Abstract

The crosstalk severely affects the viewing experience for the auto-stereoscopic 3D displays based on frontal projection lenticular sheet. To suppress unclear stereo vision and ghosts are observed in marginal viewing zones(MVZs), aberration of the lenticular sheet combining with the frontal projector is analyzed and designed. Theoretical and experimental results show that increasing radius of curvature (ROC) or decreasing aperture of the lenticular sheet can suppress the aberration and reduce the crosstalk. A projector array with 20 micro-projectors is used to frontally project 20 parallax images one lenticular sheet with the ROC of 10 mm and the size of 1.9 m × 1.2 m. The 3D image with the high quality is experimentally demonstrated in both the mid-viewing zone and MVZs in the optimal viewing plane. The 3D clear depth of 1.2m can be perceived. To provide an excellent 3D image and enlarge the field of view at the same time, a novel structure of lenticular sheet is presented to reduce aberration, and the crosstalk is well suppressed.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A frontal projection-type three-dimensional display

Youngmin Kim, Keehoon Hong, Jiwoon Yeom, Jisoo Hong, Jae-Hyun Jung, Yong Wook Lee, Jae-Hyeung Park, and Byoungho Lee
Opt. Express 20(18) 20130-20138 (2012)

Crosstalk reduction in auto-stereoscopic projection 3D display system

Kwang-Hoon Lee, Youngsik Park, Hyoung Lee, Seon Kyu Yoon, and Sung-Kyu Kim
Opt. Express 20(18) 19757-19768 (2012)

Dynamic three-dimensional light-field display with large viewing angle based on compound lenticular lens array and multi-projectors

Xunbo Yu, Xinzhu Sang, Xin Gao, Duo Chen, Boyang Liu, Li Liu, Chao Gao, and Peiren Wang
Opt. Express 27(11) 16024-16031 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photon. 5(4), 456–535 (2013).
    [Crossref]
  2. J. Y. Son, C. H. Lee, O. O. Chernyshov, B. R. Lee, and S. K. Kim, “A floating type holographic display,” Opt. Express 21(17), 20441–20451 (2013).
    [Crossref] [PubMed]
  3. Y. C. Chang, L. C. Tang, and C. Y. Yin, “Efficient simulation of intensity profile of light through subpixel-matched lenticular lens array for two- and four-view auto-stereoscopic liquid-crystal display,” Appl. Opt. 52(1), A356–A359 (2013).
    [Crossref] [PubMed]
  4. N. A. Dodgson, “Autostereoscopic 3D displays,” IEEE CS 38(8), 31–36 (2005).
  5. Y. Kim, K. Hong, J. Yeom, J. Hong, J. H. Jung, Y. W. Lee, J. H. Park, and B. Lee, “A frontal projection-type three-dimensional display,” Opt. Express 20(18), 20130–20138 (2012).
    [Crossref] [PubMed]
  6. W. Matusik and H. Pfister, “3D TV: A Scalable System for Real-Time Acquisition, Transmission, and Autostereoscopic Display of Dynamic Scenes,”ACM Trans. Graph 23(3), 814–824 (2004).
    [Crossref]
  7. L. Qi, Q. H. Wang, J. Y. Luo, W. X. Zhao, and C. Q. Song, “An Autostereoscopic 3D Projection Display Based on a Lenticular Sheet and a Parallax Barrier,” IEEE J. Disp. Technol. 8(7), 397–400 (2012).
    [Crossref]
  8. L. Qi, Q. H. Wang, J. Y. Luo, A. H. Wang, and D. Liang, “Autostereoscopic 3D projection display based on two lenticular sheets,” Chin. Opt. Lett. 10(1), 011101 (2012).
    [Crossref]
  9. Z. X. Zhang, Z. Geng, M. Zhang, and H. Dong, “An Interactive Multiview 3D Display System,” Proc. SPIE 8618, 86180P (2013).
    [Crossref]
  10. C. X. Yu, J. H. Yuan, F. C. Fan, C. C. Jiang, S. Choi, X. Z. Sang, C. Lin, and D. X. Xu, “The modulation function and realizing method of holographic functional screen,” Opt. Express 18(26), 27820–27826 (2010).
    [Crossref] [PubMed]
  11. A. J. Woods, “Crosstalk in stereoscopic displays: a review,” J. Electron. Imaging 21(4), 040902 (2012).
    [Crossref]
  12. X. F. Li, Q. H. Wang, D. H. Li, and A. H. Wang, “Image Processing to Eliminate Crosstalk Between Neighboring View Images in Three-Dimensional Lenticular Display,” IEEE/ J. Disp. Technol. 7(8), 443–447 (2011).
    [Crossref]
  13. S. Daniell and Z. Corporation, “Correction of aberration in lens-based 3D displays,” Proc. SPIE 5664, 175–185 (2005).
    [Crossref]
  14. C. Lee, G. Seo, J. Lee, T. H. Han, and J. G. Park, “Auto-stereoscopic 3D displays with reduced crosstalk,” Opt. Express 19(24), 24762–24774 (2011).
    [Crossref] [PubMed]
  15. Q. H. Wang, X. F. Li, L. Zhou, A. H. Wang, and D. H. Li, “Cross-talk reduction by correcting the subpixel position in a multiview autostereoscopic three-dimensional display based on a lenticular sheet,” Appl. Opt. 50(7), B1–B5 (2011).
    [Crossref] [PubMed]
  16. H. Sohn, Y. J. Jung, and Y. Man Ro, “Crosstalk reduction in stereoscopic 3D displays: Disparity adjustment using crosstalk visibility index for crosstalk cancellation,” Opt. Express 22(3), 3375–3392 (2014).
    [Crossref] [PubMed]
  17. M. Lambooij, K. Hinnen, and C. Varekamp, “Emulating Autostereoscopic Lenticular Designs,” IEEE J. Disp. Technol. 8(5), 283–290 (2012).
    [Crossref]
  18. P. R. J. North, “Three-dimensional forest light interaction model using a Monte Carlo Method,” IEEE Trans. Geosci. Rem. Sens. 34(4), 946–956 (1996).
    [Crossref]
  19. J. G. Amar, “The Monte Carlo Method in Science and Engineering,” Comput. Sci. Eng. 8(22), 9–19 (2006).
    [Crossref]
  20. N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44(247), 335–341 (1949).
    [Crossref] [PubMed]
  21. K. H. Lee, Y. Park, H. Lee, S. K. Yoon, and S. K. Kim, “Crosstalk reduction in auto-stereoscopic projection 3D display system,” Opt. Express 20(18), 19757–19768 (2012).
    [Crossref] [PubMed]
  22. J. Meiron, “Damped Least-Squares Method for Automatic Lens Design,” J. Opt. Soc. Am. 55(9), 1105–1107 (1965).
    [Crossref]
  23. D. Visser, T. G. Gijsbers, and R. A. M. Jorna, “Molds and measurements for replicated aspheric lenses for optical recording,” Appl. Opt. 24(12), 1848–1852 (1985).
    [Crossref] [PubMed]
  24. R. J. M. Zwiers and G. C. M. Dortant, “Aspherical lenses produced by a fast high-precision replication process using UV-curable coatings,” Appl. Opt. 24(24), 4483–4488 (1985).
    [Crossref] [PubMed]
  25. D. Wu, Q. D. Chen, L. G. Niu, J. Jiao, H. Xia, J. F. Song, and H. B. Sun, “100% Fill-Factor Aspheric Microlens Arrays(AMLA) With Sub-20-nm Precision,” IEEE(PTL). 21(20), 1535–1537 (2009).

2014 (1)

2013 (4)

2012 (6)

Y. Kim, K. Hong, J. Yeom, J. Hong, J. H. Jung, Y. W. Lee, J. H. Park, and B. Lee, “A frontal projection-type three-dimensional display,” Opt. Express 20(18), 20130–20138 (2012).
[Crossref] [PubMed]

L. Qi, Q. H. Wang, J. Y. Luo, W. X. Zhao, and C. Q. Song, “An Autostereoscopic 3D Projection Display Based on a Lenticular Sheet and a Parallax Barrier,” IEEE J. Disp. Technol. 8(7), 397–400 (2012).
[Crossref]

L. Qi, Q. H. Wang, J. Y. Luo, A. H. Wang, and D. Liang, “Autostereoscopic 3D projection display based on two lenticular sheets,” Chin. Opt. Lett. 10(1), 011101 (2012).
[Crossref]

A. J. Woods, “Crosstalk in stereoscopic displays: a review,” J. Electron. Imaging 21(4), 040902 (2012).
[Crossref]

M. Lambooij, K. Hinnen, and C. Varekamp, “Emulating Autostereoscopic Lenticular Designs,” IEEE J. Disp. Technol. 8(5), 283–290 (2012).
[Crossref]

K. H. Lee, Y. Park, H. Lee, S. K. Yoon, and S. K. Kim, “Crosstalk reduction in auto-stereoscopic projection 3D display system,” Opt. Express 20(18), 19757–19768 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (1)

2009 (1)

D. Wu, Q. D. Chen, L. G. Niu, J. Jiao, H. Xia, J. F. Song, and H. B. Sun, “100% Fill-Factor Aspheric Microlens Arrays(AMLA) With Sub-20-nm Precision,” IEEE(PTL). 21(20), 1535–1537 (2009).

2006 (1)

J. G. Amar, “The Monte Carlo Method in Science and Engineering,” Comput. Sci. Eng. 8(22), 9–19 (2006).
[Crossref]

2005 (2)

S. Daniell and Z. Corporation, “Correction of aberration in lens-based 3D displays,” Proc. SPIE 5664, 175–185 (2005).
[Crossref]

N. A. Dodgson, “Autostereoscopic 3D displays,” IEEE CS 38(8), 31–36 (2005).

2004 (1)

W. Matusik and H. Pfister, “3D TV: A Scalable System for Real-Time Acquisition, Transmission, and Autostereoscopic Display of Dynamic Scenes,”ACM Trans. Graph 23(3), 814–824 (2004).
[Crossref]

1996 (1)

P. R. J. North, “Three-dimensional forest light interaction model using a Monte Carlo Method,” IEEE Trans. Geosci. Rem. Sens. 34(4), 946–956 (1996).
[Crossref]

1985 (2)

1965 (1)

1949 (1)

N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44(247), 335–341 (1949).
[Crossref] [PubMed]

Amar, J. G.

J. G. Amar, “The Monte Carlo Method in Science and Engineering,” Comput. Sci. Eng. 8(22), 9–19 (2006).
[Crossref]

Chang, Y. C.

Chen, Q. D.

D. Wu, Q. D. Chen, L. G. Niu, J. Jiao, H. Xia, J. F. Song, and H. B. Sun, “100% Fill-Factor Aspheric Microlens Arrays(AMLA) With Sub-20-nm Precision,” IEEE(PTL). 21(20), 1535–1537 (2009).

Chernyshov, O. O.

Choi, S.

Corporation, Z.

S. Daniell and Z. Corporation, “Correction of aberration in lens-based 3D displays,” Proc. SPIE 5664, 175–185 (2005).
[Crossref]

Daniell, S.

S. Daniell and Z. Corporation, “Correction of aberration in lens-based 3D displays,” Proc. SPIE 5664, 175–185 (2005).
[Crossref]

Dodgson, N. A.

N. A. Dodgson, “Autostereoscopic 3D displays,” IEEE CS 38(8), 31–36 (2005).

Dong, H.

Z. X. Zhang, Z. Geng, M. Zhang, and H. Dong, “An Interactive Multiview 3D Display System,” Proc. SPIE 8618, 86180P (2013).
[Crossref]

Dortant, G. C. M.

Fan, F. C.

Geng, J.

Geng, Z.

Z. X. Zhang, Z. Geng, M. Zhang, and H. Dong, “An Interactive Multiview 3D Display System,” Proc. SPIE 8618, 86180P (2013).
[Crossref]

Gijsbers, T. G.

Han, T. H.

Hinnen, K.

M. Lambooij, K. Hinnen, and C. Varekamp, “Emulating Autostereoscopic Lenticular Designs,” IEEE J. Disp. Technol. 8(5), 283–290 (2012).
[Crossref]

Hong, J.

Hong, K.

Jiang, C. C.

Jiao, J.

D. Wu, Q. D. Chen, L. G. Niu, J. Jiao, H. Xia, J. F. Song, and H. B. Sun, “100% Fill-Factor Aspheric Microlens Arrays(AMLA) With Sub-20-nm Precision,” IEEE(PTL). 21(20), 1535–1537 (2009).

Jorna, R. A. M.

Jung, J. H.

Jung, Y. J.

Kim, S. K.

Kim, Y.

Lambooij, M.

M. Lambooij, K. Hinnen, and C. Varekamp, “Emulating Autostereoscopic Lenticular Designs,” IEEE J. Disp. Technol. 8(5), 283–290 (2012).
[Crossref]

Lee, B.

Lee, B. R.

Lee, C.

Lee, C. H.

Lee, H.

Lee, J.

Lee, K. H.

Lee, Y. W.

Li, D. H.

Q. H. Wang, X. F. Li, L. Zhou, A. H. Wang, and D. H. Li, “Cross-talk reduction by correcting the subpixel position in a multiview autostereoscopic three-dimensional display based on a lenticular sheet,” Appl. Opt. 50(7), B1–B5 (2011).
[Crossref] [PubMed]

X. F. Li, Q. H. Wang, D. H. Li, and A. H. Wang, “Image Processing to Eliminate Crosstalk Between Neighboring View Images in Three-Dimensional Lenticular Display,” IEEE/ J. Disp. Technol. 7(8), 443–447 (2011).
[Crossref]

Li, X. F.

X. F. Li, Q. H. Wang, D. H. Li, and A. H. Wang, “Image Processing to Eliminate Crosstalk Between Neighboring View Images in Three-Dimensional Lenticular Display,” IEEE/ J. Disp. Technol. 7(8), 443–447 (2011).
[Crossref]

Q. H. Wang, X. F. Li, L. Zhou, A. H. Wang, and D. H. Li, “Cross-talk reduction by correcting the subpixel position in a multiview autostereoscopic three-dimensional display based on a lenticular sheet,” Appl. Opt. 50(7), B1–B5 (2011).
[Crossref] [PubMed]

Liang, D.

Lin, C.

Luo, J. Y.

L. Qi, Q. H. Wang, J. Y. Luo, A. H. Wang, and D. Liang, “Autostereoscopic 3D projection display based on two lenticular sheets,” Chin. Opt. Lett. 10(1), 011101 (2012).
[Crossref]

L. Qi, Q. H. Wang, J. Y. Luo, W. X. Zhao, and C. Q. Song, “An Autostereoscopic 3D Projection Display Based on a Lenticular Sheet and a Parallax Barrier,” IEEE J. Disp. Technol. 8(7), 397–400 (2012).
[Crossref]

Man Ro, Y.

Matusik, W.

W. Matusik and H. Pfister, “3D TV: A Scalable System for Real-Time Acquisition, Transmission, and Autostereoscopic Display of Dynamic Scenes,”ACM Trans. Graph 23(3), 814–824 (2004).
[Crossref]

Meiron, J.

Metropolis, N.

N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44(247), 335–341 (1949).
[Crossref] [PubMed]

Niu, L. G.

D. Wu, Q. D. Chen, L. G. Niu, J. Jiao, H. Xia, J. F. Song, and H. B. Sun, “100% Fill-Factor Aspheric Microlens Arrays(AMLA) With Sub-20-nm Precision,” IEEE(PTL). 21(20), 1535–1537 (2009).

North, P. R. J.

P. R. J. North, “Three-dimensional forest light interaction model using a Monte Carlo Method,” IEEE Trans. Geosci. Rem. Sens. 34(4), 946–956 (1996).
[Crossref]

Park, J. G.

Park, J. H.

Park, Y.

Pfister, H.

W. Matusik and H. Pfister, “3D TV: A Scalable System for Real-Time Acquisition, Transmission, and Autostereoscopic Display of Dynamic Scenes,”ACM Trans. Graph 23(3), 814–824 (2004).
[Crossref]

Qi, L.

L. Qi, Q. H. Wang, J. Y. Luo, W. X. Zhao, and C. Q. Song, “An Autostereoscopic 3D Projection Display Based on a Lenticular Sheet and a Parallax Barrier,” IEEE J. Disp. Technol. 8(7), 397–400 (2012).
[Crossref]

L. Qi, Q. H. Wang, J. Y. Luo, A. H. Wang, and D. Liang, “Autostereoscopic 3D projection display based on two lenticular sheets,” Chin. Opt. Lett. 10(1), 011101 (2012).
[Crossref]

Sang, X. Z.

Seo, G.

Sohn, H.

Son, J. Y.

Song, C. Q.

L. Qi, Q. H. Wang, J. Y. Luo, W. X. Zhao, and C. Q. Song, “An Autostereoscopic 3D Projection Display Based on a Lenticular Sheet and a Parallax Barrier,” IEEE J. Disp. Technol. 8(7), 397–400 (2012).
[Crossref]

Song, J. F.

D. Wu, Q. D. Chen, L. G. Niu, J. Jiao, H. Xia, J. F. Song, and H. B. Sun, “100% Fill-Factor Aspheric Microlens Arrays(AMLA) With Sub-20-nm Precision,” IEEE(PTL). 21(20), 1535–1537 (2009).

Sun, H. B.

D. Wu, Q. D. Chen, L. G. Niu, J. Jiao, H. Xia, J. F. Song, and H. B. Sun, “100% Fill-Factor Aspheric Microlens Arrays(AMLA) With Sub-20-nm Precision,” IEEE(PTL). 21(20), 1535–1537 (2009).

Tang, L. C.

Ulam, S.

N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44(247), 335–341 (1949).
[Crossref] [PubMed]

Varekamp, C.

M. Lambooij, K. Hinnen, and C. Varekamp, “Emulating Autostereoscopic Lenticular Designs,” IEEE J. Disp. Technol. 8(5), 283–290 (2012).
[Crossref]

Visser, D.

Wang, A. H.

Wang, Q. H.

L. Qi, Q. H. Wang, J. Y. Luo, W. X. Zhao, and C. Q. Song, “An Autostereoscopic 3D Projection Display Based on a Lenticular Sheet and a Parallax Barrier,” IEEE J. Disp. Technol. 8(7), 397–400 (2012).
[Crossref]

L. Qi, Q. H. Wang, J. Y. Luo, A. H. Wang, and D. Liang, “Autostereoscopic 3D projection display based on two lenticular sheets,” Chin. Opt. Lett. 10(1), 011101 (2012).
[Crossref]

Q. H. Wang, X. F. Li, L. Zhou, A. H. Wang, and D. H. Li, “Cross-talk reduction by correcting the subpixel position in a multiview autostereoscopic three-dimensional display based on a lenticular sheet,” Appl. Opt. 50(7), B1–B5 (2011).
[Crossref] [PubMed]

X. F. Li, Q. H. Wang, D. H. Li, and A. H. Wang, “Image Processing to Eliminate Crosstalk Between Neighboring View Images in Three-Dimensional Lenticular Display,” IEEE/ J. Disp. Technol. 7(8), 443–447 (2011).
[Crossref]

Woods, A. J.

A. J. Woods, “Crosstalk in stereoscopic displays: a review,” J. Electron. Imaging 21(4), 040902 (2012).
[Crossref]

Wu, D.

D. Wu, Q. D. Chen, L. G. Niu, J. Jiao, H. Xia, J. F. Song, and H. B. Sun, “100% Fill-Factor Aspheric Microlens Arrays(AMLA) With Sub-20-nm Precision,” IEEE(PTL). 21(20), 1535–1537 (2009).

Xia, H.

D. Wu, Q. D. Chen, L. G. Niu, J. Jiao, H. Xia, J. F. Song, and H. B. Sun, “100% Fill-Factor Aspheric Microlens Arrays(AMLA) With Sub-20-nm Precision,” IEEE(PTL). 21(20), 1535–1537 (2009).

Xu, D. X.

Yeom, J.

Yin, C. Y.

Yoon, S. K.

Yu, C. X.

Yuan, J. H.

Zhang, M.

Z. X. Zhang, Z. Geng, M. Zhang, and H. Dong, “An Interactive Multiview 3D Display System,” Proc. SPIE 8618, 86180P (2013).
[Crossref]

Zhang, Z. X.

Z. X. Zhang, Z. Geng, M. Zhang, and H. Dong, “An Interactive Multiview 3D Display System,” Proc. SPIE 8618, 86180P (2013).
[Crossref]

Zhao, W. X.

L. Qi, Q. H. Wang, J. Y. Luo, W. X. Zhao, and C. Q. Song, “An Autostereoscopic 3D Projection Display Based on a Lenticular Sheet and a Parallax Barrier,” IEEE J. Disp. Technol. 8(7), 397–400 (2012).
[Crossref]

Zhou, L.

Zwiers, R. J. M.

ACM Trans. Graph (1)

W. Matusik and H. Pfister, “3D TV: A Scalable System for Real-Time Acquisition, Transmission, and Autostereoscopic Display of Dynamic Scenes,”ACM Trans. Graph 23(3), 814–824 (2004).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Opt. (4)

Chin. Opt. Lett. (1)

Comput. Sci. Eng. (1)

J. G. Amar, “The Monte Carlo Method in Science and Engineering,” Comput. Sci. Eng. 8(22), 9–19 (2006).
[Crossref]

IEEE CS (1)

N. A. Dodgson, “Autostereoscopic 3D displays,” IEEE CS 38(8), 31–36 (2005).

IEEE J. Disp. Technol. (2)

L. Qi, Q. H. Wang, J. Y. Luo, W. X. Zhao, and C. Q. Song, “An Autostereoscopic 3D Projection Display Based on a Lenticular Sheet and a Parallax Barrier,” IEEE J. Disp. Technol. 8(7), 397–400 (2012).
[Crossref]

M. Lambooij, K. Hinnen, and C. Varekamp, “Emulating Autostereoscopic Lenticular Designs,” IEEE J. Disp. Technol. 8(5), 283–290 (2012).
[Crossref]

IEEE Trans. Geosci. Rem. Sens. (1)

P. R. J. North, “Three-dimensional forest light interaction model using a Monte Carlo Method,” IEEE Trans. Geosci. Rem. Sens. 34(4), 946–956 (1996).
[Crossref]

IEEE(PTL). (1)

D. Wu, Q. D. Chen, L. G. Niu, J. Jiao, H. Xia, J. F. Song, and H. B. Sun, “100% Fill-Factor Aspheric Microlens Arrays(AMLA) With Sub-20-nm Precision,” IEEE(PTL). 21(20), 1535–1537 (2009).

IEEE/ J. Disp. Technol. (1)

X. F. Li, Q. H. Wang, D. H. Li, and A. H. Wang, “Image Processing to Eliminate Crosstalk Between Neighboring View Images in Three-Dimensional Lenticular Display,” IEEE/ J. Disp. Technol. 7(8), 443–447 (2011).
[Crossref]

J. Am. Stat. Assoc. (1)

N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44(247), 335–341 (1949).
[Crossref] [PubMed]

J. Electron. Imaging (1)

A. J. Woods, “Crosstalk in stereoscopic displays: a review,” J. Electron. Imaging 21(4), 040902 (2012).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Express (6)

Proc. SPIE (2)

Z. X. Zhang, Z. Geng, M. Zhang, and H. Dong, “An Interactive Multiview 3D Display System,” Proc. SPIE 8618, 86180P (2013).
[Crossref]

S. Daniell and Z. Corporation, “Correction of aberration in lens-based 3D displays,” Proc. SPIE 5664, 175–185 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1 The light-field distribution with a single projector (a) The light path of single projector (b) The distribution of light-field with a single projector.
Fig. 2
Fig. 2 The focal situation of the ideal and actual cylindrical lens (a) The ideal cylindrical lens (b) The actual cylindrical lens.
Fig. 3
Fig. 3 The light path of single projector under the actual situation.
Fig. 4
Fig. 4 The light-field distribution with decreasing the aperture (a) P = 1.5mm (b) P = 1.0mm (c) P = 0.75mm (d) P = 0.55mm.
Fig. 5
Fig. 5 The distribution light-field with increasing ROC (a) r = 4mm (b) r = 6mm (c) r = 8mm (d) r = 10mm.
Fig. 6
Fig. 6 The light-field distribution in the viewing plane (a) r = 5mm (b) r = 10mm.
Fig. 7
Fig. 7 The normalized luminance distribution in (a) DVZ and (b) MVZ with r = 10mm.
Fig. 8
Fig. 8 The normalized luminance distribution in (a) DVZ and in (b) MVZ with r = 5mm.
Fig. 9
Fig. 9 The change of crosstalk degree along the horizontal coordinates.
Fig. 10
Fig. 10 The final 3D image with r = 5mm.
Fig. 11
Fig. 11 The final 3D image with r = 10mm.
Fig. 12
Fig. 12 The actual meniscus thick lens.
Fig. 13
Fig. 13 The meridional vertical axis aberration curve (a) The traditional cylindrical lens (b) The actual meniscus thick lens.
Fig. 14
Fig. 14 MTF curve of novel structure.
Fig. 15
Fig. 15 The distribution of light-field (a) The traditional lenticular sheet (b) The novel lenticular sheet.
Fig. 16
Fig. 16 The normalized luminance distribution in MVZ (a) The traditional lenticular sheet (b) The novel lenticular sheet.
Fig. 17
Fig. 17 The change of crosstalk degree along the horizontal coordinates.
Fig. 18
Fig. 18 The MTF curve with tolerance (a) Δ r 1 = ± 0.2 u m (b) Δ r 2 = ± 0.2 u m (c) Δ k 1 = ± 0.02 (d) Δ k 2 = ± 0.02 (e) Δ d = ± 0.2 u m (f) Δ P = ± 0.2 u m .
Fig. 19
Fig. 19 The distribution of light-field (a) Δ k 1 = + 0.02 (b) Δ k 1 = 0.02 (c) Δ k 2 = + 0.02 (d) Δ k 2 = 0.02 .

Tables (5)

Tables Icon

Table 1 The change of the aperture

Tables Icon

Table 2 The change of ROC

Tables Icon

Table 3 Parameters of the cylindrical lenticular sheet

Tables Icon

Table 4 The designed parameters of lenticular sheet

Tables Icon

Table 5 The tolerance range of novel lenticular sheet

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

δ Y = 1 2 1 ( n 1 ) h ρ [ S 1 + 3 S 2 + 3 S 3 + S 4 ] S 1 = ( n 1 ) [ 1 + ( n + 1 ) ( n 1 ) 3 ] n 2 h 4 ρ 3 S 2 = n 3 2 n 2 + 1 n θ h 3 ρ 2 S 3 = ( n 1 ) θ 2 h 2 ρ S 4 = n 1 n ρ h θ 2 2
δ Y = 1 2 [ S 1 + 3 S 2 + 3 S 3 + S 4 ] δ T = 1 2 S 1 K T = 3 2 S 2 X T = 1 2 ( 3 S 3 + S 4 )
S 1 = P 1 + h 2 P 2 + K 1 + h 2 4 K 2 S 2 = h Z 2 P 2 ( W 1 + W 2 ) + h 2 3 h Z 2 K 2 S 3 = h Z 2 2 h 2 P 2 2 h Z 2 h 2 W 2 + ϕ 1 + ϕ 2 + h 2 2 h Z 2 2 K 2 S 4 = ϕ 1 + ϕ 2 n
h Z 2 = d n D , h 2 = 1 d D n ϕ 1 , ϕ 1 = D 1 D , ϕ 2 = D 2 D D = ( n 1 ) ( ρ 1 ρ 2 ) + ( n 1 ) 2 n d ρ 1 ρ 2 P 1 = ϕ 1 3 n 2 ( n 1 ) 2 , P 2 = ϕ 1 3 n 2 ( n 1 ) 2 + ( n + 2 ) ϕ 1 2 n ( n 1 ) 2 ( 2 n + 1 ) ϕ 1 ( n 1 ) 2 + n 2 ( n 1 ) 2 W 1 = ϕ 1 2 n 2 ( n 1 ) , W 2 = ϕ 1 2 n 2 ( n 1 ) ( n + 1 ) ϕ 1 n ( n 1 ) + n n 1 K 1 = k 1 ϕ 1 3 ( n 1 ) 2 , K 2 = k 2 ϕ 2 3 ( n 1 ) 2

Metrics