Abstract

Depressed cladding waveguides have been realized in Nd:YVO4 employing direct writing technique with a femtosecond-laser beam. It was shown that the output performances of such laser devices are improved by the reduction of the quantum defect between the pump wavelength and the laser wavelength. Thus, under the classical pump at 808 nm (i.e. into the 4F5/2 level), a 100-μm diameter circular waveguide inscribed in a 0.7-at.% Nd:YVO4 outputted 1.06-μm laser pulses with 3.0-mJ energy, at 0.30 optical efficiency and slope efficiency of 0.32. The pump at 880 nm (i.e. directly into the 4F3/2 emitting level) increased the pulse energy at 3.8 mJ and improved both optical efficiency and slope efficiency at 0.36 and 0.39, respectively. The same waveguide yielded continuous-wave 1.5-W output power at 1.06 μm under the pump at 880 nm. Laser emission at 1.34 μm was also improved using the pump into the 4F3/2 emitting level of Nd:YVO4.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser emission from diode-pumped Nd:YAG ceramic waveguide lasers realized by direct femtosecond-laser writing technique

Gabriela Salamu, Florin Jipa, Marian Zamfirescu, and Nicolaie Pavel
Opt. Express 22(5) 5177-5182 (2014)

Cladding waveguides realized in Nd:YAG ceramic by direct femtosecond-laser writing with a helical movement technique

Gabriela Salamu, Florin Jipa, Marian Zamfirescu, and Nicolaie Pavel
Opt. Mater. Express 4(4) 790-797 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref] [PubMed]
  2. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
    [Crossref]
  3. F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8(2), 251–275 (2014).
    [Crossref]
  4. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30(17), 2248–2250 (2005).
    [Crossref] [PubMed]
  5. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
    [Crossref]
  6. W. F. Silva, C. Jacinto, A. Benayas, J. R. Vázquez de Aldana, G. A. Torchia, F. Chen, Y. Tan, and D. Jaque, “Femtosecond-laser-written, stress-induced Nd:YVO4 waveguides preserving fluorescence and Raman gain,” Opt. Lett. 35(7), 916–918 (2010).
    [Crossref] [PubMed]
  7. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
    [Crossref] [PubMed]
  8. Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. M. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
    [Crossref] [PubMed]
  9. T. Calmano, A.-G. Paschke, S. Müller, C. Kränkel, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” Opt. Express 21(21), 25501–25508 (2013).
    [Crossref] [PubMed]
  10. A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express 20(4), 3832–3843 (2012).
    [Crossref] [PubMed]
  11. H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance,” Opt. Express 20(17), 18620–18629 (2012).
    [Crossref] [PubMed]
  12. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm³⁺:ZBLAN waveguide laser,” Opt. Lett. 36(9), 1587–1589 (2011).
    [Crossref] [PubMed]
  13. Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37(16), 3339–3341 (2012).
    [Crossref] [PubMed]
  14. J. R. Macdonald, S. J. Beecher, P. A. Berry, G. Brown, K. L. Schepler, and A. K. Kar, “Efficient mid-infrared Cr:ZnSe channel waveguide laser operating at 2486 nm,” Opt. Lett. 38(13), 2194–2196 (2013).
    [Crossref] [PubMed]
  15. J. R. Macdonald, S. J. Beecher, A. Lancaster, P. A. Berry, K. L. Schepler, S. B. Mirov, and A. K. Kar, “Compact Cr:ZnS channel waveguide laser operating at 2333 nm,” Opt. Express 22(6), 7052–7057 (2014).
    [Crossref] [PubMed]
  16. S. Müller, T. Calmano, P. Metz, N.-O. Hansen, C. Kränkel, and G. Huber, “Femtosecond-laser-written diode-pumped Pr:LiYF4 waveguide laser,” Opt. Lett. 37(24), 5223–5225 (2012).
    [Crossref] [PubMed]
  17. G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Laser emission from diode-pumped Nd:YAG ceramic waveguide lasers realized by direct femtosecond-laser writing technique,” Opt. Express 22(5), 5177–5182 (2014).
    [Crossref] [PubMed]
  18. G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Cladding waveguides realized in Nd:YAG ceramic by direct femtosecond-laser writing with a helical movement technique,” Opt. Mater. Express 4(4), 790–797 (2014).
    [Crossref]
  19. N. Pavel, G. Salamu, F. Voicu, F. Jipa, and M. Zamfirescu, “Cladding waveguides realized in Nd:YAG laser media by direct writing with a femtosecond-laser beam,” Proc. Romanian Acad. Ser. A: Math. Phys. Tech. Sci. Inf. Sci. 15(2), 151–158 (2014).
  20. T. Taira, “RE3+-ion-doped YAG ceramics,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
    [Crossref]
  21. Y. Jia, F. Chen, and J. R. Vázquez de Aldana, “Efficient continuous-wave laser operation at 1064 nm in Nd:YVO4 cladding waveguides produced by femtosecond laser inscription,” Opt. Express 20(15), 16801–16806 (2012).
    [Crossref]
  22. H. Liu, J. R. Vázquez de Aldana, and F. Chen, “Efficient lasing in Nd:GdVO4 depressed cladding waveguides produced by femtosecond laser writing,” Proc. SPIE 9133, 913315 (2014).
  23. R. Newman, “Excitation of the Nd3+ fluorescence in CaWO4 by recombination radiation in GaAs,” J. Appl. Phys. 34(2), 437 (1963).
    [Crossref]
  24. R. Lavi, S. Jackel, Y. Tzuk, M. Winik, E. Lebiush, M. Katz, and I. Paiss, “Efficient pumping scheme for neodymium-doped materials by direct excitation of the upper lasing level,” Appl. Opt. 38(36), 7382–7385 (1999).
    [Crossref] [PubMed]
  25. V. Lupei, N. Pavel, and T. Taira, “Highly efficient laser emission in concentrated Nd:YVO4 components under direct pumping into the emitting level,” Opt. Commun. 201(4–6), 431–435 (2002).
    [Crossref]
  26. Y. Sato, T. Taira, N. Pavel, and V. Lupei, “Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level,” Appl. Phys. Lett. 82(6), 844–846 (2003).
    [Crossref]
  27. V. Lupei, N. Pavel, Y. Sato, and T. Taira, “Highly efficient 1063-nm continuous-wave laser emission in Nd:GdVO4.,” Opt. Lett. 28(23), 2366–2368 (2003).
    [Crossref] [PubMed]
  28. Y. Sato and T. Taira, “Saturation factors of pump absorption in solid-state lasers,” IEEE J. Quantum Electron. 40(3), 270–280 (2004).
    [Crossref]
  29. V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and A. Ikesue, “The effect of Nd concentration on the spectroscopic and emission decay properties of highly-doped Nd:YAG ceramics,” Phys. Rev. B 64(9), 092102 (2001).
    [Crossref]
  30. N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94, 1.06 and 1.34 μm laser emission and of heating effects under 809 and 885-nm diode laser pumping of Nd:YAG,” Appl. Phys. B 82(4), 599–605 (2006).
    [Crossref]
  31. H. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Efficient laser emission from cladding waveguide inscribed in Nd:GdVO4 crystal by direct femtosecond laser writing,” Opt. Lett. 39(15), 4553–4556 (2014).
    [Crossref] [PubMed]

2014 (7)

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8(2), 251–275 (2014).
[Crossref]

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Laser emission from diode-pumped Nd:YAG ceramic waveguide lasers realized by direct femtosecond-laser writing technique,” Opt. Express 22(5), 5177–5182 (2014).
[Crossref] [PubMed]

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Cladding waveguides realized in Nd:YAG ceramic by direct femtosecond-laser writing with a helical movement technique,” Opt. Mater. Express 4(4), 790–797 (2014).
[Crossref]

N. Pavel, G. Salamu, F. Voicu, F. Jipa, and M. Zamfirescu, “Cladding waveguides realized in Nd:YAG laser media by direct writing with a femtosecond-laser beam,” Proc. Romanian Acad. Ser. A: Math. Phys. Tech. Sci. Inf. Sci. 15(2), 151–158 (2014).

J. R. Macdonald, S. J. Beecher, A. Lancaster, P. A. Berry, K. L. Schepler, S. B. Mirov, and A. K. Kar, “Compact Cr:ZnS channel waveguide laser operating at 2333 nm,” Opt. Express 22(6), 7052–7057 (2014).
[Crossref] [PubMed]

H. Liu, J. R. Vázquez de Aldana, and F. Chen, “Efficient lasing in Nd:GdVO4 depressed cladding waveguides produced by femtosecond laser writing,” Proc. SPIE 9133, 913315 (2014).

H. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Efficient laser emission from cladding waveguide inscribed in Nd:GdVO4 crystal by direct femtosecond laser writing,” Opt. Lett. 39(15), 4553–4556 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (5)

2011 (1)

2010 (3)

2009 (1)

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

2008 (1)

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[Crossref]

2007 (1)

T. Taira, “RE3+-ion-doped YAG ceramics,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
[Crossref]

2006 (1)

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94, 1.06 and 1.34 μm laser emission and of heating effects under 809 and 885-nm diode laser pumping of Nd:YAG,” Appl. Phys. B 82(4), 599–605 (2006).
[Crossref]

2005 (1)

2004 (1)

Y. Sato and T. Taira, “Saturation factors of pump absorption in solid-state lasers,” IEEE J. Quantum Electron. 40(3), 270–280 (2004).
[Crossref]

2003 (2)

Y. Sato, T. Taira, N. Pavel, and V. Lupei, “Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level,” Appl. Phys. Lett. 82(6), 844–846 (2003).
[Crossref]

V. Lupei, N. Pavel, Y. Sato, and T. Taira, “Highly efficient 1063-nm continuous-wave laser emission in Nd:GdVO4.,” Opt. Lett. 28(23), 2366–2368 (2003).
[Crossref] [PubMed]

2002 (1)

V. Lupei, N. Pavel, and T. Taira, “Highly efficient laser emission in concentrated Nd:YVO4 components under direct pumping into the emitting level,” Opt. Commun. 201(4–6), 431–435 (2002).
[Crossref]

2001 (1)

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and A. Ikesue, “The effect of Nd concentration on the spectroscopic and emission decay properties of highly-doped Nd:YAG ceramics,” Phys. Rev. B 64(9), 092102 (2001).
[Crossref]

1999 (1)

1996 (1)

1963 (1)

R. Newman, “Excitation of the Nd3+ fluorescence in CaWO4 by recombination radiation in GaAs,” J. Appl. Phys. 34(2), 437 (1963).
[Crossref]

Ams, M.

Beecher, S.

Beecher, S. J.

Benayas, A.

W. F. Silva, C. Jacinto, A. Benayas, J. R. Vázquez de Aldana, G. A. Torchia, F. Chen, Y. Tan, and D. Jaque, “Femtosecond-laser-written, stress-induced Nd:YVO4 waveguides preserving fluorescence and Raman gain,” Opt. Lett. 35(7), 916–918 (2010).
[Crossref] [PubMed]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[Crossref]

Bennion, I.

Berry, P. A.

Brown, G.

Calmano, T.

Cantelar, E.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[Crossref]

Chen, F.

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8(2), 251–275 (2014).
[Crossref]

H. Liu, J. R. Vázquez de Aldana, and F. Chen, “Efficient lasing in Nd:GdVO4 depressed cladding waveguides produced by femtosecond laser writing,” Proc. SPIE 9133, 913315 (2014).

H. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Efficient laser emission from cladding waveguide inscribed in Nd:GdVO4 crystal by direct femtosecond laser writing,” Opt. Lett. 39(15), 4553–4556 (2014).
[Crossref] [PubMed]

Y. Jia, F. Chen, and J. R. Vázquez de Aldana, “Efficient continuous-wave laser operation at 1064 nm in Nd:YVO4 cladding waveguides produced by femtosecond laser inscription,” Opt. Express 20(15), 16801–16806 (2012).
[Crossref]

Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37(16), 3339–3341 (2012).
[Crossref] [PubMed]

H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance,” Opt. Express 20(17), 18620–18629 (2012).
[Crossref] [PubMed]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. M. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
[Crossref] [PubMed]

W. F. Silva, C. Jacinto, A. Benayas, J. R. Vázquez de Aldana, G. A. Torchia, F. Chen, Y. Tan, and D. Jaque, “Femtosecond-laser-written, stress-induced Nd:YVO4 waveguides preserving fluorescence and Raman gain,” Opt. Lett. 35(7), 916–918 (2010).
[Crossref] [PubMed]

Davis, K. M.

Ebendorff-Heidepriem, H.

Fuerbach, A.

Georgescu, S.

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and A. Ikesue, “The effect of Nd concentration on the spectroscopic and emission decay properties of highly-doped Nd:YAG ceramics,” Phys. Rev. B 64(9), 092102 (2001).
[Crossref]

Gross, S.

Hansen, N.-O.

Hirao, K.

Huber, G.

Ikesue, A.

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and A. Ikesue, “The effect of Nd concentration on the spectroscopic and emission decay properties of highly-doped Nd:YAG ceramics,” Phys. Rev. B 64(9), 092102 (2001).
[Crossref]

Jacinto, C.

Jackel, S.

Jaque, D.

Jaque, F.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Jia, Y.

Jipa, F.

Kan, H.

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94, 1.06 and 1.34 μm laser emission and of heating effects under 809 and 885-nm diode laser pumping of Nd:YAG,” Appl. Phys. B 82(4), 599–605 (2006).
[Crossref]

Kar, A. K.

Katz, M.

Khrushchev, I.

Kränkel, C.

Kuan, K.

Lamela, J.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Lancaster, A.

Lancaster, D. G.

Lavi, R.

Lebiush, E.

Lifante, G.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Liu, H.

Lu, Q. M.

Lupei, A.

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and A. Ikesue, “The effect of Nd concentration on the spectroscopic and emission decay properties of highly-doped Nd:YAG ceramics,” Phys. Rev. B 64(9), 092102 (2001).
[Crossref]

Lupei, V.

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94, 1.06 and 1.34 μm laser emission and of heating effects under 809 and 885-nm diode laser pumping of Nd:YAG,” Appl. Phys. B 82(4), 599–605 (2006).
[Crossref]

Y. Sato, T. Taira, N. Pavel, and V. Lupei, “Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level,” Appl. Phys. Lett. 82(6), 844–846 (2003).
[Crossref]

V. Lupei, N. Pavel, Y. Sato, and T. Taira, “Highly efficient 1063-nm continuous-wave laser emission in Nd:GdVO4.,” Opt. Lett. 28(23), 2366–2368 (2003).
[Crossref] [PubMed]

V. Lupei, N. Pavel, and T. Taira, “Highly efficient laser emission in concentrated Nd:YVO4 components under direct pumping into the emitting level,” Opt. Commun. 201(4–6), 431–435 (2002).
[Crossref]

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and A. Ikesue, “The effect of Nd concentration on the spectroscopic and emission decay properties of highly-doped Nd:YAG ceramics,” Phys. Rev. B 64(9), 092102 (2001).
[Crossref]

Macdonald, J. R.

Metz, P.

Mezentsev, V.

Mirov, S. B.

Mitchell, J.

Miura, K.

Monro, T. M.

Müller, S.

Newman, R.

R. Newman, “Excitation of the Nd3+ fluorescence in CaWO4 by recombination radiation in GaAs,” J. Appl. Phys. 34(2), 437 (1963).
[Crossref]

Okhrimchuk, A.

Okhrimchuk, A. G.

Paiss, I.

Paschke, A.-G.

Pavel, N.

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Laser emission from diode-pumped Nd:YAG ceramic waveguide lasers realized by direct femtosecond-laser writing technique,” Opt. Express 22(5), 5177–5182 (2014).
[Crossref] [PubMed]

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Cladding waveguides realized in Nd:YAG ceramic by direct femtosecond-laser writing with a helical movement technique,” Opt. Mater. Express 4(4), 790–797 (2014).
[Crossref]

N. Pavel, G. Salamu, F. Voicu, F. Jipa, and M. Zamfirescu, “Cladding waveguides realized in Nd:YAG laser media by direct writing with a femtosecond-laser beam,” Proc. Romanian Acad. Ser. A: Math. Phys. Tech. Sci. Inf. Sci. 15(2), 151–158 (2014).

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94, 1.06 and 1.34 μm laser emission and of heating effects under 809 and 885-nm diode laser pumping of Nd:YAG,” Appl. Phys. B 82(4), 599–605 (2006).
[Crossref]

V. Lupei, N. Pavel, Y. Sato, and T. Taira, “Highly efficient 1063-nm continuous-wave laser emission in Nd:GdVO4.,” Opt. Lett. 28(23), 2366–2368 (2003).
[Crossref] [PubMed]

Y. Sato, T. Taira, N. Pavel, and V. Lupei, “Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level,” Appl. Phys. Lett. 82(6), 844–846 (2003).
[Crossref]

V. Lupei, N. Pavel, and T. Taira, “Highly efficient laser emission in concentrated Nd:YVO4 components under direct pumping into the emitting level,” Opt. Commun. 201(4–6), 431–435 (2002).
[Crossref]

Petermann, K.

Ren, Y.

Rodenas, A.

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. M. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
[Crossref] [PubMed]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[Crossref]

Ródenas, A.

Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37(16), 3339–3341 (2012).
[Crossref] [PubMed]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Roso, L.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[Crossref]

Saikawa, J.

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94, 1.06 and 1.34 μm laser emission and of heating effects under 809 and 885-nm diode laser pumping of Nd:YAG,” Appl. Phys. B 82(4), 599–605 (2006).
[Crossref]

Salamu, G.

Sato, Y.

Y. Sato and T. Taira, “Saturation factors of pump absorption in solid-state lasers,” IEEE J. Quantum Electron. 40(3), 270–280 (2004).
[Crossref]

Y. Sato, T. Taira, N. Pavel, and V. Lupei, “Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level,” Appl. Phys. Lett. 82(6), 844–846 (2003).
[Crossref]

V. Lupei, N. Pavel, Y. Sato, and T. Taira, “Highly efficient 1063-nm continuous-wave laser emission in Nd:GdVO4.,” Opt. Lett. 28(23), 2366–2368 (2003).
[Crossref] [PubMed]

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and A. Ikesue, “The effect of Nd concentration on the spectroscopic and emission decay properties of highly-doped Nd:YAG ceramics,” Phys. Rev. B 64(9), 092102 (2001).
[Crossref]

Schepler, K. L.

Shestakov, A.

Shestakov, A. V.

Siebenmorgen, J.

Silva, W. F.

Sugimoto, N.

Taira, T.

T. Taira, “RE3+-ion-doped YAG ceramics,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
[Crossref]

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94, 1.06 and 1.34 μm laser emission and of heating effects under 809 and 885-nm diode laser pumping of Nd:YAG,” Appl. Phys. B 82(4), 599–605 (2006).
[Crossref]

Y. Sato and T. Taira, “Saturation factors of pump absorption in solid-state lasers,” IEEE J. Quantum Electron. 40(3), 270–280 (2004).
[Crossref]

V. Lupei, N. Pavel, Y. Sato, and T. Taira, “Highly efficient 1063-nm continuous-wave laser emission in Nd:GdVO4.,” Opt. Lett. 28(23), 2366–2368 (2003).
[Crossref] [PubMed]

Y. Sato, T. Taira, N. Pavel, and V. Lupei, “Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level,” Appl. Phys. Lett. 82(6), 844–846 (2003).
[Crossref]

V. Lupei, N. Pavel, and T. Taira, “Highly efficient laser emission in concentrated Nd:YVO4 components under direct pumping into the emitting level,” Opt. Commun. 201(4–6), 431–435 (2002).
[Crossref]

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and A. Ikesue, “The effect of Nd concentration on the spectroscopic and emission decay properties of highly-doped Nd:YAG ceramics,” Phys. Rev. B 64(9), 092102 (2001).
[Crossref]

Tan, Y.

Thomson, R. R.

Torchia, G. A.

W. F. Silva, C. Jacinto, A. Benayas, J. R. Vázquez de Aldana, G. A. Torchia, F. Chen, Y. Tan, and D. Jaque, “Femtosecond-laser-written, stress-induced Nd:YVO4 waveguides preserving fluorescence and Raman gain,” Opt. Lett. 35(7), 916–918 (2010).
[Crossref] [PubMed]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[Crossref]

Tzuk, Y.

Vázquez de Aldana, J. R.

Voicu, F.

N. Pavel, G. Salamu, F. Voicu, F. Jipa, and M. Zamfirescu, “Cladding waveguides realized in Nd:YAG laser media by direct writing with a femtosecond-laser beam,” Proc. Romanian Acad. Ser. A: Math. Phys. Tech. Sci. Inf. Sci. 15(2), 151–158 (2014).

Winik, M.

Withford, M. J.

Zamfirescu, M.

Appl. Opt. (1)

Appl. Phys. B (2)

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94, 1.06 and 1.34 μm laser emission and of heating effects under 809 and 885-nm diode laser pumping of Nd:YAG,” Appl. Phys. B 82(4), 599–605 (2006).
[Crossref]

Appl. Phys. Lett. (2)

Y. Sato, T. Taira, N. Pavel, and V. Lupei, “Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level,” Appl. Phys. Lett. 82(6), 844–846 (2003).
[Crossref]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

Y. Sato and T. Taira, “Saturation factors of pump absorption in solid-state lasers,” IEEE J. Quantum Electron. 40(3), 270–280 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Taira, “RE3+-ion-doped YAG ceramics,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
[Crossref]

J. Appl. Phys. (1)

R. Newman, “Excitation of the Nd3+ fluorescence in CaWO4 by recombination radiation in GaAs,” J. Appl. Phys. 34(2), 437 (1963).
[Crossref]

Laser Photon. Rev. (1)

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8(2), 251–275 (2014).
[Crossref]

Opt. Commun. (1)

V. Lupei, N. Pavel, and T. Taira, “Highly efficient laser emission in concentrated Nd:YVO4 components under direct pumping into the emitting level,” Opt. Commun. 201(4–6), 431–435 (2002).
[Crossref]

Opt. Express (8)

T. Calmano, A.-G. Paschke, S. Müller, C. Kränkel, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” Opt. Express 21(21), 25501–25508 (2013).
[Crossref] [PubMed]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
[Crossref] [PubMed]

Y. Jia, F. Chen, and J. R. Vázquez de Aldana, “Efficient continuous-wave laser operation at 1064 nm in Nd:YVO4 cladding waveguides produced by femtosecond laser inscription,” Opt. Express 20(15), 16801–16806 (2012).
[Crossref]

A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express 20(4), 3832–3843 (2012).
[Crossref] [PubMed]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. M. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
[Crossref] [PubMed]

H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance,” Opt. Express 20(17), 18620–18629 (2012).
[Crossref] [PubMed]

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Laser emission from diode-pumped Nd:YAG ceramic waveguide lasers realized by direct femtosecond-laser writing technique,” Opt. Express 22(5), 5177–5182 (2014).
[Crossref] [PubMed]

J. R. Macdonald, S. J. Beecher, A. Lancaster, P. A. Berry, K. L. Schepler, S. B. Mirov, and A. K. Kar, “Compact Cr:ZnS channel waveguide laser operating at 2333 nm,” Opt. Express 22(6), 7052–7057 (2014).
[Crossref] [PubMed]

Opt. Lett. (9)

J. R. Macdonald, S. J. Beecher, P. A. Berry, G. Brown, K. L. Schepler, and A. K. Kar, “Efficient mid-infrared Cr:ZnSe channel waveguide laser operating at 2486 nm,” Opt. Lett. 38(13), 2194–2196 (2013).
[Crossref] [PubMed]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm³⁺:ZBLAN waveguide laser,” Opt. Lett. 36(9), 1587–1589 (2011).
[Crossref] [PubMed]

H. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Efficient laser emission from cladding waveguide inscribed in Nd:GdVO4 crystal by direct femtosecond laser writing,” Opt. Lett. 39(15), 4553–4556 (2014).
[Crossref] [PubMed]

Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37(16), 3339–3341 (2012).
[Crossref] [PubMed]

S. Müller, T. Calmano, P. Metz, N.-O. Hansen, C. Kränkel, and G. Huber, “Femtosecond-laser-written diode-pumped Pr:LiYF4 waveguide laser,” Opt. Lett. 37(24), 5223–5225 (2012).
[Crossref] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref] [PubMed]

W. F. Silva, C. Jacinto, A. Benayas, J. R. Vázquez de Aldana, G. A. Torchia, F. Chen, Y. Tan, and D. Jaque, “Femtosecond-laser-written, stress-induced Nd:YVO4 waveguides preserving fluorescence and Raman gain,” Opt. Lett. 35(7), 916–918 (2010).
[Crossref] [PubMed]

A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30(17), 2248–2250 (2005).
[Crossref] [PubMed]

V. Lupei, N. Pavel, Y. Sato, and T. Taira, “Highly efficient 1063-nm continuous-wave laser emission in Nd:GdVO4.,” Opt. Lett. 28(23), 2366–2368 (2003).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Phys. Rev. B (1)

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and A. Ikesue, “The effect of Nd concentration on the spectroscopic and emission decay properties of highly-doped Nd:YAG ceramics,” Phys. Rev. B 64(9), 092102 (2001).
[Crossref]

Proc. Romanian Acad. Ser. A: Math. Phys. Tech. Sci. Inf. Sci. (1)

N. Pavel, G. Salamu, F. Voicu, F. Jipa, and M. Zamfirescu, “Cladding waveguides realized in Nd:YAG laser media by direct writing with a femtosecond-laser beam,” Proc. Romanian Acad. Ser. A: Math. Phys. Tech. Sci. Inf. Sci. 15(2), 151–158 (2014).

Proc. SPIE (1)

H. Liu, J. R. Vázquez de Aldana, and F. Chen, “Efficient lasing in Nd:GdVO4 depressed cladding waveguides produced by femtosecond laser writing,” Proc. SPIE 9133, 913315 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Microscope photos of the depressed cladding waveguides inscribed in the 0.5-at.% Nd:YVO4 crystal are shown: (a) CWG-1, circular with diameter of 100 μm and (b) SWG, 80 μm × 80 μm square; the white dashed lines indicate the waveguides’ boundary. Fluorescence images of the waveguides are presented: (c) CWG-1, (d) CWG-2, inscribed in the 0.7-at.% Nd:YVO4, (e) CWG-3, written in the 1.0-at.% Nd:YVO4, and (f) the waveguide SWG.
Fig. 2
Fig. 2 Laser pulse energy at 1.06 μm obtained from waveguide CWG-2 (0.7-at.% Nd:YVO4) under the pump at 808 nm and at 880 nm. Insets are the laser beam near-field distributions (2D maps) at the indicated points. T is the OCM transmission at 1.06 μm.
Fig. 3
Fig. 3 Quasi-cw mode operation at 1.34 μm of the CWG-1 waveguide (0.5-at.% Nd:YVO4) under the pump at 808 nm and at 880 nm. T is the OCM transmission at 1.34 μm.
Fig. 4
Fig. 4 Cw operation at 1.06 μm recorded from the CWG-2 waveguide, OCM with T = 0.05. The near-field distribution (2D plot) at the maximum output power is shown for the pump at 880 nm.
Fig. 5
Fig. 5 Maximum temperature of the 0.7-at.% Nd:YVO4 crystal upper surface that was measured along the waveguide CWG-2 for an absorbed pump power of 5 W at (a) 808 nm and (b) 880 nm, nonlasing and lasing at 1.06 μm. Insets are the temperature maps of the laser crystal surface. The white dashed lines show the waveguide position.

Tables (2)

Tables Icon

Table 1 Characteristics of laser emission at 1.06 μm (OCM with T = 0.05) and at 1.34 μm (OCM with T = 0.04) obtained under the pump at 808 nm and at 880 nm, quasi-cw mode operation

Tables Icon

Table 2 Performances of cw laser emission at 1.06 μm, OCM with T = 0.05

Metrics