu, Z.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Luo, H.

J. Wang, J. Zhang, X. Wu, H. Luo, and Q. Gong, “Subwavelength-resolved bidirectional imaging between two and three dimensions using a surface plasmon launching lens,” Appl. Phys. Lett. 94(8), 081116 (2009).
[Crossref]

Ly-Gagnon, D. S.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[Crossref] [PubMed]

Maradudin, A. A.

A. V. Zayatsa, I. I. Smolyaninovb, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Miller, D. A. B.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[Crossref] [PubMed]

Mueller, J. P. B.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Pearson, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Pikus, Y.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Schatz, G. C.

Schuller, J. A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[Crossref]

Shin, W.

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22(45), 5120–5124 (2010).
[Crossref] [PubMed]

Smolyaninovb, I. I.

A. V. Zayatsa, I. I. Smolyaninovb, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Srituravanich, W.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Steele, J. M.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Steinberger, B.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[Crossref]

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
[Crossref]

Stepanov, A. L.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[Crossref]

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
[Crossref]

Sun, C.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Tan, Q.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, ““Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Scie. Appl. 2(3), e70 (2013).
[Crossref]

Tanemura, T.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[Crossref] [PubMed]

Vlasko-Vlasov, V. K.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

Wahl, P.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[Crossref] [PubMed]

Wang, J.

W. Zhang, C. Zhao, J. Wang, and J. Zhang, “An experimental study of the plasmonic Talbot effect,” Opt. Express 17(22), 19757–19762 (2009).
[Crossref] [PubMed]

J. Wang, J. Zhang, X. Wu, H. Luo, and Q. Gong, “Subwavelength-resolved bidirectional imaging between two and three dimensions using a surface plasmon launching lens,” Appl. Phys. Lett. 94(8), 081116 (2009).
[Crossref]

Wang, Q.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Wang, S.

L. Li, T. Li, S. Wang, S. Zhu, and X. Zhang, “Broad band focusing and demultiplexing of in-plane propagating surface plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
[Crossref] [PubMed]

Wang, S. M.

L. Li, T. Li, S. M. Wang, and S. N. Zhu, “Collimated Plasmon beam: Nondiffracting versus linearly focused,” Phys. Rev. Lett. 110(4), 046807 (2013).
[Crossref] [PubMed]

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[Crossref] [PubMed]

Weeber, J.-C.

J.-C. Weeber, M. U. González, A.-L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” Appl. Phys. Lett. 87(22), 221101 (2005).
[Crossref]

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonz’alez, and A.-L. Baudrion, “Near-field characterization of bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[Crossref]

Welp, U.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

White, J. S.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[Crossref] [PubMed]

Wu, X.

J. Wang, J. Zhang, X. Wu, H. Luo, and Q. Gong, “Subwavelength-resolved bidirectional imaging between two and three dimensions using a surface plasmon launching lens,” Appl. Phys. Lett. 94(8), 081116 (2009).
[Crossref]

Yin, L.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Yuan, G.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Yuan, X.-C.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Zayatsa, A. V.

A. V. Zayatsa, I. I. Smolyaninovb, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Zentgraf, T.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, ““Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Scie. Appl. 2(3), e70 (2013).
[Crossref]

Zhang, C.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[Crossref] [PubMed]

Zhang, J.

J. Wang, J. Zhang, X. Wu, H. Luo, and Q. Gong, “Subwavelength-resolved bidirectional imaging between two and three dimensions using a surface plasmon launching lens,” Appl. Phys. Lett. 94(8), 081116 (2009).
[Crossref]

W. Zhang, C. Zhao, J. Wang, and J. Zhang, “An experimental study of the plasmonic Talbot effect,” Opt. Express 17(22), 19757–19762 (2009).
[Crossref] [PubMed]

Zhang, S.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, ““Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Scie. Appl. 2(3), e70 (2013).
[Crossref]

Zhang, W.

Zhang, X.

Y. Liu and X. Zhang, “Metasurfaces for manipulating surface plasmons,” Appl. Phys. Lett. 103(14), 141101 (2013).
[Crossref]

L. Li, T. Li, S. Wang, S. Zhu, and X. Zhang, “Broad band focusing and demultiplexing of in-plane propagating surface plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Zhao, C.

Zhu, S.

L. Li, T. Li, S. Wang, S. Zhu, and X. Zhang, “Broad band focusing and demultiplexing of in-plane propagating surface plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
[Crossref] [PubMed]

Zhu, S. N.

L. Li, T. Li, S. M. Wang, and S. N. Zhu, “Collimated Plasmon beam: Nondiffracting versus linearly focused,” Phys. Rev. Lett. 110(4), 046807 (2013).
[Crossref] [PubMed]

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[Crossref] [PubMed]

Zia, R.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[Crossref]

Adv. Mater. (1)

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22(45), 5120–5124 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

J.-C. Weeber, M. U. González, A.-L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” Appl. Phys. Lett. 87(22), 221101 (2005).
[Crossref]

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
[Crossref]

Y. Liu and X. Zhang, “Metasurfaces for manipulating surface plasmons,” Appl. Phys. Lett. 103(14), 141101 (2013).
[Crossref]

J. Wang, J. Zhang, X. Wu, H. Luo, and Q. Gong, “Subwavelength-resolved bidirectional imaging between two and three dimensions using a surface plasmon launching lens,” Appl. Phys. Lett. 94(8), 081116 (2009).
[Crossref]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[Crossref]

Light: Scie. Appl. (1)

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, ““Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Scie. Appl. 2(3), e70 (2013).
[Crossref]

Mater. Today (1)

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[Crossref]

Nano Lett. (4)

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

L. Li, T. Li, S. Wang, S. Zhu, and X. Zhang, “Broad band focusing and demultiplexing of in-plane propagating surface plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
[Crossref] [PubMed]

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[Crossref] [PubMed]

Nature (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

A. Giannattasio, I. R. Hooper, and W. L. Barnes, “Dependence on surface profile in grating-assisted coupling of light to surface plasmon-polaritons,” Opt. Commun. 261(2), 291–295 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rep. (1)

A. V. Zayatsa, I. I. Smolyaninovb, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Phys. Rev. B (1)

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonz’alez, and A.-L. Baudrion, “Near-field characterization of bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[Crossref]

Phys. Rev. Lett. (3)

L. Li, T. Li, S. M. Wang, and S. N. Zhu, “Collimated Plasmon beam: Nondiffracting versus linearly focused,” Phys. Rev. Lett. 110(4), 046807 (2013).
[Crossref] [PubMed]

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

Science (1)

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Other (1)

H. Raether, Surface plasmons on smooth and rough surfaces and on grating (Springer, 1988, Chap. 2).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of an MPM. (a) The MPM consists of many grooves of uniform size fabricated on a gold film. A laser beam is incident upon the MPM and launches SPPs that propagate at the gold/air interface. (b) Rectangular grid of the MPM. The coordinate origin is at the center of the MPM. r and rs are the vectors of the field and source points, respectively. The red double-headed arrow represents the polarization direction of the incident beam, φs is the azimuthal angle between the polarization direction and the vector r-rs.
Fig. 2
Fig. 2 Simulated focal length f’ is plotted with respect to the design parameter f, which is varied from 15.0 to 60.0 µm with an increment of 5.0 µm. f’ is determined from numerical calculation using Eqs. (1) and (2) with t = 1.0.
Fig. 3
Fig. 3 (a) Pattern of the groove set of the designed bifocal PL. The even and odd rows are drawn in red and black, respectively, for clarity. (b) Pattern of the groove set of the designed PAI. The inset is the magnified image of a part of the pattern containing four unit cells, in which one unit cell is indicated in red to guide the eyes.
Fig. 4
Fig. 4 Performance of PL (y-direction) operating at λ0 = 873 nm and polarization angle θ = 90°. (a) SEM image of the fabricated MPM with a footprint of 25 µm × 26 µm. (b) LRM image of PL. (c) Intensity profiles in the longitudinal and transverse directions through the upper focus in (b). (d) Simulated SPP intensity distribution. The white box marks the MPM boundary.
Fig. 5
Fig. 5 Performance of the PAI (x-direction) operated at λ0 = 830 nm and polarization angle θ = 0°. (a) LRM image of PAI. The dashed lines 1, 2, and 3 indicate the positions of x = −32, −24, and −17 µm, respectively. (b) Simulated SPP intensity distribution. The white box marks the MPM boundary. (c) Intensity profiles along the dashed lines in (a). The curves were offset for clarity.
Fig. 6
Fig. 6 LRM images of the MPM at λ0 = 800 (a), 809 (b), 820 (c), 830 (d), 840 (e), 850 (f), 860 (g), 873 (h), and 880 nm (i) for polarization angle θ = 45°.
Fig. 7
Fig. 7 Performance of the MPM comprising two monofocal PLs operating along the directions of + y axis and [ + 1, + 1] for polarization angle θ = 77.5°. (a) Schematic of the rhombic grid. The coordinate origin is at the center of the MPM. (b) SEM image of the fabricated MPM with a footprint of 24 µm × 37 µm. (c)–(e) are the LRM images of the MPM at λ0 = 809, 873, and 840 nm, respectively. The insets show the simulated SPP intensity distributions in the focal area.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E m , n ( r , r m , n ) = groove area A ( r S ) ( z ^ i k z k SPP r r S | r r S | ) cos ( φ S ) | r r S | exp ( i k SPP | r r S | ) d S ,
E Total = groove ( m , n ) MPM T m , n E m , n ,
( 2 l + ε ) π k SPP [ | R n ( r m , n ± 0.5 a 1 a 1 ) | d n ] ( 2 l + 1 + ε ) π ,
( 2 l + ε ) π k SPP [ | R ( r m , n ± 0.5 a 2 a 2 ) | d m ] ( 2 l + 1 + ε ) π ,

Metrics