Abstract

The spontaneous emission of colloidal CdSe/ZnS quantum dots (CQDs) modified by the hybrid plasmonic-photonic crystal is reported in this paper. By using a spin coater, the spatial overlap between CQDs and the surface resonance modes in this quasi-2D crystal slab is achieved. In this case, the coupling efficiency of them is enhanced greatly and most excited CQDs radiate through the surface modes. Consequently, despite the low refractive index contrast of our hybrid structure, the directionality of spontaneous emission, increased radiative probability and narrowed full width at half maximum of emission peak are all clearly observed by our home-made microscopic angle-resolved spectroscopy and time-resolved photoluminescence system. Our results manifest that the quasi-2D hybrid plasmonic-photonic crystal is an ideal candidate to tailor the radiative properties of CdSe/ZnS CQDs, which might be significant for the applications of light emitting devices.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modification of spontaneous emission from quantum dots by the surface of a three-dimensional photonic crystal

Gui-Qiang Liu, Yu-Bo Liao, Shan-Jun Ma, Yan-Fei Shen, and Zhi-Qing Ye
J. Opt. Soc. Am. B 27(10) 1942-1946 (2010)

Hybrid optical materials of plasmon-coupled CdSe/ZnS coreshells for photonic applications

Jaetae Seo, Rafal Fudala, Wan-Joong Kim, Ryan Rich, Bagher Tabibi, Hyoyeong Cho, Zygmunt Gryczynski, Ignacy Gryczynski, and William Yu
Opt. Mater. Express 2(8) 1026-1039 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
    [Crossref] [PubMed]
  2. V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370(6488), 354–357 (1994).
    [Crossref]
  3. Z. N. Tan, F. Zhang, T. Zhu, J. Xu, A. Y. Wang, J. D. Dixon, L. S. Li, Q. Zhang, S. E. Mohney, and J. Ruzyllo, “Bright and color-saturated emission from blue light-emitting diodes based on solution-processed colloidal nanocrystal quantum dots,” Nano Lett. 7(12), 3803–3807 (2007).
    [Crossref] [PubMed]
  4. D. C. Oertel, M. G. Bawendi, A. C. Arango, and V. Bulovic, “Photodetectors based on treated CdSe quantum-dot films,” Appl. Phys. Lett. 87(21), 213505 (2005).
    [Crossref]
  5. G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
    [Crossref] [PubMed]
  6. I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2(9), 630–638 (2003).
    [Crossref] [PubMed]
  7. D. Geißler, L. J. Charbonnière, R. F. Ziessel, N. G. Butlin, H.-G. Löhmannsröben, and N. Hildebrandt, “Quantum Dot Biosensors for Ultrasensitive Multiplexed Diagnostics,” Angew. Chem. Int. Ed. Engl. 49(8), 1396–1401 (2010).
    [Crossref] [PubMed]
  8. J. F. Xu and M. Xiao, “Lasing action in colloidal CdS/CdSe/CdS quantum wells,” Appl. Phys. Lett. 87(17), 173117 (2005).
    [Crossref]
  9. J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “CdSe quantum dot microdisk laser,” Appl. Phys. Lett. 89(23), 231104 (2006).
    [Crossref]
  10. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  11. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [Crossref] [PubMed]
  12. S. P. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305(5681), 227–229 (2004).
    [Crossref] [PubMed]
  13. G. R. Maskaly, M. A. Petruska, J. Nanda, I. V. Bezel, R. D. Schaller, H. Htoon, J. M. Pietryga, and V. I. Klimov, “Amplified spontaneous emission in semiconductor-nanocrystal/synthetic-opal composites: Optical-gain enhancement via a photonic crystal pseudogap,” Adv. Mater. 18(3), 343–347 (2006).
    [Crossref]
  14. K. Y. Yao and Y. C. Shi, “High-Q width modulated photonic crystal stack mode-gap cavity and its application to refractive index sensing,” Opt. Express 20(24), 27039–27044 (2012).
    [Crossref] [PubMed]
  15. L. Shi, T. K. Hakala, H. T. Rekola, J.-P. Martikainen, R. J. Moerland, and P. Törmä, “Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes,” Phys. Rev. Lett. 112(15), 153002 (2014).
    [Crossref] [PubMed]
  16. S. Laxon, N. Peacock, and D. Smith, “High interannual variability of sea ice thickness in the Arctic region,” Nature 425(6961), 947–950 (2003).
    [Crossref] [PubMed]
  17. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
    [Crossref] [PubMed]
  18. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
    [Crossref] [PubMed]
  19. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
    [Crossref]
  20. L. Ferrier, O. El Daif, X. Letartre, P. Rojo Romeo, C. Seassal, R. Mazurczyk, and P. Viktorovitch, “Surface emitting microlaser based on 2D photonic crystal rod lattices,” Opt. Express 17(12), 9780–9788 (2009).
    [Crossref] [PubMed]
  21. Z. Q. Liu, J. T. Hang, J. Chen, Z. D. Yan, C. J. Tang, Z. Chen, and P. Zhan, “Optical transmission of corrugated metal films on a two-dimensional hetero-colloidal crystal,” Opt. Express 20(8), 9215–9225 (2012).
    [Crossref] [PubMed]
  22. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [Crossref]
  23. M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012).
    [Crossref] [PubMed]
  24. X. L. Zhu, F. X. Xie, L. Shi, X. H. Liu, N. A. Mortensen, S. S. Xiao, J. Zi, and W. Choy, “Broadband enhancement of spontaneous emission in a photonic-plasmonic structure,” Opt. Lett. 37(11), 2037–2039 (2012).
    [Crossref] [PubMed]
  25. L. Shi, X. H. Liu, H. W. Yin, and J. Zi, “Optical response of a flat metallic surface coated with a monolayer array of latex spheres,” Phys. Lett. A 374(8), 1059–1062 (2010).
    [Crossref]
  26. L. Shi, H. W. Yin, X. L. Zhu, X. H. Liu, and J. Zi, “Direct observation of iso-frequency contour of surface modes in defective photonic crystals in real space,” Appl. Phys. Lett. 97(25), 251111 (2010).
    [Crossref]
  27. X. D. Yu, L. Shi, D. Z. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
    [Crossref]
  28. X. W. Yuan, Q. Wang, X. F. Zhu, L. Shi, Q. Zhao, L. Sun, C. Chen, and B. Zhang, “High Q factor propagating plasmon modes based on low-cost metals,” J. Phys. D Appl. Phys. 47(8), 085109 (2014).
    [Crossref]
  29. M. López-García, J. F. Galisteo-López, A. Blanco, J. Sánchez-Marcos, C. López, and A. García-Martín, “Enhancement and Directionality of Spontaneous Emission in Hybrid Self-Assembled Photonic-Plasmonic Crystals,” Small 6(16), 1757–1761 (2010).
    [Crossref] [PubMed]
  30. Y. Chen, J. Herrnsdorf, B. Guilhabert, Y. Zhang, I. M. Watson, E. Gu, N. Laurand, and M. D. Dawson, “Colloidal quantum dot random laser,” Opt. Express 19(4), 2996–3003 (2011).
    [Crossref] [PubMed]
  31. X. H. Wu, Y. G. Sun, and M. Pelton, “Recombination rates for single colloidal quantum dots near a smooth metal film,” Phys. Chem. Chem. Phys. 11(28), 5867–5870 (2009).
    [Crossref] [PubMed]
  32. K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-Enhanced Emission from Single Semiconductor Nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
    [Crossref] [PubMed]
  33. M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, “Superradiance of quantum dots,” Nat. Phys. 3(2), 106–110 (2007).
    [Crossref]
  34. S. Malik, E. C. Le Ru, D. Childs, and R. Murray, “Time-resolved studies of annealed InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 63(15), 155313 (2001).
    [Crossref]
  35. H. L. Ning, A. Mihi, J. B. Geddes, M. Miyake, and P. V. Braun, “Radiative Lifetime Modification of LaF3:Nd Nanoparticles Embedded in 3D Silicon Photonic Crystals,” Adv. Mater. 24(23), OP153–OP158 (2012).
    [Crossref]
  36. I. S. Nikolaev, P. Lodahl, and W. L. Vos, “Fluorescence lifetime of emitters with broad homogeneous linewidths modified in opal photonic crystals,” J. Phys. Chem. C 112(18), 7250–7254 (2008).
    [Crossref]

2014 (2)

L. Shi, T. K. Hakala, H. T. Rekola, J.-P. Martikainen, R. J. Moerland, and P. Törmä, “Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes,” Phys. Rev. Lett. 112(15), 153002 (2014).
[Crossref] [PubMed]

X. W. Yuan, Q. Wang, X. F. Zhu, L. Shi, Q. Zhao, L. Sun, C. Chen, and B. Zhang, “High Q factor propagating plasmon modes based on low-cost metals,” J. Phys. D Appl. Phys. 47(8), 085109 (2014).
[Crossref]

2012 (5)

2011 (1)

2010 (5)

M. López-García, J. F. Galisteo-López, A. Blanco, J. Sánchez-Marcos, C. López, and A. García-Martín, “Enhancement and Directionality of Spontaneous Emission in Hybrid Self-Assembled Photonic-Plasmonic Crystals,” Small 6(16), 1757–1761 (2010).
[Crossref] [PubMed]

L. Shi, X. H. Liu, H. W. Yin, and J. Zi, “Optical response of a flat metallic surface coated with a monolayer array of latex spheres,” Phys. Lett. A 374(8), 1059–1062 (2010).
[Crossref]

L. Shi, H. W. Yin, X. L. Zhu, X. H. Liu, and J. Zi, “Direct observation of iso-frequency contour of surface modes in defective photonic crystals in real space,” Appl. Phys. Lett. 97(25), 251111 (2010).
[Crossref]

X. D. Yu, L. Shi, D. Z. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
[Crossref]

D. Geißler, L. J. Charbonnière, R. F. Ziessel, N. G. Butlin, H.-G. Löhmannsröben, and N. Hildebrandt, “Quantum Dot Biosensors for Ultrasensitive Multiplexed Diagnostics,” Angew. Chem. Int. Ed. Engl. 49(8), 1396–1401 (2010).
[Crossref] [PubMed]

2009 (2)

X. H. Wu, Y. G. Sun, and M. Pelton, “Recombination rates for single colloidal quantum dots near a smooth metal film,” Phys. Chem. Chem. Phys. 11(28), 5867–5870 (2009).
[Crossref] [PubMed]

L. Ferrier, O. El Daif, X. Letartre, P. Rojo Romeo, C. Seassal, R. Mazurczyk, and P. Viktorovitch, “Surface emitting microlaser based on 2D photonic crystal rod lattices,” Opt. Express 17(12), 9780–9788 (2009).
[Crossref] [PubMed]

2008 (2)

I. S. Nikolaev, P. Lodahl, and W. L. Vos, “Fluorescence lifetime of emitters with broad homogeneous linewidths modified in opal photonic crystals,” J. Phys. Chem. C 112(18), 7250–7254 (2008).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

2007 (2)

M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, “Superradiance of quantum dots,” Nat. Phys. 3(2), 106–110 (2007).
[Crossref]

Z. N. Tan, F. Zhang, T. Zhu, J. Xu, A. Y. Wang, J. D. Dixon, L. S. Li, Q. Zhang, S. E. Mohney, and J. Ruzyllo, “Bright and color-saturated emission from blue light-emitting diodes based on solution-processed colloidal nanocrystal quantum dots,” Nano Lett. 7(12), 3803–3807 (2007).
[Crossref] [PubMed]

2006 (3)

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

G. R. Maskaly, M. A. Petruska, J. Nanda, I. V. Bezel, R. D. Schaller, H. Htoon, J. M. Pietryga, and V. I. Klimov, “Amplified spontaneous emission in semiconductor-nanocrystal/synthetic-opal composites: Optical-gain enhancement via a photonic crystal pseudogap,” Adv. Mater. 18(3), 343–347 (2006).
[Crossref]

J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “CdSe quantum dot microdisk laser,” Appl. Phys. Lett. 89(23), 231104 (2006).
[Crossref]

2005 (5)

J. F. Xu and M. Xiao, “Lasing action in colloidal CdS/CdSe/CdS quantum wells,” Appl. Phys. Lett. 87(17), 173117 (2005).
[Crossref]

D. C. Oertel, M. G. Bawendi, A. C. Arango, and V. Bulovic, “Photodetectors based on treated CdSe quantum-dot films,” Appl. Phys. Lett. 87(21), 213505 (2005).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[Crossref] [PubMed]

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

2004 (1)

S. P. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305(5681), 227–229 (2004).
[Crossref] [PubMed]

2003 (2)

S. Laxon, N. Peacock, and D. Smith, “High interannual variability of sea ice thickness in the Arctic region,” Nature 425(6961), 947–950 (2003).
[Crossref] [PubMed]

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2(9), 630–638 (2003).
[Crossref] [PubMed]

2002 (1)

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-Enhanced Emission from Single Semiconductor Nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
[Crossref] [PubMed]

2001 (1)

S. Malik, E. C. Le Ru, D. Childs, and R. Murray, “Time-resolved studies of annealed InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 63(15), 155313 (2001).
[Crossref]

1998 (1)

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[Crossref] [PubMed]

1994 (1)

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370(6488), 354–357 (1994).
[Crossref]

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[Crossref] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Alivisatos, A. P.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[Crossref] [PubMed]

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370(6488), 354–357 (1994).
[Crossref]

Arango, A. C.

D. C. Oertel, M. G. Bawendi, A. C. Arango, and V. Bulovic, “Photodetectors based on treated CdSe quantum-dot films,” Appl. Phys. Lett. 87(21), 213505 (2005).
[Crossref]

Asano, T.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[Crossref] [PubMed]

Bacher, G.

M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, “Superradiance of quantum dots,” Nat. Phys. 3(2), 106–110 (2007).
[Crossref]

Bawendi, M. G.

D. C. Oertel, M. G. Bawendi, A. C. Arango, and V. Bulovic, “Photodetectors based on treated CdSe quantum-dot films,” Appl. Phys. Lett. 87(21), 213505 (2005).
[Crossref]

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-Enhanced Emission from Single Semiconductor Nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
[Crossref] [PubMed]

Bezel, I. V.

G. R. Maskaly, M. A. Petruska, J. Nanda, I. V. Bezel, R. D. Schaller, H. Htoon, J. M. Pietryga, and V. I. Klimov, “Amplified spontaneous emission in semiconductor-nanocrystal/synthetic-opal composites: Optical-gain enhancement via a photonic crystal pseudogap,” Adv. Mater. 18(3), 343–347 (2006).
[Crossref]

Blanco, A.

M. López-García, J. F. Galisteo-López, A. Blanco, J. Sánchez-Marcos, C. López, and A. García-Martín, “Enhancement and Directionality of Spontaneous Emission in Hybrid Self-Assembled Photonic-Plasmonic Crystals,” Small 6(16), 1757–1761 (2010).
[Crossref] [PubMed]

Braun, P. V.

H. L. Ning, A. Mihi, J. B. Geddes, M. Miyake, and P. V. Braun, “Radiative Lifetime Modification of LaF3:Nd Nanoparticles Embedded in 3D Silicon Photonic Crystals,” Adv. Mater. 24(23), OP153–OP158 (2012).
[Crossref]

X. D. Yu, L. Shi, D. Z. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
[Crossref]

Bruchez, M.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[Crossref] [PubMed]

Brunner, K.

J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “CdSe quantum dot microdisk laser,” Appl. Phys. Lett. 89(23), 231104 (2006).
[Crossref]

Bulovic, V.

D. C. Oertel, M. G. Bawendi, A. C. Arango, and V. Bulovic, “Photodetectors based on treated CdSe quantum-dot films,” Appl. Phys. Lett. 87(21), 213505 (2005).
[Crossref]

Butlin, N. G.

D. Geißler, L. J. Charbonnière, R. F. Ziessel, N. G. Butlin, H.-G. Löhmannsröben, and N. Hildebrandt, “Quantum Dot Biosensors for Ultrasensitive Multiplexed Diagnostics,” Angew. Chem. Int. Ed. Engl. 49(8), 1396–1401 (2010).
[Crossref] [PubMed]

Charbonnière, L. J.

D. Geißler, L. J. Charbonnière, R. F. Ziessel, N. G. Butlin, H.-G. Löhmannsröben, and N. Hildebrandt, “Quantum Dot Biosensors for Ultrasensitive Multiplexed Diagnostics,” Angew. Chem. Int. Ed. Engl. 49(8), 1396–1401 (2010).
[Crossref] [PubMed]

Chen, C.

X. W. Yuan, Q. Wang, X. F. Zhu, L. Shi, Q. Zhao, L. Sun, C. Chen, and B. Zhang, “High Q factor propagating plasmon modes based on low-cost metals,” J. Phys. D Appl. Phys. 47(8), 085109 (2014).
[Crossref]

Chen, J.

Chen, Y.

Chen, Z.

Childs, D.

S. Malik, E. C. Le Ru, D. Childs, and R. Murray, “Time-resolved studies of annealed InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 63(15), 155313 (2001).
[Crossref]

Choy, W.

Clapp, A. R.

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2(9), 630–638 (2003).
[Crossref] [PubMed]

Clifford, J.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Colvin, V. L.

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370(6488), 354–357 (1994).
[Crossref]

Dawson, M. D.

Dixon, J. D.

Z. N. Tan, F. Zhang, T. Zhu, J. Xu, A. Y. Wang, J. D. Dixon, L. S. Li, Q. Zhang, S. E. Mohney, and J. Ruzyllo, “Bright and color-saturated emission from blue light-emitting diodes based on solution-processed colloidal nanocrystal quantum dots,” Nano Lett. 7(12), 3803–3807 (2007).
[Crossref] [PubMed]

Eisler, H. J.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-Enhanced Emission from Single Semiconductor Nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
[Crossref] [PubMed]

El Daif, O.

Ferrier, L.

Fischer, A.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Fisher, B.

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2(9), 630–638 (2003).
[Crossref] [PubMed]

Fisher, B. R.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-Enhanced Emission from Single Semiconductor Nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
[Crossref] [PubMed]

Forchel, A.

M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, “Superradiance of quantum dots,” Nat. Phys. 3(2), 106–110 (2007).
[Crossref]

J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “CdSe quantum dot microdisk laser,” Appl. Phys. Lett. 89(23), 231104 (2006).
[Crossref]

Fujita, M.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref] [PubMed]

Galisteo-López, J. F.

M. López-García, J. F. Galisteo-López, A. Blanco, J. Sánchez-Marcos, C. López, and A. García-Martín, “Enhancement and Directionality of Spontaneous Emission in Hybrid Self-Assembled Photonic-Plasmonic Crystals,” Small 6(16), 1757–1761 (2010).
[Crossref] [PubMed]

García-Martín, A.

M. López-García, J. F. Galisteo-López, A. Blanco, J. Sánchez-Marcos, C. López, and A. García-Martín, “Enhancement and Directionality of Spontaneous Emission in Hybrid Self-Assembled Photonic-Plasmonic Crystals,” Small 6(16), 1757–1761 (2010).
[Crossref] [PubMed]

Geddes, J. B.

H. L. Ning, A. Mihi, J. B. Geddes, M. Miyake, and P. V. Braun, “Radiative Lifetime Modification of LaF3:Nd Nanoparticles Embedded in 3D Silicon Photonic Crystals,” Adv. Mater. 24(23), OP153–OP158 (2012).
[Crossref]

Geißler, D.

D. Geißler, L. J. Charbonnière, R. F. Ziessel, N. G. Butlin, H.-G. Löhmannsröben, and N. Hildebrandt, “Quantum Dot Biosensors for Ultrasensitive Multiplexed Diagnostics,” Angew. Chem. Int. Ed. Engl. 49(8), 1396–1401 (2010).
[Crossref] [PubMed]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Gin, P.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[Crossref] [PubMed]

Goldman, E. R.

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2(9), 630–638 (2003).
[Crossref] [PubMed]

Gu, E.

Guilhabert, B.

Hakala, T. K.

L. Shi, T. K. Hakala, H. T. Rekola, J.-P. Martikainen, R. J. Moerland, and P. Törmä, “Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes,” Phys. Rev. Lett. 112(15), 153002 (2014).
[Crossref] [PubMed]

Han, D. Z.

X. D. Yu, L. Shi, D. Z. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
[Crossref]

Hang, J. T.

Herrnsdorf, J.

Hildebrandt, N.

D. Geißler, L. J. Charbonnière, R. F. Ziessel, N. G. Butlin, H.-G. Löhmannsröben, and N. Hildebrandt, “Quantum Dot Biosensors for Ultrasensitive Multiplexed Diagnostics,” Angew. Chem. Int. Ed. Engl. 49(8), 1396–1401 (2010).
[Crossref] [PubMed]

Hommel, D.

M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, “Superradiance of quantum dots,” Nat. Phys. 3(2), 106–110 (2007).
[Crossref]

Hoogland, S.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Howard, I.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Htoon, H.

G. R. Maskaly, M. A. Petruska, J. Nanda, I. V. Bezel, R. D. Schaller, H. Htoon, J. M. Pietryga, and V. I. Klimov, “Amplified spontaneous emission in semiconductor-nanocrystal/synthetic-opal composites: Optical-gain enhancement via a photonic crystal pseudogap,” Adv. Mater. 18(3), 343–347 (2006).
[Crossref]

Imada, M.

S. P. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305(5681), 227–229 (2004).
[Crossref] [PubMed]

Klem, E.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Klimov, V. I.

G. R. Maskaly, M. A. Petruska, J. Nanda, I. V. Bezel, R. D. Schaller, H. Htoon, J. M. Pietryga, and V. I. Klimov, “Amplified spontaneous emission in semiconductor-nanocrystal/synthetic-opal composites: Optical-gain enhancement via a photonic crystal pseudogap,” Adv. Mater. 18(3), 343–347 (2006).
[Crossref]

Konstantatos, G.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Laurand, N.

Laxon, S.

S. Laxon, N. Peacock, and D. Smith, “High interannual variability of sea ice thickness in the Arctic region,” Nature 425(6961), 947–950 (2003).
[Crossref] [PubMed]

Le Ru, E. C.

S. Malik, E. C. Le Ru, D. Childs, and R. Murray, “Time-resolved studies of annealed InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 63(15), 155313 (2001).
[Crossref]

Lei, D. Y.

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012).
[Crossref] [PubMed]

Letartre, X.

Levina, L.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Li, L. S.

Z. N. Tan, F. Zhang, T. Zhu, J. Xu, A. Y. Wang, J. D. Dixon, L. S. Li, Q. Zhang, S. E. Mohney, and J. Ruzyllo, “Bright and color-saturated emission from blue light-emitting diodes based on solution-processed colloidal nanocrystal quantum dots,” Nano Lett. 7(12), 3803–3807 (2007).
[Crossref] [PubMed]

Liu, X. H.

X. L. Zhu, F. X. Xie, L. Shi, X. H. Liu, N. A. Mortensen, S. S. Xiao, J. Zi, and W. Choy, “Broadband enhancement of spontaneous emission in a photonic-plasmonic structure,” Opt. Lett. 37(11), 2037–2039 (2012).
[Crossref] [PubMed]

L. Shi, X. H. Liu, H. W. Yin, and J. Zi, “Optical response of a flat metallic surface coated with a monolayer array of latex spheres,” Phys. Lett. A 374(8), 1059–1062 (2010).
[Crossref]

L. Shi, H. W. Yin, X. L. Zhu, X. H. Liu, and J. Zi, “Direct observation of iso-frequency contour of surface modes in defective photonic crystals in real space,” Appl. Phys. Lett. 97(25), 251111 (2010).
[Crossref]

Liu, Z. Q.

Lodahl, P.

I. S. Nikolaev, P. Lodahl, and W. L. Vos, “Fluorescence lifetime of emitters with broad homogeneous linewidths modified in opal photonic crystals,” J. Phys. Chem. C 112(18), 7250–7254 (2008).
[Crossref]

Löhmannsröben, H.-G.

D. Geißler, L. J. Charbonnière, R. F. Ziessel, N. G. Butlin, H.-G. Löhmannsröben, and N. Hildebrandt, “Quantum Dot Biosensors for Ultrasensitive Multiplexed Diagnostics,” Angew. Chem. Int. Ed. Engl. 49(8), 1396–1401 (2010).
[Crossref] [PubMed]

López, C.

M. López-García, J. F. Galisteo-López, A. Blanco, J. Sánchez-Marcos, C. López, and A. García-Martín, “Enhancement and Directionality of Spontaneous Emission in Hybrid Self-Assembled Photonic-Plasmonic Crystals,” Small 6(16), 1757–1761 (2010).
[Crossref] [PubMed]

López-García, M.

M. López-García, J. F. Galisteo-López, A. Blanco, J. Sánchez-Marcos, C. López, and A. García-Martín, “Enhancement and Directionality of Spontaneous Emission in Hybrid Self-Assembled Photonic-Plasmonic Crystals,” Small 6(16), 1757–1761 (2010).
[Crossref] [PubMed]

Mahapatra, S.

J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “CdSe quantum dot microdisk laser,” Appl. Phys. Lett. 89(23), 231104 (2006).
[Crossref]

Maier, S. A.

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012).
[Crossref] [PubMed]

Malik, S.

S. Malik, E. C. Le Ru, D. Childs, and R. Murray, “Time-resolved studies of annealed InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 63(15), 155313 (2001).
[Crossref]

Martikainen, J.-P.

L. Shi, T. K. Hakala, H. T. Rekola, J.-P. Martikainen, R. J. Moerland, and P. Törmä, “Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes,” Phys. Rev. Lett. 112(15), 153002 (2014).
[Crossref] [PubMed]

Maskaly, G. R.

G. R. Maskaly, M. A. Petruska, J. Nanda, I. V. Bezel, R. D. Schaller, H. Htoon, J. M. Pietryga, and V. I. Klimov, “Amplified spontaneous emission in semiconductor-nanocrystal/synthetic-opal composites: Optical-gain enhancement via a photonic crystal pseudogap,” Adv. Mater. 18(3), 343–347 (2006).
[Crossref]

Mattoussi, H.

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2(9), 630–638 (2003).
[Crossref] [PubMed]

Mauro, J. M.

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2(9), 630–638 (2003).
[Crossref] [PubMed]

Mazurczyk, R.

Medintz, I. L.

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2(9), 630–638 (2003).
[Crossref] [PubMed]

Mihi, A.

H. L. Ning, A. Mihi, J. B. Geddes, M. Miyake, and P. V. Braun, “Radiative Lifetime Modification of LaF3:Nd Nanoparticles Embedded in 3D Silicon Photonic Crystals,” Adv. Mater. 24(23), OP153–OP158 (2012).
[Crossref]

Miyake, M.

H. L. Ning, A. Mihi, J. B. Geddes, M. Miyake, and P. V. Braun, “Radiative Lifetime Modification of LaF3:Nd Nanoparticles Embedded in 3D Silicon Photonic Crystals,” Adv. Mater. 24(23), OP153–OP158 (2012).
[Crossref]

Moerland, R. J.

L. Shi, T. K. Hakala, H. T. Rekola, J.-P. Martikainen, R. J. Moerland, and P. Törmä, “Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes,” Phys. Rev. Lett. 112(15), 153002 (2014).
[Crossref] [PubMed]

Mohney, S. E.

Z. N. Tan, F. Zhang, T. Zhu, J. Xu, A. Y. Wang, J. D. Dixon, L. S. Li, Q. Zhang, S. E. Mohney, and J. Ruzyllo, “Bright and color-saturated emission from blue light-emitting diodes based on solution-processed colloidal nanocrystal quantum dots,” Nano Lett. 7(12), 3803–3807 (2007).
[Crossref] [PubMed]

Moronne, M.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[Crossref] [PubMed]

Mortensen, N. A.

Murray, R.

S. Malik, E. C. Le Ru, D. Childs, and R. Murray, “Time-resolved studies of annealed InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 63(15), 155313 (2001).
[Crossref]

Nanda, J.

G. R. Maskaly, M. A. Petruska, J. Nanda, I. V. Bezel, R. D. Schaller, H. Htoon, J. M. Pietryga, and V. I. Klimov, “Amplified spontaneous emission in semiconductor-nanocrystal/synthetic-opal composites: Optical-gain enhancement via a photonic crystal pseudogap,” Adv. Mater. 18(3), 343–347 (2006).
[Crossref]

Nazabal, V.

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012).
[Crossref] [PubMed]

Nikolaev, I. S.

I. S. Nikolaev, P. Lodahl, and W. L. Vos, “Fluorescence lifetime of emitters with broad homogeneous linewidths modified in opal photonic crystals,” J. Phys. Chem. C 112(18), 7250–7254 (2008).
[Crossref]

Ning, H. L.

H. L. Ning, A. Mihi, J. B. Geddes, M. Miyake, and P. V. Braun, “Radiative Lifetime Modification of LaF3:Nd Nanoparticles Embedded in 3D Silicon Photonic Crystals,” Adv. Mater. 24(23), OP153–OP158 (2012).
[Crossref]

Noda, S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[Crossref] [PubMed]

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

S. P. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305(5681), 227–229 (2004).
[Crossref] [PubMed]

Oertel, D. C.

D. C. Oertel, M. G. Bawendi, A. C. Arango, and V. Bulovic, “Photodetectors based on treated CdSe quantum-dot films,” Appl. Phys. Lett. 87(21), 213505 (2005).
[Crossref]

Ogawa, S. P.

S. P. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305(5681), 227–229 (2004).
[Crossref] [PubMed]

Okano, M.

S. P. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305(5681), 227–229 (2004).
[Crossref] [PubMed]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Passow, T.

M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, “Superradiance of quantum dots,” Nat. Phys. 3(2), 106–110 (2007).
[Crossref]

Peacock, N.

S. Laxon, N. Peacock, and D. Smith, “High interannual variability of sea ice thickness in the Arctic region,” Nature 425(6961), 947–950 (2003).
[Crossref] [PubMed]

Pelton, M.

X. H. Wu, Y. G. Sun, and M. Pelton, “Recombination rates for single colloidal quantum dots near a smooth metal film,” Phys. Chem. Chem. Phys. 11(28), 5867–5870 (2009).
[Crossref] [PubMed]

Petruska, M. A.

G. R. Maskaly, M. A. Petruska, J. Nanda, I. V. Bezel, R. D. Schaller, H. Htoon, J. M. Pietryga, and V. I. Klimov, “Amplified spontaneous emission in semiconductor-nanocrystal/synthetic-opal composites: Optical-gain enhancement via a photonic crystal pseudogap,” Adv. Mater. 18(3), 343–347 (2006).
[Crossref]

Pietryga, J. M.

G. R. Maskaly, M. A. Petruska, J. Nanda, I. V. Bezel, R. D. Schaller, H. Htoon, J. M. Pietryga, and V. I. Klimov, “Amplified spontaneous emission in semiconductor-nanocrystal/synthetic-opal composites: Optical-gain enhancement via a photonic crystal pseudogap,” Adv. Mater. 18(3), 343–347 (2006).
[Crossref]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Rekola, H. T.

L. Shi, T. K. Hakala, H. T. Rekola, J.-P. Martikainen, R. J. Moerland, and P. Törmä, “Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes,” Phys. Rev. Lett. 112(15), 153002 (2014).
[Crossref] [PubMed]

Renner, J.

J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “CdSe quantum dot microdisk laser,” Appl. Phys. Lett. 89(23), 231104 (2006).
[Crossref]

Rojo Romeo, P.

Ruzyllo, J.

Z. N. Tan, F. Zhang, T. Zhu, J. Xu, A. Y. Wang, J. D. Dixon, L. S. Li, Q. Zhang, S. E. Mohney, and J. Ruzyllo, “Bright and color-saturated emission from blue light-emitting diodes based on solution-processed colloidal nanocrystal quantum dots,” Nano Lett. 7(12), 3803–3807 (2007).
[Crossref] [PubMed]

Sánchez-Marcos, J.

M. López-García, J. F. Galisteo-López, A. Blanco, J. Sánchez-Marcos, C. López, and A. García-Martín, “Enhancement and Directionality of Spontaneous Emission in Hybrid Self-Assembled Photonic-Plasmonic Crystals,” Small 6(16), 1757–1761 (2010).
[Crossref] [PubMed]

Sargent, E. H.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Schaller, R. D.

G. R. Maskaly, M. A. Petruska, J. Nanda, I. V. Bezel, R. D. Schaller, H. Htoon, J. M. Pietryga, and V. I. Klimov, “Amplified spontaneous emission in semiconductor-nanocrystal/synthetic-opal composites: Optical-gain enhancement via a photonic crystal pseudogap,” Adv. Mater. 18(3), 343–347 (2006).
[Crossref]

Scheibner, M.

M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, “Superradiance of quantum dots,” Nat. Phys. 3(2), 106–110 (2007).
[Crossref]

Schlamp, M. C.

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370(6488), 354–357 (1994).
[Crossref]

Schmidt, M. A.

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012).
[Crossref] [PubMed]

Schmidt, T.

M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, “Superradiance of quantum dots,” Nat. Phys. 3(2), 106–110 (2007).
[Crossref]

Seassal, C.

Shi, L.

L. Shi, T. K. Hakala, H. T. Rekola, J.-P. Martikainen, R. J. Moerland, and P. Törmä, “Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes,” Phys. Rev. Lett. 112(15), 153002 (2014).
[Crossref] [PubMed]

X. W. Yuan, Q. Wang, X. F. Zhu, L. Shi, Q. Zhao, L. Sun, C. Chen, and B. Zhang, “High Q factor propagating plasmon modes based on low-cost metals,” J. Phys. D Appl. Phys. 47(8), 085109 (2014).
[Crossref]

X. L. Zhu, F. X. Xie, L. Shi, X. H. Liu, N. A. Mortensen, S. S. Xiao, J. Zi, and W. Choy, “Broadband enhancement of spontaneous emission in a photonic-plasmonic structure,” Opt. Lett. 37(11), 2037–2039 (2012).
[Crossref] [PubMed]

L. Shi, H. W. Yin, X. L. Zhu, X. H. Liu, and J. Zi, “Direct observation of iso-frequency contour of surface modes in defective photonic crystals in real space,” Appl. Phys. Lett. 97(25), 251111 (2010).
[Crossref]

X. D. Yu, L. Shi, D. Z. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
[Crossref]

L. Shi, X. H. Liu, H. W. Yin, and J. Zi, “Optical response of a flat metallic surface coated with a monolayer array of latex spheres,” Phys. Lett. A 374(8), 1059–1062 (2010).
[Crossref]

Shi, Y. C.

Shimizu, K. T.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-Enhanced Emission from Single Semiconductor Nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
[Crossref] [PubMed]

Smith, D.

S. Laxon, N. Peacock, and D. Smith, “High interannual variability of sea ice thickness in the Arctic region,” Nature 425(6961), 947–950 (2003).
[Crossref] [PubMed]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[Crossref] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Sun, L.

X. W. Yuan, Q. Wang, X. F. Zhu, L. Shi, Q. Zhao, L. Sun, C. Chen, and B. Zhang, “High Q factor propagating plasmon modes based on low-cost metals,” J. Phys. D Appl. Phys. 47(8), 085109 (2014).
[Crossref]

Sun, Y. G.

X. H. Wu, Y. G. Sun, and M. Pelton, “Recombination rates for single colloidal quantum dots near a smooth metal film,” Phys. Chem. Chem. Phys. 11(28), 5867–5870 (2009).
[Crossref] [PubMed]

Takahashi, S.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref] [PubMed]

Tan, Z. N.

Z. N. Tan, F. Zhang, T. Zhu, J. Xu, A. Y. Wang, J. D. Dixon, L. S. Li, Q. Zhang, S. E. Mohney, and J. Ruzyllo, “Bright and color-saturated emission from blue light-emitting diodes based on solution-processed colloidal nanocrystal quantum dots,” Nano Lett. 7(12), 3803–3807 (2007).
[Crossref] [PubMed]

Tanaka, Y.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref] [PubMed]

Tang, C. J.

Törmä, P.

L. Shi, T. K. Hakala, H. T. Rekola, J.-P. Martikainen, R. J. Moerland, and P. Törmä, “Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes,” Phys. Rev. Lett. 112(15), 153002 (2014).
[Crossref] [PubMed]

Viktorovitch, P.

Vos, W. L.

I. S. Nikolaev, P. Lodahl, and W. L. Vos, “Fluorescence lifetime of emitters with broad homogeneous linewidths modified in opal photonic crystals,” J. Phys. Chem. C 112(18), 7250–7254 (2008).
[Crossref]

Wang, A. Y.

Z. N. Tan, F. Zhang, T. Zhu, J. Xu, A. Y. Wang, J. D. Dixon, L. S. Li, Q. Zhang, S. E. Mohney, and J. Ruzyllo, “Bright and color-saturated emission from blue light-emitting diodes based on solution-processed colloidal nanocrystal quantum dots,” Nano Lett. 7(12), 3803–3807 (2007).
[Crossref] [PubMed]

Wang, Q.

X. W. Yuan, Q. Wang, X. F. Zhu, L. Shi, Q. Zhao, L. Sun, C. Chen, and B. Zhang, “High Q factor propagating plasmon modes based on low-cost metals,” J. Phys. D Appl. Phys. 47(8), 085109 (2014).
[Crossref]

Watson, I. M.

Weiss, S.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[Crossref] [PubMed]

Wondraczek, L.

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012).
[Crossref] [PubMed]

Woo, W. K.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-Enhanced Emission from Single Semiconductor Nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
[Crossref] [PubMed]

Worschech, L.

M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, “Superradiance of quantum dots,” Nat. Phys. 3(2), 106–110 (2007).
[Crossref]

J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “CdSe quantum dot microdisk laser,” Appl. Phys. Lett. 89(23), 231104 (2006).
[Crossref]

Wu, X. H.

X. H. Wu, Y. G. Sun, and M. Pelton, “Recombination rates for single colloidal quantum dots near a smooth metal film,” Phys. Chem. Chem. Phys. 11(28), 5867–5870 (2009).
[Crossref] [PubMed]

Xiao, M.

J. F. Xu and M. Xiao, “Lasing action in colloidal CdS/CdSe/CdS quantum wells,” Appl. Phys. Lett. 87(17), 173117 (2005).
[Crossref]

Xiao, S. S.

Xie, F. X.

Xu, J.

Z. N. Tan, F. Zhang, T. Zhu, J. Xu, A. Y. Wang, J. D. Dixon, L. S. Li, Q. Zhang, S. E. Mohney, and J. Ruzyllo, “Bright and color-saturated emission from blue light-emitting diodes based on solution-processed colloidal nanocrystal quantum dots,” Nano Lett. 7(12), 3803–3807 (2007).
[Crossref] [PubMed]

Xu, J. F.

J. F. Xu and M. Xiao, “Lasing action in colloidal CdS/CdSe/CdS quantum wells,” Appl. Phys. Lett. 87(17), 173117 (2005).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Yan, Z. D.

Yao, K. Y.

Yin, H. W.

L. Shi, X. H. Liu, H. W. Yin, and J. Zi, “Optical response of a flat metallic surface coated with a monolayer array of latex spheres,” Phys. Lett. A 374(8), 1059–1062 (2010).
[Crossref]

L. Shi, H. W. Yin, X. L. Zhu, X. H. Liu, and J. Zi, “Direct observation of iso-frequency contour of surface modes in defective photonic crystals in real space,” Appl. Phys. Lett. 97(25), 251111 (2010).
[Crossref]

Yoshimoto, S.

S. P. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305(5681), 227–229 (2004).
[Crossref] [PubMed]

Yu, X. D.

X. D. Yu, L. Shi, D. Z. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
[Crossref]

Yuan, X. W.

X. W. Yuan, Q. Wang, X. F. Zhu, L. Shi, Q. Zhao, L. Sun, C. Chen, and B. Zhang, “High Q factor propagating plasmon modes based on low-cost metals,” J. Phys. D Appl. Phys. 47(8), 085109 (2014).
[Crossref]

Zhan, P.

Zhang, B.

X. W. Yuan, Q. Wang, X. F. Zhu, L. Shi, Q. Zhao, L. Sun, C. Chen, and B. Zhang, “High Q factor propagating plasmon modes based on low-cost metals,” J. Phys. D Appl. Phys. 47(8), 085109 (2014).
[Crossref]

Zhang, F.

Z. N. Tan, F. Zhang, T. Zhu, J. Xu, A. Y. Wang, J. D. Dixon, L. S. Li, Q. Zhang, S. E. Mohney, and J. Ruzyllo, “Bright and color-saturated emission from blue light-emitting diodes based on solution-processed colloidal nanocrystal quantum dots,” Nano Lett. 7(12), 3803–3807 (2007).
[Crossref] [PubMed]

Zhang, Q.

Z. N. Tan, F. Zhang, T. Zhu, J. Xu, A. Y. Wang, J. D. Dixon, L. S. Li, Q. Zhang, S. E. Mohney, and J. Ruzyllo, “Bright and color-saturated emission from blue light-emitting diodes based on solution-processed colloidal nanocrystal quantum dots,” Nano Lett. 7(12), 3803–3807 (2007).
[Crossref] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Zhang, Y.

Zhao, Q.

X. W. Yuan, Q. Wang, X. F. Zhu, L. Shi, Q. Zhao, L. Sun, C. Chen, and B. Zhang, “High Q factor propagating plasmon modes based on low-cost metals,” J. Phys. D Appl. Phys. 47(8), 085109 (2014).
[Crossref]

Zhu, T.

Z. N. Tan, F. Zhang, T. Zhu, J. Xu, A. Y. Wang, J. D. Dixon, L. S. Li, Q. Zhang, S. E. Mohney, and J. Ruzyllo, “Bright and color-saturated emission from blue light-emitting diodes based on solution-processed colloidal nanocrystal quantum dots,” Nano Lett. 7(12), 3803–3807 (2007).
[Crossref] [PubMed]

Zhu, X. F.

X. W. Yuan, Q. Wang, X. F. Zhu, L. Shi, Q. Zhao, L. Sun, C. Chen, and B. Zhang, “High Q factor propagating plasmon modes based on low-cost metals,” J. Phys. D Appl. Phys. 47(8), 085109 (2014).
[Crossref]

Zhu, X. L.

X. L. Zhu, F. X. Xie, L. Shi, X. H. Liu, N. A. Mortensen, S. S. Xiao, J. Zi, and W. Choy, “Broadband enhancement of spontaneous emission in a photonic-plasmonic structure,” Opt. Lett. 37(11), 2037–2039 (2012).
[Crossref] [PubMed]

L. Shi, H. W. Yin, X. L. Zhu, X. H. Liu, and J. Zi, “Direct observation of iso-frequency contour of surface modes in defective photonic crystals in real space,” Appl. Phys. Lett. 97(25), 251111 (2010).
[Crossref]

Zi, J.

X. L. Zhu, F. X. Xie, L. Shi, X. H. Liu, N. A. Mortensen, S. S. Xiao, J. Zi, and W. Choy, “Broadband enhancement of spontaneous emission in a photonic-plasmonic structure,” Opt. Lett. 37(11), 2037–2039 (2012).
[Crossref] [PubMed]

L. Shi, X. H. Liu, H. W. Yin, and J. Zi, “Optical response of a flat metallic surface coated with a monolayer array of latex spheres,” Phys. Lett. A 374(8), 1059–1062 (2010).
[Crossref]

L. Shi, H. W. Yin, X. L. Zhu, X. H. Liu, and J. Zi, “Direct observation of iso-frequency contour of surface modes in defective photonic crystals in real space,” Appl. Phys. Lett. 97(25), 251111 (2010).
[Crossref]

X. D. Yu, L. Shi, D. Z. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
[Crossref]

Ziessel, R. F.

D. Geißler, L. J. Charbonnière, R. F. Ziessel, N. G. Butlin, H.-G. Löhmannsröben, and N. Hildebrandt, “Quantum Dot Biosensors for Ultrasensitive Multiplexed Diagnostics,” Angew. Chem. Int. Ed. Engl. 49(8), 1396–1401 (2010).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

X. D. Yu, L. Shi, D. Z. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
[Crossref]

Adv. Mater. (2)

H. L. Ning, A. Mihi, J. B. Geddes, M. Miyake, and P. V. Braun, “Radiative Lifetime Modification of LaF3:Nd Nanoparticles Embedded in 3D Silicon Photonic Crystals,” Adv. Mater. 24(23), OP153–OP158 (2012).
[Crossref]

G. R. Maskaly, M. A. Petruska, J. Nanda, I. V. Bezel, R. D. Schaller, H. Htoon, J. M. Pietryga, and V. I. Klimov, “Amplified spontaneous emission in semiconductor-nanocrystal/synthetic-opal composites: Optical-gain enhancement via a photonic crystal pseudogap,” Adv. Mater. 18(3), 343–347 (2006).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

D. Geißler, L. J. Charbonnière, R. F. Ziessel, N. G. Butlin, H.-G. Löhmannsröben, and N. Hildebrandt, “Quantum Dot Biosensors for Ultrasensitive Multiplexed Diagnostics,” Angew. Chem. Int. Ed. Engl. 49(8), 1396–1401 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

J. F. Xu and M. Xiao, “Lasing action in colloidal CdS/CdSe/CdS quantum wells,” Appl. Phys. Lett. 87(17), 173117 (2005).
[Crossref]

J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “CdSe quantum dot microdisk laser,” Appl. Phys. Lett. 89(23), 231104 (2006).
[Crossref]

D. C. Oertel, M. G. Bawendi, A. C. Arango, and V. Bulovic, “Photodetectors based on treated CdSe quantum-dot films,” Appl. Phys. Lett. 87(21), 213505 (2005).
[Crossref]

L. Shi, H. W. Yin, X. L. Zhu, X. H. Liu, and J. Zi, “Direct observation of iso-frequency contour of surface modes in defective photonic crystals in real space,” Appl. Phys. Lett. 97(25), 251111 (2010).
[Crossref]

J. Phys. Chem. C (1)

I. S. Nikolaev, P. Lodahl, and W. L. Vos, “Fluorescence lifetime of emitters with broad homogeneous linewidths modified in opal photonic crystals,” J. Phys. Chem. C 112(18), 7250–7254 (2008).
[Crossref]

J. Phys. D Appl. Phys. (1)

X. W. Yuan, Q. Wang, X. F. Zhu, L. Shi, Q. Zhao, L. Sun, C. Chen, and B. Zhang, “High Q factor propagating plasmon modes based on low-cost metals,” J. Phys. D Appl. Phys. 47(8), 085109 (2014).
[Crossref]

Nano Lett. (1)

Z. N. Tan, F. Zhang, T. Zhu, J. Xu, A. Y. Wang, J. D. Dixon, L. S. Li, Q. Zhang, S. E. Mohney, and J. Ruzyllo, “Bright and color-saturated emission from blue light-emitting diodes based on solution-processed colloidal nanocrystal quantum dots,” Nano Lett. 7(12), 3803–3807 (2007).
[Crossref] [PubMed]

Nat. Commun. (1)

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012).
[Crossref] [PubMed]

Nat. Mater. (2)

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2(9), 630–638 (2003).
[Crossref] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Nat. Photonics (1)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Nat. Phys. (1)

M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, “Superradiance of quantum dots,” Nat. Phys. 3(2), 106–110 (2007).
[Crossref]

Nature (3)

S. Laxon, N. Peacock, and D. Smith, “High interannual variability of sea ice thickness in the Arctic region,” Nature 425(6961), 947–950 (2003).
[Crossref] [PubMed]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370(6488), 354–357 (1994).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

X. H. Wu, Y. G. Sun, and M. Pelton, “Recombination rates for single colloidal quantum dots near a smooth metal film,” Phys. Chem. Chem. Phys. 11(28), 5867–5870 (2009).
[Crossref] [PubMed]

Phys. Lett. A (1)

L. Shi, X. H. Liu, H. W. Yin, and J. Zi, “Optical response of a flat metallic surface coated with a monolayer array of latex spheres,” Phys. Lett. A 374(8), 1059–1062 (2010).
[Crossref]

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. B (1)

S. Malik, E. C. Le Ru, D. Childs, and R. Murray, “Time-resolved studies of annealed InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 63(15), 155313 (2001).
[Crossref]

Phys. Rev. Lett. (3)

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-Enhanced Emission from Single Semiconductor Nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

L. Shi, T. K. Hakala, H. T. Rekola, J.-P. Martikainen, R. J. Moerland, and P. Törmä, “Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes,” Phys. Rev. Lett. 112(15), 153002 (2014).
[Crossref] [PubMed]

Science (3)

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref] [PubMed]

S. P. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305(5681), 227–229 (2004).
[Crossref] [PubMed]

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[Crossref] [PubMed]

Small (1)

M. López-García, J. F. Galisteo-López, A. Blanco, J. Sánchez-Marcos, C. López, and A. García-Martín, “Enhancement and Directionality of Spontaneous Emission in Hybrid Self-Assembled Photonic-Plasmonic Crystals,” Small 6(16), 1757–1761 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of the crystal structure under study. (b) SEM of the hybrid crystal. (c) (d) The side-view and top-view field distribution of the surface mode we are interested in. (e) An emision map which corresponds to the spatial distribution of CQDs on the structure.
Fig. 2
Fig. 2 Schematic of experiment setup for angle-resolved reflectance and emission technique.
Fig. 3
Fig. 3 The results of microscopic angle-resolved reflectance (shown in (a) (b)) and emission (shown in (c) (d)) spectra with different polarized configurations for the structure with CQDs coated. The red line represents the normal reflectance spectra of the hybrid structure.
Fig. 4
Fig. 4 (a) The results of the time-resolved photoluminescence at 610nm. (b) The radiative lifetime and the non-radiative lifetime at different wavelength as the CQDs are pained on the hybrid crystal. (c) The radiative lifetime of PL decay on the two substrates. (d) The reflectance and DOS at Γ point for our structure.
Fig. 5
Fig. 5 The spontaneous emission at different angles when the CQDs are painted on hybrid crystal. The inset shows the normalized SE spectrums around zero angle on different substrates.

Metrics