Abstract

Polymer waveguide made by dry film process is demonstrated for silicon photonics chip packaging. With 8 μm × 11.5 μm core waveguide, little penalty is observed up to 25 Gbps before or after the light propagate through a 10-km long single-mode fiber (SMF). Coupling loss to SMF is 0.24 dB and 1.31 dB at the polymer waveguide input and output ends, respectively. Alignment tolerance for 0.5 dB loss increase is +/− 1.0 μm along both vertical and horizontal directions for the coupling from the polymer waveguide to SMF. The dry-film polymer waveguide demonstrates promising performance for silicon photonics chip packaging used in next generation optical multi-chip module.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Flip-chip optical couplers with scalable I/O count for silicon photonics

Ibrahim Murat Soganci, Antonio La Porta, and Bert Jan Offrein
Opt. Express 21(13) 16075-16085 (2013)

Circular core single-mode polymer optical waveguide fabricated using the Mosquito method with low loss at 1310/1550 nm

Kazuki Yasuhara, Feng Yu, and Takaaki Ishigure
Opt. Express 25(8) 8524-8533 (2017)

Circular-core single-mode polymer waveguide for high-density and high-speed optical interconnects application at 1550 nm

Xiao Xu, Lin Ma, Shoulin Jiang, and Zuyuan He
Opt. Express 25(21) 25689-25696 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Dev. 49(4.5), 755–775 (2005).
    [Crossref]
  2. S. Nakagawa, Y. Taira, H. Numata, K. Kobayashi, K. Terada, and Y. Tsukada, “High-density optical interconnect exploiting build-up waveguide-on-SLC board,” ECTC, 2008 Proceedings 58st, 256 (2008).
  3. S. Nakagawa, “High-density optical multi-chip module on waveguide-integrated carrier,” 2013 18th OECC/PS, WL3–5 (2013).
  4. M. Tokunari, Y. Tsukada, K. Toriyama, H. Noma, and S. Nakagawa, “High-bandwidth density optical I/O for high-speed logic chip on waveguide-integrated organic carrier,” ECTC, 2011 Proceedings 61st, 819 (2011).
  5. M. Tokunari, H. H. Hsu, K. Toriyama, H. Noma, and S. Nakagawa, “High-bandwidth density and low-power optical MCM using waveguide-integrated organic substrate,” J. Lightwave Technol. 32(6), 1207–1212 (2014).
    [Crossref]
  6. Y. Eriyama, “Dry film for optical waveguide and method for manufacturing optical waveguide by using the dry film,” United States Patent, US 7916992 B2, (2011).
  7. N. Kondo, J. Yashiro, T. Nakasiba, and S. Hashimoto, “Resin composition for optical waveguide, dry film, optical waveguide, and photoelectric composite wiring board using same,” United States Patent, US 20140004321 A1, (2014).
  8. P. Henzi, D. G. Rabus, K. Bade, U. Wallrabe, and J. MohrLow, “Low cost single mode waveguide fabrication allowing passive fiber coupling using LIGA and UV flood exposure,” Proc. SPIE 5454, 64–74 (2004).
    [Crossref]
  9. T. Korhonen, N. Salminen, A. Kokkonen, N. Masuda, and M. Karppinen, “Multilayer single-mode polymeric waveguides by imprint patterning for optical interconnects,” Proc. SPIE 8991, 899103 (2014).
  10. H. H. Hsu, T. Ishigure, and S. Nakagawa, “Analysis of connection loss for a GI waveguide based optical link using the finite difference beam propagation method,” J. Lightwave Technol. 31(12), 2036–2042 (2013).
    [Crossref]

2014 (2)

M. Tokunari, H. H. Hsu, K. Toriyama, H. Noma, and S. Nakagawa, “High-bandwidth density and low-power optical MCM using waveguide-integrated organic substrate,” J. Lightwave Technol. 32(6), 1207–1212 (2014).
[Crossref]

T. Korhonen, N. Salminen, A. Kokkonen, N. Masuda, and M. Karppinen, “Multilayer single-mode polymeric waveguides by imprint patterning for optical interconnects,” Proc. SPIE 8991, 899103 (2014).

2013 (1)

2005 (1)

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Dev. 49(4.5), 755–775 (2005).
[Crossref]

2004 (1)

P. Henzi, D. G. Rabus, K. Bade, U. Wallrabe, and J. MohrLow, “Low cost single mode waveguide fabrication allowing passive fiber coupling using LIGA and UV flood exposure,” Proc. SPIE 5454, 64–74 (2004).
[Crossref]

Bade, K.

P. Henzi, D. G. Rabus, K. Bade, U. Wallrabe, and J. MohrLow, “Low cost single mode waveguide fabrication allowing passive fiber coupling using LIGA and UV flood exposure,” Proc. SPIE 5454, 64–74 (2004).
[Crossref]

Benner, A. F.

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Dev. 49(4.5), 755–775 (2005).
[Crossref]

Henzi, P.

P. Henzi, D. G. Rabus, K. Bade, U. Wallrabe, and J. MohrLow, “Low cost single mode waveguide fabrication allowing passive fiber coupling using LIGA and UV flood exposure,” Proc. SPIE 5454, 64–74 (2004).
[Crossref]

Hsu, H. H.

Ignatowski, M.

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Dev. 49(4.5), 755–775 (2005).
[Crossref]

Ishigure, T.

Karppinen, M.

T. Korhonen, N. Salminen, A. Kokkonen, N. Masuda, and M. Karppinen, “Multilayer single-mode polymeric waveguides by imprint patterning for optical interconnects,” Proc. SPIE 8991, 899103 (2014).

Kash, J. A.

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Dev. 49(4.5), 755–775 (2005).
[Crossref]

Kokkonen, A.

T. Korhonen, N. Salminen, A. Kokkonen, N. Masuda, and M. Karppinen, “Multilayer single-mode polymeric waveguides by imprint patterning for optical interconnects,” Proc. SPIE 8991, 899103 (2014).

Korhonen, T.

T. Korhonen, N. Salminen, A. Kokkonen, N. Masuda, and M. Karppinen, “Multilayer single-mode polymeric waveguides by imprint patterning for optical interconnects,” Proc. SPIE 8991, 899103 (2014).

Kuchta, D. M.

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Dev. 49(4.5), 755–775 (2005).
[Crossref]

Masuda, N.

T. Korhonen, N. Salminen, A. Kokkonen, N. Masuda, and M. Karppinen, “Multilayer single-mode polymeric waveguides by imprint patterning for optical interconnects,” Proc. SPIE 8991, 899103 (2014).

MohrLow, J.

P. Henzi, D. G. Rabus, K. Bade, U. Wallrabe, and J. MohrLow, “Low cost single mode waveguide fabrication allowing passive fiber coupling using LIGA and UV flood exposure,” Proc. SPIE 5454, 64–74 (2004).
[Crossref]

Nakagawa, S.

Noma, H.

Rabus, D. G.

P. Henzi, D. G. Rabus, K. Bade, U. Wallrabe, and J. MohrLow, “Low cost single mode waveguide fabrication allowing passive fiber coupling using LIGA and UV flood exposure,” Proc. SPIE 5454, 64–74 (2004).
[Crossref]

Ritter, M. B.

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Dev. 49(4.5), 755–775 (2005).
[Crossref]

Salminen, N.

T. Korhonen, N. Salminen, A. Kokkonen, N. Masuda, and M. Karppinen, “Multilayer single-mode polymeric waveguides by imprint patterning for optical interconnects,” Proc. SPIE 8991, 899103 (2014).

Tokunari, M.

Toriyama, K.

Wallrabe, U.

P. Henzi, D. G. Rabus, K. Bade, U. Wallrabe, and J. MohrLow, “Low cost single mode waveguide fabrication allowing passive fiber coupling using LIGA and UV flood exposure,” Proc. SPIE 5454, 64–74 (2004).
[Crossref]

IBM J. Res. Dev. (1)

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Dev. 49(4.5), 755–775 (2005).
[Crossref]

J. Lightwave Technol. (2)

Proc. SPIE (2)

P. Henzi, D. G. Rabus, K. Bade, U. Wallrabe, and J. MohrLow, “Low cost single mode waveguide fabrication allowing passive fiber coupling using LIGA and UV flood exposure,” Proc. SPIE 5454, 64–74 (2004).
[Crossref]

T. Korhonen, N. Salminen, A. Kokkonen, N. Masuda, and M. Karppinen, “Multilayer single-mode polymeric waveguides by imprint patterning for optical interconnects,” Proc. SPIE 8991, 899103 (2014).

Other (5)

S. Nakagawa, Y. Taira, H. Numata, K. Kobayashi, K. Terada, and Y. Tsukada, “High-density optical interconnect exploiting build-up waveguide-on-SLC board,” ECTC, 2008 Proceedings 58st, 256 (2008).

S. Nakagawa, “High-density optical multi-chip module on waveguide-integrated carrier,” 2013 18th OECC/PS, WL3–5 (2013).

M. Tokunari, Y. Tsukada, K. Toriyama, H. Noma, and S. Nakagawa, “High-bandwidth density optical I/O for high-speed logic chip on waveguide-integrated organic carrier,” ECTC, 2011 Proceedings 61st, 819 (2011).

Y. Eriyama, “Dry film for optical waveguide and method for manufacturing optical waveguide by using the dry film,” United States Patent, US 7916992 B2, (2011).

N. Kondo, J. Yashiro, T. Nakasiba, and S. Hashimoto, “Resin composition for optical waveguide, dry film, optical waveguide, and photoelectric composite wiring board using same,” United States Patent, US 20140004321 A1, (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Material spectrum of the fabricated polymer waveguide core. (b) Core dimensions with applied coordinate systems (c) Waveguide cross section.
Fig. 2
Fig. 2 Measured NFP at output end of (a) SMF and (b) the polymer waveguide.
Fig. 3
Fig. 3 Angular intensity distribution at output end along x and y-direction of (a) SMF and (b) the polymer waveguide.
Fig. 4
Fig. 4 Propagation loss evaluated by cut-back method.
Fig. 5
Fig. 5 Alignment tolerance of the polymer waveguide to SMF.
Fig. 6
Fig. 6 Experiment setup for high-speed characterization.
Fig. 7
Fig. 7 Optical eye diagrams with corresponding data rate with the following connections: (a) 2-m SMF back-to-back (b) 10-km SMF back-to-back (c) 2-m SMF, waveguide, 10-km SMF (d) 10-km SMF, waveguide, 2-m SMF.
Fig. 8
Fig. 8 Optical eye openings at 10−12 bit error ratio with the following connections: (a) 2-m SMF back-to-back (b) 10-km SMF back-to-back (c) 2-m SMF, waveguide, 10-km SMF (d) 10-km SMF, waveguide, 2-m SMF.

Tables (3)

Tables Icon

Table 1 Modal Diameter at 1/e2 of Normalized Intensity

Tables Icon

Table2 Numerical Aperture at 5% of Normalized Intensity

Tables Icon

Table 3 Coupling Losses Measurement Results

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η = P i n P o u t = | E f ( x , y ) E w * ( x , y ) d x d y | 2 | E f ( x , y ) | 2 d x d y | E w ( x , y ) | 2 d x d y

Metrics