Abstract

A high-power tunable external cavity laser configuration with a tapered quantum-dot semiconductor optical amplifier at its core is presented, enabling a record output power for a broadly tunable semiconductor laser source in the 1.2 - 1.3 µm spectral region. Two distinct optical amplifiers are investigated, using either chirped or unchirped quantum-dot structures, and their merits are compared, considering the combination of tunability and high output power generation. At 1230 nm, the chirped quantum-dot laser achieved a maximum power of 0.62 W and demonstrated nearly 100-nm tunability. The unchirped laser enabled a tunability range of 32 nm and at 1254 nm generated a maximum power of 0.97 W, representing a 22-fold increase in output power compared with similar narrow-ridge external-cavity lasers at the same current density.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadly tunable high-power InAs/GaAs quantum-dot external cavity diode lasers

Ksenia A. Fedorova, Maria Ana Cataluna, Igor Krestnikov, Daniil Livshits, and Edik U. Rafailov
Opt. Express 18(18) 19438-19443 (2010)

High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier

Y. Ding, R. Aviles-Espinosa, M. A. Cataluna, D. Nikitichev, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, Ivo Montrosset, D. Syvridis, M. Krakowski, P. Loza-Alvarez, and E. Rafailov
Opt. Express 20(13) 14308-14320 (2012)

References

  • View by:
  • |
  • |
  • |

  1. P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
    [Crossref]
  2. K. A. Fedorova, M. A. Cataluna, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Broadly tunable high-power InAs/GaAs quantum-dot external cavity diode lasers,” Opt. Express 18(18), 19438–19443 (2010).
    [Crossref] [PubMed]
  3. M. A. Cataluna, Y. Ding, D. I. Nikitichev, K. A. Fedorova, and E. U. Rafailov, “High-power versatile picosecond pulse generation from mode-locked quantum-dot laser diodes,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1302–1310 (2011).
    [Crossref]
  4. N. Krstajić, D. T. Childs, S. Matcher, D. Livshits, A. Shkolnik, I. Krestnikov, and R. Hogg, “Swept-source laser based on quantum-dot semiconductor optical amplifier—applications in optical coherence tomography,” IEEE Photon. Technol. Lett. 23(11), 739–741 (2011).
    [Crossref]
  5. K. Fedorova, M. Cataluna, P. Battle, C. Kaleva, I. Krestnikov, D. Livshits, and E. Rafailov, “Orange light generation from a PPKTP waveguide end pumped by a CW quantum-dot tunable laser diode,” Appl. Phys. B 103(1), 41–43 (2011).
    [Crossref]
  6. O. B. Jensen, A. K. Hansen, A. Muller, B. Sumpf, A. Unterhuber, W. Drexler, P. M. Petersen, and P. E. Andersen, “Power scaling of nonlinear frequency converted tapered diode lasers for biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7100515 (2014).
    [Crossref]
  7. B. J. Orr and Y. He, “Rapidly swept continuous-wave cavity-ringdown spectroscopy,” Chem. Phys. Lett. 512(1), 1–20 (2011).
    [Crossref]
  8. H. Enshasy and D. Cassidy, “Sub-micrometre distance measurements with a broadly tunable short-external-cavity InGaAsP/InP diode laser,” IET Optoelectron. 1(4), 157–162 (2007).
    [Crossref]
  9. A. Tierno and T. Ackemann, “Tunable, narrow-band light source in the 1.25 μm region based on broad-area quantum dot lasers with feedback,” Appl. Phys. B 89(4), 585–588 (2007).
    [Crossref]
  10. X. Q. Lv, P. Jin, W. Y. Wang, and Z. G. Wang, “Broadband external cavity tunable quantum dot lasers with low injection current density,” Opt. Express 18(9), 8916–8922 (2010).
    [Crossref] [PubMed]
  11. Y. Ding, A. Alhazime, D. Nikitichev, K. Fedorova, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. A. Cataluna, M. Krakowski, and E. Rafailov, “Tunable master-oscillator power-amplifier based on chirped quantum-dot structures,” IEEE Photon. Technol. Lett. 24(20), 1841–1844 (2012).
    [Crossref]
  12. Y. Ding, R. Aviles-Espinosa, M. Cataluna, D. Nikitichev, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. Krakowski, P. Loza-Alvarez, and E. Rafailov, “High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier,” Opt. Express 20(13), 14308–14320 (2012).
    [Crossref] [PubMed]
  13. N. Anscombe, “Tapered triumph,” Nat. Photonics 3(1), 24–25 (2009).
    [Crossref]
  14. J. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Opt. Quantum Electron. 28(6), 623–645 (1996).
    [Crossref]
  15. C. Fiebig, G. Blume, C. Kaspari, D. Feise, J. Fricke, M. Matalla, W. John, H. Wenzel, K. Paschke, and G. Erbert, “12 W high-brightness single-frequency DBR tapered diode laser,” Electron. Lett. 44(21), 1253–1255 (2008).
    [Crossref]
  16. B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Trankle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
    [Crossref]
  17. M. Chi, O. B. Jensen, J. Holm, C. Pedersen, P. E. Andersen, G. Erbert, B. Sumpf, and P. M. Petersen, “Tunable high-power narrow-linewidth semiconductor laser based on an external-cavity tapered amplifier,” Opt. Express 13(26), 10589–10596 (2005).
    [Crossref] [PubMed]
  18. B. Fermigier, G. Lucas-Leclin, J. Dupont, F. Plumelle, and M. Houssin, “Self-aligned external-cavity semiconductor lasers for high resolution spectroscopy,” Opt. Commun. 153(1), 73–77 (1998).
    [Crossref]
  19. T. Xu, P. Bardella, M. Rossetti, and I. Montrosset, “Beam propagation method simulation and analysis of quantum dot flared semiconductor optical amplifiers in continuous wave high-saturation regime,” IET Optoelectron. 6(2), 110–116 (2012).
    [Crossref]
  20. M. Rossetti, P. Bardella, M. Gioannini, and I. Montrosset, “Carrier transport effects in multi layer quantum dot lasers and SLDs,” in Proceedings of the 14th European Conference on Integrated Optics (ECIO)(2008), pp. 221–224.
  21. K. Nishi, H. Saito, S. Sugou, and J.-S. Lee, “A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates,” Appl. Phys. Lett. 74(8), 1111–1113 (1999).
    [Crossref]
  22. B. Volovik, A. Tsatsul’nikov, D. Bedarev, A. Y. Egorov, A. Zhukov, A. Kovsh, N. Ledentsov, M. Maksimov, N. Maleev, and Y. G. Musikhin, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).
  23. A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, and A. Zhukov, “Quantum dot laser with 75 nm broad spectrum of emission,” Opt. Lett. 32(7), 793–795 (2007).
    [Crossref] [PubMed]
  24. D. I. Nikitichev, M. A. Cataluna, K. A. Fedorova, Y. Ding, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, and E. U. Rafailov, “High-power wavelength bistability and tunability in passively mode-locked quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100907 (2013).
    [Crossref]
  25. A. Zhukov, A. Kovsh, and V. Ustinov, “Temperature dependence of the gain of lasers based on quantum-dot arrays with an inhomogeneously broadened density of states,” Semiconductors 33(11), 1260–1264 (1999).
    [Crossref]
  26. O. Qasaimeh, “Effect of inhomogeneous line broadening on gain and differential gain of quantum dot lasers,” IEEE Trans. Electron. Dev. 50(7), 1575–1581 (2003).
    [Crossref]
  27. T. Newell, M. Wright, H. Hou, and L. Lester, “Carrier distribution, spontaneous emission and gain engineering in lasers with nonidentical quantum wells,” IEEE J. Sel. Top. Quantum Electron. 5(3), 620–626 (1999).
    [Crossref]
  28. P. Evans, P. Blood, and J. Roberts, “Carrier distribution in quantum well lasers,” Semicond. Sci. Technol. 9(9), 1740–1743 (1994).
    [Crossref]
  29. C. Mesaritakis, A. Kapsalis, H. Simos, C. Simos, M. Krakowski, I. Krestnikov, and D. Syvridis, “Tapered InAs/InGaAs quantum dot semiconductor optical amplifier design for enhanced gain and beam quality,” Opt. Lett. 38(14), 2404–2406 (2013).
    [Crossref] [PubMed]
  30. G. Lin, P.-Y. Su, and H.-C. Cheng, “Low threshold current and widely tunable external cavity lasers with chirped multilayer InAs/InGaAs/GaAs quantum-dot structure,” Opt. Express 20(4), 3941–3947 (2012).
    [Crossref] [PubMed]
  31. M. Rossetti, P. Bardella, and I. Montrosset, “Numerical investigation of power tunability in two-section QD superluminescent diodes,” Opt. Quantum Electron. 40(14–15), 1129–1134 (2008).
    [Crossref]
  32. P. D. Greenwood, D. T. Childs, K. M. Groom, B. J. Stevens, M. Hopkinson, and R. A. Hogg, “Tuning superluminescent diode characteristics for optical coherence tomography systems by utilizing a multicontact device incorporating wavelength-modulated quantum dots,” IEEE J. Sel. Top. Quantum Electron. 15(3), 757–763 (2009).
    [Crossref]
  33. H. Huang and D. Deppe, “Rate equation model for nonequilibrium operating conditions in a self-organized quantum-dot laser,” IEEE J. Quantum Electron. 37(5), 691–698 (2001).
    [Crossref]
  34. H. Li, G. Liu, P. Varangis, T. Newell, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
    [Crossref]
  35. A. Y. Nevsky, U. Bressel, I. Ernsting, C. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges,” Appl. Phys. B 92(4), 501–507 (2008).
    [Crossref]
  36. K. A. Fedorova, M. A. Cataluna, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Tuning range enhancement in external-cavity InAs/GaAs quantum-dot lasers: temperature, bias and cavity loss dependence,” presented at 1st EOS Topical Meeting in Lasers (Capri, Italy, 2009), paper 2194.
  37. K. A. Fedorova, Novel semiconductor based broadly tunable light sources,” Ph.D. Thesis (University of Dundee, 2011).

2014 (1)

O. B. Jensen, A. K. Hansen, A. Muller, B. Sumpf, A. Unterhuber, W. Drexler, P. M. Petersen, and P. E. Andersen, “Power scaling of nonlinear frequency converted tapered diode lasers for biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7100515 (2014).
[Crossref]

2013 (2)

D. I. Nikitichev, M. A. Cataluna, K. A. Fedorova, Y. Ding, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, and E. U. Rafailov, “High-power wavelength bistability and tunability in passively mode-locked quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100907 (2013).
[Crossref]

C. Mesaritakis, A. Kapsalis, H. Simos, C. Simos, M. Krakowski, I. Krestnikov, and D. Syvridis, “Tapered InAs/InGaAs quantum dot semiconductor optical amplifier design for enhanced gain and beam quality,” Opt. Lett. 38(14), 2404–2406 (2013).
[Crossref] [PubMed]

2012 (4)

G. Lin, P.-Y. Su, and H.-C. Cheng, “Low threshold current and widely tunable external cavity lasers with chirped multilayer InAs/InGaAs/GaAs quantum-dot structure,” Opt. Express 20(4), 3941–3947 (2012).
[Crossref] [PubMed]

T. Xu, P. Bardella, M. Rossetti, and I. Montrosset, “Beam propagation method simulation and analysis of quantum dot flared semiconductor optical amplifiers in continuous wave high-saturation regime,” IET Optoelectron. 6(2), 110–116 (2012).
[Crossref]

Y. Ding, A. Alhazime, D. Nikitichev, K. Fedorova, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. A. Cataluna, M. Krakowski, and E. Rafailov, “Tunable master-oscillator power-amplifier based on chirped quantum-dot structures,” IEEE Photon. Technol. Lett. 24(20), 1841–1844 (2012).
[Crossref]

Y. Ding, R. Aviles-Espinosa, M. Cataluna, D. Nikitichev, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. Krakowski, P. Loza-Alvarez, and E. Rafailov, “High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier,” Opt. Express 20(13), 14308–14320 (2012).
[Crossref] [PubMed]

2011 (4)

B. J. Orr and Y. He, “Rapidly swept continuous-wave cavity-ringdown spectroscopy,” Chem. Phys. Lett. 512(1), 1–20 (2011).
[Crossref]

M. A. Cataluna, Y. Ding, D. I. Nikitichev, K. A. Fedorova, and E. U. Rafailov, “High-power versatile picosecond pulse generation from mode-locked quantum-dot laser diodes,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1302–1310 (2011).
[Crossref]

N. Krstajić, D. T. Childs, S. Matcher, D. Livshits, A. Shkolnik, I. Krestnikov, and R. Hogg, “Swept-source laser based on quantum-dot semiconductor optical amplifier—applications in optical coherence tomography,” IEEE Photon. Technol. Lett. 23(11), 739–741 (2011).
[Crossref]

K. Fedorova, M. Cataluna, P. Battle, C. Kaleva, I. Krestnikov, D. Livshits, and E. Rafailov, “Orange light generation from a PPKTP waveguide end pumped by a CW quantum-dot tunable laser diode,” Appl. Phys. B 103(1), 41–43 (2011).
[Crossref]

2010 (2)

2009 (3)

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Trankle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

N. Anscombe, “Tapered triumph,” Nat. Photonics 3(1), 24–25 (2009).
[Crossref]

P. D. Greenwood, D. T. Childs, K. M. Groom, B. J. Stevens, M. Hopkinson, and R. A. Hogg, “Tuning superluminescent diode characteristics for optical coherence tomography systems by utilizing a multicontact device incorporating wavelength-modulated quantum dots,” IEEE J. Sel. Top. Quantum Electron. 15(3), 757–763 (2009).
[Crossref]

2008 (3)

A. Y. Nevsky, U. Bressel, I. Ernsting, C. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges,” Appl. Phys. B 92(4), 501–507 (2008).
[Crossref]

M. Rossetti, P. Bardella, and I. Montrosset, “Numerical investigation of power tunability in two-section QD superluminescent diodes,” Opt. Quantum Electron. 40(14–15), 1129–1134 (2008).
[Crossref]

C. Fiebig, G. Blume, C. Kaspari, D. Feise, J. Fricke, M. Matalla, W. John, H. Wenzel, K. Paschke, and G. Erbert, “12 W high-brightness single-frequency DBR tapered diode laser,” Electron. Lett. 44(21), 1253–1255 (2008).
[Crossref]

2007 (3)

H. Enshasy and D. Cassidy, “Sub-micrometre distance measurements with a broadly tunable short-external-cavity InGaAsP/InP diode laser,” IET Optoelectron. 1(4), 157–162 (2007).
[Crossref]

A. Tierno and T. Ackemann, “Tunable, narrow-band light source in the 1.25 μm region based on broad-area quantum dot lasers with feedback,” Appl. Phys. B 89(4), 585–588 (2007).
[Crossref]

A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, and A. Zhukov, “Quantum dot laser with 75 nm broad spectrum of emission,” Opt. Lett. 32(7), 793–795 (2007).
[Crossref] [PubMed]

2005 (1)

2003 (1)

O. Qasaimeh, “Effect of inhomogeneous line broadening on gain and differential gain of quantum dot lasers,” IEEE Trans. Electron. Dev. 50(7), 1575–1581 (2003).
[Crossref]

2001 (1)

H. Huang and D. Deppe, “Rate equation model for nonequilibrium operating conditions in a self-organized quantum-dot laser,” IEEE J. Quantum Electron. 37(5), 691–698 (2001).
[Crossref]

2000 (2)

H. Li, G. Liu, P. Varangis, T. Newell, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
[Crossref]

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[Crossref]

1999 (4)

T. Newell, M. Wright, H. Hou, and L. Lester, “Carrier distribution, spontaneous emission and gain engineering in lasers with nonidentical quantum wells,” IEEE J. Sel. Top. Quantum Electron. 5(3), 620–626 (1999).
[Crossref]

K. Nishi, H. Saito, S. Sugou, and J.-S. Lee, “A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates,” Appl. Phys. Lett. 74(8), 1111–1113 (1999).
[Crossref]

B. Volovik, A. Tsatsul’nikov, D. Bedarev, A. Y. Egorov, A. Zhukov, A. Kovsh, N. Ledentsov, M. Maksimov, N. Maleev, and Y. G. Musikhin, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).

A. Zhukov, A. Kovsh, and V. Ustinov, “Temperature dependence of the gain of lasers based on quantum-dot arrays with an inhomogeneously broadened density of states,” Semiconductors 33(11), 1260–1264 (1999).
[Crossref]

1998 (1)

B. Fermigier, G. Lucas-Leclin, J. Dupont, F. Plumelle, and M. Houssin, “Self-aligned external-cavity semiconductor lasers for high resolution spectroscopy,” Opt. Commun. 153(1), 73–77 (1998).
[Crossref]

1996 (1)

J. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Opt. Quantum Electron. 28(6), 623–645 (1996).
[Crossref]

1994 (1)

P. Evans, P. Blood, and J. Roberts, “Carrier distribution in quantum well lasers,” Semicond. Sci. Technol. 9(9), 1740–1743 (1994).
[Crossref]

Ackemann, T.

A. Tierno and T. Ackemann, “Tunable, narrow-band light source in the 1.25 μm region based on broad-area quantum dot lasers with feedback,” Appl. Phys. B 89(4), 585–588 (2007).
[Crossref]

Adamiec, P.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Trankle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

Alhazime, A.

Y. Ding, A. Alhazime, D. Nikitichev, K. Fedorova, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. A. Cataluna, M. Krakowski, and E. Rafailov, “Tunable master-oscillator power-amplifier based on chirped quantum-dot structures,” IEEE Photon. Technol. Lett. 24(20), 1841–1844 (2012).
[Crossref]

Andersen, P. E.

O. B. Jensen, A. K. Hansen, A. Muller, B. Sumpf, A. Unterhuber, W. Drexler, P. M. Petersen, and P. E. Andersen, “Power scaling of nonlinear frequency converted tapered diode lasers for biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7100515 (2014).
[Crossref]

M. Chi, O. B. Jensen, J. Holm, C. Pedersen, P. E. Andersen, G. Erbert, B. Sumpf, and P. M. Petersen, “Tunable high-power narrow-linewidth semiconductor laser based on an external-cavity tapered amplifier,” Opt. Express 13(26), 10589–10596 (2005).
[Crossref] [PubMed]

Anscombe, N.

N. Anscombe, “Tapered triumph,” Nat. Photonics 3(1), 24–25 (2009).
[Crossref]

Aviles-Espinosa, R.

Bardella, P.

Y. Ding, R. Aviles-Espinosa, M. Cataluna, D. Nikitichev, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. Krakowski, P. Loza-Alvarez, and E. Rafailov, “High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier,” Opt. Express 20(13), 14308–14320 (2012).
[Crossref] [PubMed]

Y. Ding, A. Alhazime, D. Nikitichev, K. Fedorova, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. A. Cataluna, M. Krakowski, and E. Rafailov, “Tunable master-oscillator power-amplifier based on chirped quantum-dot structures,” IEEE Photon. Technol. Lett. 24(20), 1841–1844 (2012).
[Crossref]

T. Xu, P. Bardella, M. Rossetti, and I. Montrosset, “Beam propagation method simulation and analysis of quantum dot flared semiconductor optical amplifiers in continuous wave high-saturation regime,” IET Optoelectron. 6(2), 110–116 (2012).
[Crossref]

M. Rossetti, P. Bardella, and I. Montrosset, “Numerical investigation of power tunability in two-section QD superluminescent diodes,” Opt. Quantum Electron. 40(14–15), 1129–1134 (2008).
[Crossref]

M. Rossetti, P. Bardella, M. Gioannini, and I. Montrosset, “Carrier transport effects in multi layer quantum dot lasers and SLDs,” in Proceedings of the 14th European Conference on Integrated Optics (ECIO)(2008), pp. 221–224.

Battle, P.

K. Fedorova, M. Cataluna, P. Battle, C. Kaleva, I. Krestnikov, D. Livshits, and E. Rafailov, “Orange light generation from a PPKTP waveguide end pumped by a CW quantum-dot tunable laser diode,” Appl. Phys. B 103(1), 41–43 (2011).
[Crossref]

Bedarev, D.

B. Volovik, A. Tsatsul’nikov, D. Bedarev, A. Y. Egorov, A. Zhukov, A. Kovsh, N. Ledentsov, M. Maksimov, N. Maleev, and Y. G. Musikhin, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).

Blood, P.

P. Evans, P. Blood, and J. Roberts, “Carrier distribution in quantum well lasers,” Semicond. Sci. Technol. 9(9), 1740–1743 (1994).
[Crossref]

Blume, G.

C. Fiebig, G. Blume, C. Kaspari, D. Feise, J. Fricke, M. Matalla, W. John, H. Wenzel, K. Paschke, and G. Erbert, “12 W high-brightness single-frequency DBR tapered diode laser,” Electron. Lett. 44(21), 1253–1255 (2008).
[Crossref]

Bressel, U.

A. Y. Nevsky, U. Bressel, I. Ernsting, C. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges,” Appl. Phys. B 92(4), 501–507 (2008).
[Crossref]

Bugge, F.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Trankle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

Cassidy, D.

H. Enshasy and D. Cassidy, “Sub-micrometre distance measurements with a broadly tunable short-external-cavity InGaAsP/InP diode laser,” IET Optoelectron. 1(4), 157–162 (2007).
[Crossref]

Cataluna, M.

Cataluna, M. A.

D. I. Nikitichev, M. A. Cataluna, K. A. Fedorova, Y. Ding, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, and E. U. Rafailov, “High-power wavelength bistability and tunability in passively mode-locked quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100907 (2013).
[Crossref]

Y. Ding, A. Alhazime, D. Nikitichev, K. Fedorova, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. A. Cataluna, M. Krakowski, and E. Rafailov, “Tunable master-oscillator power-amplifier based on chirped quantum-dot structures,” IEEE Photon. Technol. Lett. 24(20), 1841–1844 (2012).
[Crossref]

M. A. Cataluna, Y. Ding, D. I. Nikitichev, K. A. Fedorova, and E. U. Rafailov, “High-power versatile picosecond pulse generation from mode-locked quantum-dot laser diodes,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1302–1310 (2011).
[Crossref]

K. A. Fedorova, M. A. Cataluna, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Broadly tunable high-power InAs/GaAs quantum-dot external cavity diode lasers,” Opt. Express 18(18), 19438–19443 (2010).
[Crossref] [PubMed]

Cheng, H.-C.

Chi, M.

Childs, D. T.

N. Krstajić, D. T. Childs, S. Matcher, D. Livshits, A. Shkolnik, I. Krestnikov, and R. Hogg, “Swept-source laser based on quantum-dot semiconductor optical amplifier—applications in optical coherence tomography,” IEEE Photon. Technol. Lett. 23(11), 739–741 (2011).
[Crossref]

P. D. Greenwood, D. T. Childs, K. M. Groom, B. J. Stevens, M. Hopkinson, and R. A. Hogg, “Tuning superluminescent diode characteristics for optical coherence tomography systems by utilizing a multicontact device incorporating wavelength-modulated quantum dots,” IEEE J. Sel. Top. Quantum Electron. 15(3), 757–763 (2009).
[Crossref]

Deppe, D.

H. Huang and D. Deppe, “Rate equation model for nonequilibrium operating conditions in a self-organized quantum-dot laser,” IEEE J. Quantum Electron. 37(5), 691–698 (2001).
[Crossref]

Ding, Y.

D. I. Nikitichev, M. A. Cataluna, K. A. Fedorova, Y. Ding, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, and E. U. Rafailov, “High-power wavelength bistability and tunability in passively mode-locked quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100907 (2013).
[Crossref]

Y. Ding, A. Alhazime, D. Nikitichev, K. Fedorova, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. A. Cataluna, M. Krakowski, and E. Rafailov, “Tunable master-oscillator power-amplifier based on chirped quantum-dot structures,” IEEE Photon. Technol. Lett. 24(20), 1841–1844 (2012).
[Crossref]

Y. Ding, R. Aviles-Espinosa, M. Cataluna, D. Nikitichev, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. Krakowski, P. Loza-Alvarez, and E. Rafailov, “High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier,” Opt. Express 20(13), 14308–14320 (2012).
[Crossref] [PubMed]

M. A. Cataluna, Y. Ding, D. I. Nikitichev, K. A. Fedorova, and E. U. Rafailov, “High-power versatile picosecond pulse generation from mode-locked quantum-dot laser diodes,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1302–1310 (2011).
[Crossref]

Dittmar, F.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Trankle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

Drexler, W.

O. B. Jensen, A. K. Hansen, A. Muller, B. Sumpf, A. Unterhuber, W. Drexler, P. M. Petersen, and P. E. Andersen, “Power scaling of nonlinear frequency converted tapered diode lasers for biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7100515 (2014).
[Crossref]

Dupont, J.

B. Fermigier, G. Lucas-Leclin, J. Dupont, F. Plumelle, and M. Houssin, “Self-aligned external-cavity semiconductor lasers for high resolution spectroscopy,” Opt. Commun. 153(1), 73–77 (1998).
[Crossref]

Egorov, A. Y.

B. Volovik, A. Tsatsul’nikov, D. Bedarev, A. Y. Egorov, A. Zhukov, A. Kovsh, N. Ledentsov, M. Maksimov, N. Maleev, and Y. G. Musikhin, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).

Eisele, C.

A. Y. Nevsky, U. Bressel, I. Ernsting, C. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges,” Appl. Phys. B 92(4), 501–507 (2008).
[Crossref]

Enshasy, H.

H. Enshasy and D. Cassidy, “Sub-micrometre distance measurements with a broadly tunable short-external-cavity InGaAsP/InP diode laser,” IET Optoelectron. 1(4), 157–162 (2007).
[Crossref]

Erbert, G.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Trankle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

C. Fiebig, G. Blume, C. Kaspari, D. Feise, J. Fricke, M. Matalla, W. John, H. Wenzel, K. Paschke, and G. Erbert, “12 W high-brightness single-frequency DBR tapered diode laser,” Electron. Lett. 44(21), 1253–1255 (2008).
[Crossref]

M. Chi, O. B. Jensen, J. Holm, C. Pedersen, P. E. Andersen, G. Erbert, B. Sumpf, and P. M. Petersen, “Tunable high-power narrow-linewidth semiconductor laser based on an external-cavity tapered amplifier,” Opt. Express 13(26), 10589–10596 (2005).
[Crossref] [PubMed]

Ernsting, I.

A. Y. Nevsky, U. Bressel, I. Ernsting, C. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges,” Appl. Phys. B 92(4), 501–507 (2008).
[Crossref]

Evans, P.

P. Evans, P. Blood, and J. Roberts, “Carrier distribution in quantum well lasers,” Semicond. Sci. Technol. 9(9), 1740–1743 (1994).
[Crossref]

Fedorova, K.

Y. Ding, A. Alhazime, D. Nikitichev, K. Fedorova, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. A. Cataluna, M. Krakowski, and E. Rafailov, “Tunable master-oscillator power-amplifier based on chirped quantum-dot structures,” IEEE Photon. Technol. Lett. 24(20), 1841–1844 (2012).
[Crossref]

K. Fedorova, M. Cataluna, P. Battle, C. Kaleva, I. Krestnikov, D. Livshits, and E. Rafailov, “Orange light generation from a PPKTP waveguide end pumped by a CW quantum-dot tunable laser diode,” Appl. Phys. B 103(1), 41–43 (2011).
[Crossref]

Fedorova, K. A.

D. I. Nikitichev, M. A. Cataluna, K. A. Fedorova, Y. Ding, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, and E. U. Rafailov, “High-power wavelength bistability and tunability in passively mode-locked quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100907 (2013).
[Crossref]

M. A. Cataluna, Y. Ding, D. I. Nikitichev, K. A. Fedorova, and E. U. Rafailov, “High-power versatile picosecond pulse generation from mode-locked quantum-dot laser diodes,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1302–1310 (2011).
[Crossref]

K. A. Fedorova, M. A. Cataluna, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Broadly tunable high-power InAs/GaAs quantum-dot external cavity diode lasers,” Opt. Express 18(18), 19438–19443 (2010).
[Crossref] [PubMed]

Feise, D.

C. Fiebig, G. Blume, C. Kaspari, D. Feise, J. Fricke, M. Matalla, W. John, H. Wenzel, K. Paschke, and G. Erbert, “12 W high-brightness single-frequency DBR tapered diode laser,” Electron. Lett. 44(21), 1253–1255 (2008).
[Crossref]

Fermigier, B.

B. Fermigier, G. Lucas-Leclin, J. Dupont, F. Plumelle, and M. Houssin, “Self-aligned external-cavity semiconductor lasers for high resolution spectroscopy,” Opt. Commun. 153(1), 73–77 (1998).
[Crossref]

Fiebig, C.

C. Fiebig, G. Blume, C. Kaspari, D. Feise, J. Fricke, M. Matalla, W. John, H. Wenzel, K. Paschke, and G. Erbert, “12 W high-brightness single-frequency DBR tapered diode laser,” Electron. Lett. 44(21), 1253–1255 (2008).
[Crossref]

Fricke, J.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Trankle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

C. Fiebig, G. Blume, C. Kaspari, D. Feise, J. Fricke, M. Matalla, W. John, H. Wenzel, K. Paschke, and G. Erbert, “12 W high-brightness single-frequency DBR tapered diode laser,” Electron. Lett. 44(21), 1253–1255 (2008).
[Crossref]

Fuchs, B.

H. Li, G. Liu, P. Varangis, T. Newell, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
[Crossref]

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[Crossref]

Gioannini, M.

M. Rossetti, P. Bardella, M. Gioannini, and I. Montrosset, “Carrier transport effects in multi layer quantum dot lasers and SLDs,” in Proceedings of the 14th European Conference on Integrated Optics (ECIO)(2008), pp. 221–224.

Greenwood, P. D.

P. D. Greenwood, D. T. Childs, K. M. Groom, B. J. Stevens, M. Hopkinson, and R. A. Hogg, “Tuning superluminescent diode characteristics for optical coherence tomography systems by utilizing a multicontact device incorporating wavelength-modulated quantum dots,” IEEE J. Sel. Top. Quantum Electron. 15(3), 757–763 (2009).
[Crossref]

Groom, K. M.

P. D. Greenwood, D. T. Childs, K. M. Groom, B. J. Stevens, M. Hopkinson, and R. A. Hogg, “Tuning superluminescent diode characteristics for optical coherence tomography systems by utilizing a multicontact device incorporating wavelength-modulated quantum dots,” IEEE J. Sel. Top. Quantum Electron. 15(3), 757–763 (2009).
[Crossref]

Gubenko, A.

A. Y. Nevsky, U. Bressel, I. Ernsting, C. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges,” Appl. Phys. B 92(4), 501–507 (2008).
[Crossref]

Hansen, A. K.

O. B. Jensen, A. K. Hansen, A. Muller, B. Sumpf, A. Unterhuber, W. Drexler, P. M. Petersen, and P. E. Andersen, “Power scaling of nonlinear frequency converted tapered diode lasers for biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7100515 (2014).
[Crossref]

Hasler, K.-H.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Trankle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

He, Y.

B. J. Orr and Y. He, “Rapidly swept continuous-wave cavity-ringdown spectroscopy,” Chem. Phys. Lett. 512(1), 1–20 (2011).
[Crossref]

Hogg, R.

N. Krstajić, D. T. Childs, S. Matcher, D. Livshits, A. Shkolnik, I. Krestnikov, and R. Hogg, “Swept-source laser based on quantum-dot semiconductor optical amplifier—applications in optical coherence tomography,” IEEE Photon. Technol. Lett. 23(11), 739–741 (2011).
[Crossref]

Hogg, R. A.

P. D. Greenwood, D. T. Childs, K. M. Groom, B. J. Stevens, M. Hopkinson, and R. A. Hogg, “Tuning superluminescent diode characteristics for optical coherence tomography systems by utilizing a multicontact device incorporating wavelength-modulated quantum dots,” IEEE J. Sel. Top. Quantum Electron. 15(3), 757–763 (2009).
[Crossref]

Holm, J.

Hopkinson, M.

P. D. Greenwood, D. T. Childs, K. M. Groom, B. J. Stevens, M. Hopkinson, and R. A. Hogg, “Tuning superluminescent diode characteristics for optical coherence tomography systems by utilizing a multicontact device incorporating wavelength-modulated quantum dots,” IEEE J. Sel. Top. Quantum Electron. 15(3), 757–763 (2009).
[Crossref]

Hou, H.

T. Newell, M. Wright, H. Hou, and L. Lester, “Carrier distribution, spontaneous emission and gain engineering in lasers with nonidentical quantum wells,” IEEE J. Sel. Top. Quantum Electron. 5(3), 620–626 (1999).
[Crossref]

Houssin, M.

B. Fermigier, G. Lucas-Leclin, J. Dupont, F. Plumelle, and M. Houssin, “Self-aligned external-cavity semiconductor lasers for high resolution spectroscopy,” Opt. Commun. 153(1), 73–77 (1998).
[Crossref]

Huang, H.

H. Huang and D. Deppe, “Rate equation model for nonequilibrium operating conditions in a self-organized quantum-dot laser,” IEEE J. Quantum Electron. 37(5), 691–698 (2001).
[Crossref]

Jensen, O. B.

O. B. Jensen, A. K. Hansen, A. Muller, B. Sumpf, A. Unterhuber, W. Drexler, P. M. Petersen, and P. E. Andersen, “Power scaling of nonlinear frequency converted tapered diode lasers for biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7100515 (2014).
[Crossref]

M. Chi, O. B. Jensen, J. Holm, C. Pedersen, P. E. Andersen, G. Erbert, B. Sumpf, and P. M. Petersen, “Tunable high-power narrow-linewidth semiconductor laser based on an external-cavity tapered amplifier,” Opt. Express 13(26), 10589–10596 (2005).
[Crossref] [PubMed]

Jin, P.

John, W.

C. Fiebig, G. Blume, C. Kaspari, D. Feise, J. Fricke, M. Matalla, W. John, H. Wenzel, K. Paschke, and G. Erbert, “12 W high-brightness single-frequency DBR tapered diode laser,” Electron. Lett. 44(21), 1253–1255 (2008).
[Crossref]

Kaleva, C.

K. Fedorova, M. Cataluna, P. Battle, C. Kaleva, I. Krestnikov, D. Livshits, and E. Rafailov, “Orange light generation from a PPKTP waveguide end pumped by a CW quantum-dot tunable laser diode,” Appl. Phys. B 103(1), 41–43 (2011).
[Crossref]

Kapsalis, A.

Kaspari, C.

C. Fiebig, G. Blume, C. Kaspari, D. Feise, J. Fricke, M. Matalla, W. John, H. Wenzel, K. Paschke, and G. Erbert, “12 W high-brightness single-frequency DBR tapered diode laser,” Electron. Lett. 44(21), 1253–1255 (2008).
[Crossref]

Kovsh, A.

A. Y. Nevsky, U. Bressel, I. Ernsting, C. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges,” Appl. Phys. B 92(4), 501–507 (2008).
[Crossref]

A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, and A. Zhukov, “Quantum dot laser with 75 nm broad spectrum of emission,” Opt. Lett. 32(7), 793–795 (2007).
[Crossref] [PubMed]

B. Volovik, A. Tsatsul’nikov, D. Bedarev, A. Y. Egorov, A. Zhukov, A. Kovsh, N. Ledentsov, M. Maksimov, N. Maleev, and Y. G. Musikhin, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).

A. Zhukov, A. Kovsh, and V. Ustinov, “Temperature dependence of the gain of lasers based on quantum-dot arrays with an inhomogeneously broadened density of states,” Semiconductors 33(11), 1260–1264 (1999).
[Crossref]

Krakowski, M.

Krestnikov, I.

C. Mesaritakis, A. Kapsalis, H. Simos, C. Simos, M. Krakowski, I. Krestnikov, and D. Syvridis, “Tapered InAs/InGaAs quantum dot semiconductor optical amplifier design for enhanced gain and beam quality,” Opt. Lett. 38(14), 2404–2406 (2013).
[Crossref] [PubMed]

Y. Ding, R. Aviles-Espinosa, M. Cataluna, D. Nikitichev, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. Krakowski, P. Loza-Alvarez, and E. Rafailov, “High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier,” Opt. Express 20(13), 14308–14320 (2012).
[Crossref] [PubMed]

Y. Ding, A. Alhazime, D. Nikitichev, K. Fedorova, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. A. Cataluna, M. Krakowski, and E. Rafailov, “Tunable master-oscillator power-amplifier based on chirped quantum-dot structures,” IEEE Photon. Technol. Lett. 24(20), 1841–1844 (2012).
[Crossref]

K. Fedorova, M. Cataluna, P. Battle, C. Kaleva, I. Krestnikov, D. Livshits, and E. Rafailov, “Orange light generation from a PPKTP waveguide end pumped by a CW quantum-dot tunable laser diode,” Appl. Phys. B 103(1), 41–43 (2011).
[Crossref]

N. Krstajić, D. T. Childs, S. Matcher, D. Livshits, A. Shkolnik, I. Krestnikov, and R. Hogg, “Swept-source laser based on quantum-dot semiconductor optical amplifier—applications in optical coherence tomography,” IEEE Photon. Technol. Lett. 23(11), 739–741 (2011).
[Crossref]

K. A. Fedorova, M. A. Cataluna, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Broadly tunable high-power InAs/GaAs quantum-dot external cavity diode lasers,” Opt. Express 18(18), 19438–19443 (2010).
[Crossref] [PubMed]

A. Y. Nevsky, U. Bressel, I. Ernsting, C. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges,” Appl. Phys. B 92(4), 501–507 (2008).
[Crossref]

A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, and A. Zhukov, “Quantum dot laser with 75 nm broad spectrum of emission,” Opt. Lett. 32(7), 793–795 (2007).
[Crossref] [PubMed]

Krestnikov, I. L.

D. I. Nikitichev, M. A. Cataluna, K. A. Fedorova, Y. Ding, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, and E. U. Rafailov, “High-power wavelength bistability and tunability in passively mode-locked quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100907 (2013).
[Crossref]

Krstajic, N.

N. Krstajić, D. T. Childs, S. Matcher, D. Livshits, A. Shkolnik, I. Krestnikov, and R. Hogg, “Swept-source laser based on quantum-dot semiconductor optical amplifier—applications in optical coherence tomography,” IEEE Photon. Technol. Lett. 23(11), 739–741 (2011).
[Crossref]

Ledentsov, N.

B. Volovik, A. Tsatsul’nikov, D. Bedarev, A. Y. Egorov, A. Zhukov, A. Kovsh, N. Ledentsov, M. Maksimov, N. Maleev, and Y. G. Musikhin, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).

Lee, J.-S.

K. Nishi, H. Saito, S. Sugou, and J.-S. Lee, “A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates,” Appl. Phys. Lett. 74(8), 1111–1113 (1999).
[Crossref]

Lester, L.

H. Li, G. Liu, P. Varangis, T. Newell, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
[Crossref]

T. Newell, M. Wright, H. Hou, and L. Lester, “Carrier distribution, spontaneous emission and gain engineering in lasers with nonidentical quantum wells,” IEEE J. Sel. Top. Quantum Electron. 5(3), 620–626 (1999).
[Crossref]

Lester, L. F.

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[Crossref]

Li, H.

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[Crossref]

H. Li, G. Liu, P. Varangis, T. Newell, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
[Crossref]

Lin, G.

Liu, G.

H. Li, G. Liu, P. Varangis, T. Newell, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
[Crossref]

Liu, G. T.

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[Crossref]

Livshits, D.

Y. Ding, R. Aviles-Espinosa, M. Cataluna, D. Nikitichev, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. Krakowski, P. Loza-Alvarez, and E. Rafailov, “High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier,” Opt. Express 20(13), 14308–14320 (2012).
[Crossref] [PubMed]

Y. Ding, A. Alhazime, D. Nikitichev, K. Fedorova, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. A. Cataluna, M. Krakowski, and E. Rafailov, “Tunable master-oscillator power-amplifier based on chirped quantum-dot structures,” IEEE Photon. Technol. Lett. 24(20), 1841–1844 (2012).
[Crossref]

K. Fedorova, M. Cataluna, P. Battle, C. Kaleva, I. Krestnikov, D. Livshits, and E. Rafailov, “Orange light generation from a PPKTP waveguide end pumped by a CW quantum-dot tunable laser diode,” Appl. Phys. B 103(1), 41–43 (2011).
[Crossref]

N. Krstajić, D. T. Childs, S. Matcher, D. Livshits, A. Shkolnik, I. Krestnikov, and R. Hogg, “Swept-source laser based on quantum-dot semiconductor optical amplifier—applications in optical coherence tomography,” IEEE Photon. Technol. Lett. 23(11), 739–741 (2011).
[Crossref]

K. A. Fedorova, M. A. Cataluna, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Broadly tunable high-power InAs/GaAs quantum-dot external cavity diode lasers,” Opt. Express 18(18), 19438–19443 (2010).
[Crossref] [PubMed]

A. Y. Nevsky, U. Bressel, I. Ernsting, C. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges,” Appl. Phys. B 92(4), 501–507 (2008).
[Crossref]

A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, and A. Zhukov, “Quantum dot laser with 75 nm broad spectrum of emission,” Opt. Lett. 32(7), 793–795 (2007).
[Crossref] [PubMed]

Livshits, D. A.

D. I. Nikitichev, M. A. Cataluna, K. A. Fedorova, Y. Ding, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, and E. U. Rafailov, “High-power wavelength bistability and tunability in passively mode-locked quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100907 (2013).
[Crossref]

Loza-Alvarez, P.

Lucas-Leclin, G.

B. Fermigier, G. Lucas-Leclin, J. Dupont, F. Plumelle, and M. Houssin, “Self-aligned external-cavity semiconductor lasers for high resolution spectroscopy,” Opt. Commun. 153(1), 73–77 (1998).
[Crossref]

Lv, X. Q.

Maksimov, M.

B. Volovik, A. Tsatsul’nikov, D. Bedarev, A. Y. Egorov, A. Zhukov, A. Kovsh, N. Ledentsov, M. Maksimov, N. Maleev, and Y. G. Musikhin, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).

Maleev, N.

B. Volovik, A. Tsatsul’nikov, D. Bedarev, A. Y. Egorov, A. Zhukov, A. Kovsh, N. Ledentsov, M. Maksimov, N. Maleev, and Y. G. Musikhin, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).

Malloy, K.

H. Li, G. Liu, P. Varangis, T. Newell, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
[Crossref]

Malloy, K. J.

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[Crossref]

Matalla, M.

C. Fiebig, G. Blume, C. Kaspari, D. Feise, J. Fricke, M. Matalla, W. John, H. Wenzel, K. Paschke, and G. Erbert, “12 W high-brightness single-frequency DBR tapered diode laser,” Electron. Lett. 44(21), 1253–1255 (2008).
[Crossref]

Matcher, S.

N. Krstajić, D. T. Childs, S. Matcher, D. Livshits, A. Shkolnik, I. Krestnikov, and R. Hogg, “Swept-source laser based on quantum-dot semiconductor optical amplifier—applications in optical coherence tomography,” IEEE Photon. Technol. Lett. 23(11), 739–741 (2011).
[Crossref]

Mesaritakis, C.

Mikhrin, S.

A. Y. Nevsky, U. Bressel, I. Ernsting, C. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges,” Appl. Phys. B 92(4), 501–507 (2008).
[Crossref]

A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, and A. Zhukov, “Quantum dot laser with 75 nm broad spectrum of emission,” Opt. Lett. 32(7), 793–795 (2007).
[Crossref] [PubMed]

Mikhrin, S. S.

D. I. Nikitichev, M. A. Cataluna, K. A. Fedorova, Y. Ding, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, and E. U. Rafailov, “High-power wavelength bistability and tunability in passively mode-locked quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100907 (2013).
[Crossref]

Montrosset, I.

Y. Ding, A. Alhazime, D. Nikitichev, K. Fedorova, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. A. Cataluna, M. Krakowski, and E. Rafailov, “Tunable master-oscillator power-amplifier based on chirped quantum-dot structures,” IEEE Photon. Technol. Lett. 24(20), 1841–1844 (2012).
[Crossref]

T. Xu, P. Bardella, M. Rossetti, and I. Montrosset, “Beam propagation method simulation and analysis of quantum dot flared semiconductor optical amplifiers in continuous wave high-saturation regime,” IET Optoelectron. 6(2), 110–116 (2012).
[Crossref]

Y. Ding, R. Aviles-Espinosa, M. Cataluna, D. Nikitichev, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. Krakowski, P. Loza-Alvarez, and E. Rafailov, “High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier,” Opt. Express 20(13), 14308–14320 (2012).
[Crossref] [PubMed]

M. Rossetti, P. Bardella, and I. Montrosset, “Numerical investigation of power tunability in two-section QD superluminescent diodes,” Opt. Quantum Electron. 40(14–15), 1129–1134 (2008).
[Crossref]

M. Rossetti, P. Bardella, M. Gioannini, and I. Montrosset, “Carrier transport effects in multi layer quantum dot lasers and SLDs,” in Proceedings of the 14th European Conference on Integrated Optics (ECIO)(2008), pp. 221–224.

Muller, A.

O. B. Jensen, A. K. Hansen, A. Muller, B. Sumpf, A. Unterhuber, W. Drexler, P. M. Petersen, and P. E. Andersen, “Power scaling of nonlinear frequency converted tapered diode lasers for biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7100515 (2014).
[Crossref]

Musikhin, Y. G.

B. Volovik, A. Tsatsul’nikov, D. Bedarev, A. Y. Egorov, A. Zhukov, A. Kovsh, N. Ledentsov, M. Maksimov, N. Maleev, and Y. G. Musikhin, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).

Nevsky, A. Y.

A. Y. Nevsky, U. Bressel, I. Ernsting, C. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges,” Appl. Phys. B 92(4), 501–507 (2008).
[Crossref]

Newell, T.

H. Li, G. Liu, P. Varangis, T. Newell, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
[Crossref]

T. Newell, M. Wright, H. Hou, and L. Lester, “Carrier distribution, spontaneous emission and gain engineering in lasers with nonidentical quantum wells,” IEEE J. Sel. Top. Quantum Electron. 5(3), 620–626 (1999).
[Crossref]

Newell, T. C.

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[Crossref]

Nikitichev, D.

Y. Ding, R. Aviles-Espinosa, M. Cataluna, D. Nikitichev, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. Krakowski, P. Loza-Alvarez, and E. Rafailov, “High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier,” Opt. Express 20(13), 14308–14320 (2012).
[Crossref] [PubMed]

Y. Ding, A. Alhazime, D. Nikitichev, K. Fedorova, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. A. Cataluna, M. Krakowski, and E. Rafailov, “Tunable master-oscillator power-amplifier based on chirped quantum-dot structures,” IEEE Photon. Technol. Lett. 24(20), 1841–1844 (2012).
[Crossref]

Nikitichev, D. I.

D. I. Nikitichev, M. A. Cataluna, K. A. Fedorova, Y. Ding, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, and E. U. Rafailov, “High-power wavelength bistability and tunability in passively mode-locked quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100907 (2013).
[Crossref]

M. A. Cataluna, Y. Ding, D. I. Nikitichev, K. A. Fedorova, and E. U. Rafailov, “High-power versatile picosecond pulse generation from mode-locked quantum-dot laser diodes,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1302–1310 (2011).
[Crossref]

Nishi, K.

K. Nishi, H. Saito, S. Sugou, and J.-S. Lee, “A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates,” Appl. Phys. Lett. 74(8), 1111–1113 (1999).
[Crossref]

Okhapkin, M.

A. Y. Nevsky, U. Bressel, I. Ernsting, C. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges,” Appl. Phys. B 92(4), 501–507 (2008).
[Crossref]

Orr, B. J.

B. J. Orr and Y. He, “Rapidly swept continuous-wave cavity-ringdown spectroscopy,” Chem. Phys. Lett. 512(1), 1–20 (2011).
[Crossref]

Paschke, K.

C. Fiebig, G. Blume, C. Kaspari, D. Feise, J. Fricke, M. Matalla, W. John, H. Wenzel, K. Paschke, and G. Erbert, “12 W high-brightness single-frequency DBR tapered diode laser,” Electron. Lett. 44(21), 1253–1255 (2008).
[Crossref]

Pedersen, C.

Petersen, P. M.

O. B. Jensen, A. K. Hansen, A. Muller, B. Sumpf, A. Unterhuber, W. Drexler, P. M. Petersen, and P. E. Andersen, “Power scaling of nonlinear frequency converted tapered diode lasers for biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7100515 (2014).
[Crossref]

M. Chi, O. B. Jensen, J. Holm, C. Pedersen, P. E. Andersen, G. Erbert, B. Sumpf, and P. M. Petersen, “Tunable high-power narrow-linewidth semiconductor laser based on an external-cavity tapered amplifier,” Opt. Express 13(26), 10589–10596 (2005).
[Crossref] [PubMed]

Plumelle, F.

B. Fermigier, G. Lucas-Leclin, J. Dupont, F. Plumelle, and M. Houssin, “Self-aligned external-cavity semiconductor lasers for high resolution spectroscopy,” Opt. Commun. 153(1), 73–77 (1998).
[Crossref]

Qasaimeh, O.

O. Qasaimeh, “Effect of inhomogeneous line broadening on gain and differential gain of quantum dot lasers,” IEEE Trans. Electron. Dev. 50(7), 1575–1581 (2003).
[Crossref]

Rafailov, E.

Y. Ding, A. Alhazime, D. Nikitichev, K. Fedorova, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. A. Cataluna, M. Krakowski, and E. Rafailov, “Tunable master-oscillator power-amplifier based on chirped quantum-dot structures,” IEEE Photon. Technol. Lett. 24(20), 1841–1844 (2012).
[Crossref]

Y. Ding, R. Aviles-Espinosa, M. Cataluna, D. Nikitichev, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. Krakowski, P. Loza-Alvarez, and E. Rafailov, “High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier,” Opt. Express 20(13), 14308–14320 (2012).
[Crossref] [PubMed]

K. Fedorova, M. Cataluna, P. Battle, C. Kaleva, I. Krestnikov, D. Livshits, and E. Rafailov, “Orange light generation from a PPKTP waveguide end pumped by a CW quantum-dot tunable laser diode,” Appl. Phys. B 103(1), 41–43 (2011).
[Crossref]

Rafailov, E. U.

D. I. Nikitichev, M. A. Cataluna, K. A. Fedorova, Y. Ding, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, and E. U. Rafailov, “High-power wavelength bistability and tunability in passively mode-locked quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100907 (2013).
[Crossref]

M. A. Cataluna, Y. Ding, D. I. Nikitichev, K. A. Fedorova, and E. U. Rafailov, “High-power versatile picosecond pulse generation from mode-locked quantum-dot laser diodes,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1302–1310 (2011).
[Crossref]

K. A. Fedorova, M. A. Cataluna, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Broadly tunable high-power InAs/GaAs quantum-dot external cavity diode lasers,” Opt. Express 18(18), 19438–19443 (2010).
[Crossref] [PubMed]

Robert, Y.

Y. Ding, R. Aviles-Espinosa, M. Cataluna, D. Nikitichev, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. Krakowski, P. Loza-Alvarez, and E. Rafailov, “High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier,” Opt. Express 20(13), 14308–14320 (2012).
[Crossref] [PubMed]

Y. Ding, A. Alhazime, D. Nikitichev, K. Fedorova, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. A. Cataluna, M. Krakowski, and E. Rafailov, “Tunable master-oscillator power-amplifier based on chirped quantum-dot structures,” IEEE Photon. Technol. Lett. 24(20), 1841–1844 (2012).
[Crossref]

Roberts, J.

P. Evans, P. Blood, and J. Roberts, “Carrier distribution in quantum well lasers,” Semicond. Sci. Technol. 9(9), 1740–1743 (1994).
[Crossref]

Rossetti, M.

Y. Ding, A. Alhazime, D. Nikitichev, K. Fedorova, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. A. Cataluna, M. Krakowski, and E. Rafailov, “Tunable master-oscillator power-amplifier based on chirped quantum-dot structures,” IEEE Photon. Technol. Lett. 24(20), 1841–1844 (2012).
[Crossref]

T. Xu, P. Bardella, M. Rossetti, and I. Montrosset, “Beam propagation method simulation and analysis of quantum dot flared semiconductor optical amplifiers in continuous wave high-saturation regime,” IET Optoelectron. 6(2), 110–116 (2012).
[Crossref]

Y. Ding, R. Aviles-Espinosa, M. Cataluna, D. Nikitichev, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. Krakowski, P. Loza-Alvarez, and E. Rafailov, “High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier,” Opt. Express 20(13), 14308–14320 (2012).
[Crossref] [PubMed]

M. Rossetti, P. Bardella, and I. Montrosset, “Numerical investigation of power tunability in two-section QD superluminescent diodes,” Opt. Quantum Electron. 40(14–15), 1129–1134 (2008).
[Crossref]

M. Rossetti, P. Bardella, M. Gioannini, and I. Montrosset, “Carrier transport effects in multi layer quantum dot lasers and SLDs,” in Proceedings of the 14th European Conference on Integrated Optics (ECIO)(2008), pp. 221–224.

Ruiz, M.

Y. Ding, A. Alhazime, D. Nikitichev, K. Fedorova, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. A. Cataluna, M. Krakowski, and E. Rafailov, “Tunable master-oscillator power-amplifier based on chirped quantum-dot structures,” IEEE Photon. Technol. Lett. 24(20), 1841–1844 (2012).
[Crossref]

Y. Ding, R. Aviles-Espinosa, M. Cataluna, D. Nikitichev, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. Krakowski, P. Loza-Alvarez, and E. Rafailov, “High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier,” Opt. Express 20(13), 14308–14320 (2012).
[Crossref] [PubMed]

Saito, H.

K. Nishi, H. Saito, S. Sugou, and J.-S. Lee, “A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates,” Appl. Phys. Lett. 74(8), 1111–1113 (1999).
[Crossref]

Schiller, S.

A. Y. Nevsky, U. Bressel, I. Ernsting, C. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges,” Appl. Phys. B 92(4), 501–507 (2008).
[Crossref]

Shkolnik, A.

N. Krstajić, D. T. Childs, S. Matcher, D. Livshits, A. Shkolnik, I. Krestnikov, and R. Hogg, “Swept-source laser based on quantum-dot semiconductor optical amplifier—applications in optical coherence tomography,” IEEE Photon. Technol. Lett. 23(11), 739–741 (2011).
[Crossref]

Simos, C.

Simos, H.

Stevens, B. J.

P. D. Greenwood, D. T. Childs, K. M. Groom, B. J. Stevens, M. Hopkinson, and R. A. Hogg, “Tuning superluminescent diode characteristics for optical coherence tomography systems by utilizing a multicontact device incorporating wavelength-modulated quantum dots,” IEEE J. Sel. Top. Quantum Electron. 15(3), 757–763 (2009).
[Crossref]

Stintz, A.

H. Li, G. Liu, P. Varangis, T. Newell, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
[Crossref]

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[Crossref]

Su, P.-Y.

Sugou, S.

K. Nishi, H. Saito, S. Sugou, and J.-S. Lee, “A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates,” Appl. Phys. Lett. 74(8), 1111–1113 (1999).
[Crossref]

Sumpf, B.

O. B. Jensen, A. K. Hansen, A. Muller, B. Sumpf, A. Unterhuber, W. Drexler, P. M. Petersen, and P. E. Andersen, “Power scaling of nonlinear frequency converted tapered diode lasers for biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7100515 (2014).
[Crossref]

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Trankle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

M. Chi, O. B. Jensen, J. Holm, C. Pedersen, P. E. Andersen, G. Erbert, B. Sumpf, and P. M. Petersen, “Tunable high-power narrow-linewidth semiconductor laser based on an external-cavity tapered amplifier,” Opt. Express 13(26), 10589–10596 (2005).
[Crossref] [PubMed]

Syvridis, D.

Tierno, A.

A. Tierno and T. Ackemann, “Tunable, narrow-band light source in the 1.25 μm region based on broad-area quantum dot lasers with feedback,” Appl. Phys. B 89(4), 585–588 (2007).
[Crossref]

Tran, M.

Y. Ding, A. Alhazime, D. Nikitichev, K. Fedorova, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. A. Cataluna, M. Krakowski, and E. Rafailov, “Tunable master-oscillator power-amplifier based on chirped quantum-dot structures,” IEEE Photon. Technol. Lett. 24(20), 1841–1844 (2012).
[Crossref]

Y. Ding, R. Aviles-Espinosa, M. Cataluna, D. Nikitichev, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. Krakowski, P. Loza-Alvarez, and E. Rafailov, “High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier,” Opt. Express 20(13), 14308–14320 (2012).
[Crossref] [PubMed]

Trankle, G.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Trankle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

Tsatsul’nikov, A.

B. Volovik, A. Tsatsul’nikov, D. Bedarev, A. Y. Egorov, A. Zhukov, A. Kovsh, N. Ledentsov, M. Maksimov, N. Maleev, and Y. G. Musikhin, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).

Unterhuber, A.

O. B. Jensen, A. K. Hansen, A. Muller, B. Sumpf, A. Unterhuber, W. Drexler, P. M. Petersen, and P. E. Andersen, “Power scaling of nonlinear frequency converted tapered diode lasers for biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7100515 (2014).
[Crossref]

Ustinov, V.

A. Zhukov, A. Kovsh, and V. Ustinov, “Temperature dependence of the gain of lasers based on quantum-dot arrays with an inhomogeneously broadened density of states,” Semiconductors 33(11), 1260–1264 (1999).
[Crossref]

Varangis, P.

H. Li, G. Liu, P. Varangis, T. Newell, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
[Crossref]

Varangis, P. M.

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[Crossref]

Volovik, B.

B. Volovik, A. Tsatsul’nikov, D. Bedarev, A. Y. Egorov, A. Zhukov, A. Kovsh, N. Ledentsov, M. Maksimov, N. Maleev, and Y. G. Musikhin, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).

Walpole, J.

J. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Opt. Quantum Electron. 28(6), 623–645 (1996).
[Crossref]

Wang, W. Y.

Wang, Z. G.

Weimert, J.

Wenzel, H.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Trankle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

C. Fiebig, G. Blume, C. Kaspari, D. Feise, J. Fricke, M. Matalla, W. John, H. Wenzel, K. Paschke, and G. Erbert, “12 W high-brightness single-frequency DBR tapered diode laser,” Electron. Lett. 44(21), 1253–1255 (2008).
[Crossref]

Wright, M.

T. Newell, M. Wright, H. Hou, and L. Lester, “Carrier distribution, spontaneous emission and gain engineering in lasers with nonidentical quantum wells,” IEEE J. Sel. Top. Quantum Electron. 5(3), 620–626 (1999).
[Crossref]

Xu, T.

T. Xu, P. Bardella, M. Rossetti, and I. Montrosset, “Beam propagation method simulation and analysis of quantum dot flared semiconductor optical amplifiers in continuous wave high-saturation regime,” IET Optoelectron. 6(2), 110–116 (2012).
[Crossref]

Y. Ding, A. Alhazime, D. Nikitichev, K. Fedorova, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. A. Cataluna, M. Krakowski, and E. Rafailov, “Tunable master-oscillator power-amplifier based on chirped quantum-dot structures,” IEEE Photon. Technol. Lett. 24(20), 1841–1844 (2012).
[Crossref]

Y. Ding, R. Aviles-Espinosa, M. Cataluna, D. Nikitichev, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. Krakowski, P. Loza-Alvarez, and E. Rafailov, “High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier,” Opt. Express 20(13), 14308–14320 (2012).
[Crossref] [PubMed]

Zhukov, A.

A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, and A. Zhukov, “Quantum dot laser with 75 nm broad spectrum of emission,” Opt. Lett. 32(7), 793–795 (2007).
[Crossref] [PubMed]

A. Zhukov, A. Kovsh, and V. Ustinov, “Temperature dependence of the gain of lasers based on quantum-dot arrays with an inhomogeneously broadened density of states,” Semiconductors 33(11), 1260–1264 (1999).
[Crossref]

B. Volovik, A. Tsatsul’nikov, D. Bedarev, A. Y. Egorov, A. Zhukov, A. Kovsh, N. Ledentsov, M. Maksimov, N. Maleev, and Y. G. Musikhin, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).

Zorn, M.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Trankle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

Appl. Phys. B (3)

K. Fedorova, M. Cataluna, P. Battle, C. Kaleva, I. Krestnikov, D. Livshits, and E. Rafailov, “Orange light generation from a PPKTP waveguide end pumped by a CW quantum-dot tunable laser diode,” Appl. Phys. B 103(1), 41–43 (2011).
[Crossref]

A. Tierno and T. Ackemann, “Tunable, narrow-band light source in the 1.25 μm region based on broad-area quantum dot lasers with feedback,” Appl. Phys. B 89(4), 585–588 (2007).
[Crossref]

A. Y. Nevsky, U. Bressel, I. Ernsting, C. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges,” Appl. Phys. B 92(4), 501–507 (2008).
[Crossref]

Appl. Phys. Lett. (1)

K. Nishi, H. Saito, S. Sugou, and J.-S. Lee, “A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates,” Appl. Phys. Lett. 74(8), 1111–1113 (1999).
[Crossref]

Chem. Phys. Lett. (1)

B. J. Orr and Y. He, “Rapidly swept continuous-wave cavity-ringdown spectroscopy,” Chem. Phys. Lett. 512(1), 1–20 (2011).
[Crossref]

Electron. Lett. (2)

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[Crossref]

C. Fiebig, G. Blume, C. Kaspari, D. Feise, J. Fricke, M. Matalla, W. John, H. Wenzel, K. Paschke, and G. Erbert, “12 W high-brightness single-frequency DBR tapered diode laser,” Electron. Lett. 44(21), 1253–1255 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

H. Huang and D. Deppe, “Rate equation model for nonequilibrium operating conditions in a self-organized quantum-dot laser,” IEEE J. Quantum Electron. 37(5), 691–698 (2001).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (6)

T. Newell, M. Wright, H. Hou, and L. Lester, “Carrier distribution, spontaneous emission and gain engineering in lasers with nonidentical quantum wells,” IEEE J. Sel. Top. Quantum Electron. 5(3), 620–626 (1999).
[Crossref]

D. I. Nikitichev, M. A. Cataluna, K. A. Fedorova, Y. Ding, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, and E. U. Rafailov, “High-power wavelength bistability and tunability in passively mode-locked quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100907 (2013).
[Crossref]

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Trankle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

M. A. Cataluna, Y. Ding, D. I. Nikitichev, K. A. Fedorova, and E. U. Rafailov, “High-power versatile picosecond pulse generation from mode-locked quantum-dot laser diodes,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1302–1310 (2011).
[Crossref]

O. B. Jensen, A. K. Hansen, A. Muller, B. Sumpf, A. Unterhuber, W. Drexler, P. M. Petersen, and P. E. Andersen, “Power scaling of nonlinear frequency converted tapered diode lasers for biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7100515 (2014).
[Crossref]

P. D. Greenwood, D. T. Childs, K. M. Groom, B. J. Stevens, M. Hopkinson, and R. A. Hogg, “Tuning superluminescent diode characteristics for optical coherence tomography systems by utilizing a multicontact device incorporating wavelength-modulated quantum dots,” IEEE J. Sel. Top. Quantum Electron. 15(3), 757–763 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (3)

N. Krstajić, D. T. Childs, S. Matcher, D. Livshits, A. Shkolnik, I. Krestnikov, and R. Hogg, “Swept-source laser based on quantum-dot semiconductor optical amplifier—applications in optical coherence tomography,” IEEE Photon. Technol. Lett. 23(11), 739–741 (2011).
[Crossref]

Y. Ding, A. Alhazime, D. Nikitichev, K. Fedorova, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. A. Cataluna, M. Krakowski, and E. Rafailov, “Tunable master-oscillator power-amplifier based on chirped quantum-dot structures,” IEEE Photon. Technol. Lett. 24(20), 1841–1844 (2012).
[Crossref]

H. Li, G. Liu, P. Varangis, T. Newell, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
[Crossref]

IEEE Trans. Electron. Dev. (1)

O. Qasaimeh, “Effect of inhomogeneous line broadening on gain and differential gain of quantum dot lasers,” IEEE Trans. Electron. Dev. 50(7), 1575–1581 (2003).
[Crossref]

IET Optoelectron. (2)

T. Xu, P. Bardella, M. Rossetti, and I. Montrosset, “Beam propagation method simulation and analysis of quantum dot flared semiconductor optical amplifiers in continuous wave high-saturation regime,” IET Optoelectron. 6(2), 110–116 (2012).
[Crossref]

H. Enshasy and D. Cassidy, “Sub-micrometre distance measurements with a broadly tunable short-external-cavity InGaAsP/InP diode laser,” IET Optoelectron. 1(4), 157–162 (2007).
[Crossref]

Nat. Photonics (1)

N. Anscombe, “Tapered triumph,” Nat. Photonics 3(1), 24–25 (2009).
[Crossref]

Opt. Commun. (1)

B. Fermigier, G. Lucas-Leclin, J. Dupont, F. Plumelle, and M. Houssin, “Self-aligned external-cavity semiconductor lasers for high resolution spectroscopy,” Opt. Commun. 153(1), 73–77 (1998).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Opt. Quantum Electron. (2)

M. Rossetti, P. Bardella, and I. Montrosset, “Numerical investigation of power tunability in two-section QD superluminescent diodes,” Opt. Quantum Electron. 40(14–15), 1129–1134 (2008).
[Crossref]

J. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Opt. Quantum Electron. 28(6), 623–645 (1996).
[Crossref]

Semicond. Sci. Technol. (1)

P. Evans, P. Blood, and J. Roberts, “Carrier distribution in quantum well lasers,” Semicond. Sci. Technol. 9(9), 1740–1743 (1994).
[Crossref]

Semiconductors (2)

A. Zhukov, A. Kovsh, and V. Ustinov, “Temperature dependence of the gain of lasers based on quantum-dot arrays with an inhomogeneously broadened density of states,” Semiconductors 33(11), 1260–1264 (1999).
[Crossref]

B. Volovik, A. Tsatsul’nikov, D. Bedarev, A. Y. Egorov, A. Zhukov, A. Kovsh, N. Ledentsov, M. Maksimov, N. Maleev, and Y. G. Musikhin, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).

Other (3)

M. Rossetti, P. Bardella, M. Gioannini, and I. Montrosset, “Carrier transport effects in multi layer quantum dot lasers and SLDs,” in Proceedings of the 14th European Conference on Integrated Optics (ECIO)(2008), pp. 221–224.

K. A. Fedorova, M. A. Cataluna, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Tuning range enhancement in external-cavity InAs/GaAs quantum-dot lasers: temperature, bias and cavity loss dependence,” presented at 1st EOS Topical Meeting in Lasers (Capri, Italy, 2009), paper 2194.

K. A. Fedorova, Novel semiconductor based broadly tunable light sources,” Ph.D. Thesis (University of Dundee, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the external-cavity laser setup in a “cat’s eye” configuration (top view, corresponding to the slow axis), where the output from the rear section of the SOA is focused onto the diffraction grating (not to scale). Focal lengths fA and fC refer to the focal lengths of the aspheric and cylindrical lenses, respectively. For simplicity, the SOA’s 7° tilt angle is not represented. The two electrical sections (rear and front) are schematically represented in the amplifier.
Fig. 2
Fig. 2 Light-current characteristic for the ASE output of both SOAs at 20 °C, with a constant current of 0.34 A applied to the rear section.
Fig. 3
Fig. 3 ASE spectra at 20 °C for the chirped and unchirped tapered SOAs for currents of 0.34 A in the rear section and 2.7 A in the front section.
Fig. 4
Fig. 4 Light-current characteristics at 20 °C for the laser incorporating the unchirped SOA, for varying currents applied to the rear section. The ECL was tuned at the wavelength of maximum power (1254 nm).
Fig. 5
Fig. 5 Light-current characteristics for the ECL comparing the chirped and unchirped SOAs at different temperatures, with a current of 0.34 A in the rear section. Both systems were tuned at their wavelengths of maximum power (1230 nm for chirped and 1254 nm for unchirped).
Fig. 6
Fig. 6 Tuning ranges for the ECL based on the chirped and unchirped SOAs, taken at bias currents of 2.7 A in the front section and 0.34A in the rear section. The solid lines are a guide to the eye.
Fig. 7
Fig. 7 Optical spectra for the ECLs based on the chirped and unchirped SOAs at 20 °C for bias currents of 2.7 A in the front section and 0.34 A in the rear section.

Metrics