Abstract

We present a prototype of semiconductor lasers with plasmonic periodic structures that only support transverse-magnetic modes at telecommunication wavelengths. The structure does not sustain transverse-electric guided modes which are irrelevant to surface-wave-enhanced applications, and lasing modes must be surface-wave-like. With thin low-index dielectric buffers near the metal surface, the threshold gain is kept at a decent level around the photonic band edge. Thin windows are then opened on the metal surface to let out significant surface fields. This facilitates usages of surface waves for the spectroscopy and sensing.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tailor the surface-wave properties of a plasmonic metal by a metamaterial capping

Zhengyong Song, Xin Li, Jiaming Hao, Shiyi Xiao, Meng Qiu, Qiong He, Shaojie Ma, and Lei Zhou
Opt. Express 21(15) 18178-18187 (2013)

Design of a surface-emitting, subwavelength metal-clad disk laser in the visible spectrum

Jingqing Huang, Se-Heon Kim, and Axel Scherer
Opt. Express 18(19) 19581-19591 (2010)

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics, vol. 111 (Springer, 1988).
  2. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Materials Science, vol. 25 (Springer, 1995).
    [Crossref]
  3. M. I. Stockman, Electromagnetic Theory of SERS, Surface-Enhanced Raman Scattering, Topics in Applied Physics, vol. 103 (SpringerBerlin, 2006). pp. 47–65.
  4. J. Homola, S. S. Yee, and G. Gauglitzb, “Surface plasmon resonance sensors: review,” Sensors and Actuators B: Chemical 54, 3–15 (1999).
    [Crossref]
  5. T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloid. Surface A 171, 115–130 (2000).
    [Crossref]
  6. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref] [PubMed]
  7. A. V. Zayats, I. I. Smolyaninovb, and A. A. Maradudinc, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
    [Crossref]
  8. C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence,” Anal. Chem. 77, 3261–3266 (2005).
    [Crossref] [PubMed]
  9. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano. Lett. 5, 1569–1574 (2005).
    [Crossref] [PubMed]
  10. G. Nemova and R. Kashyap, “Fiber-bragg-grating-assisted surface plasmon-polariton sensor,” Opt. Lett. 31, 2118–2120 (2006).
    [Crossref] [PubMed]
  11. L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91, 123112 (2007).
    [Crossref]
  12. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
    [Crossref]
  13. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater 8, 867–871 (2009).
    [Crossref] [PubMed]
  14. L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18, 14395–14400 (2010).
    [Crossref] [PubMed]
  15. M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
    [Crossref]
  16. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
    [Crossref] [PubMed]
  17. M. J. Marell, B. Smalbrugge, E. J. Geluk, P. J. van Veldhoven, B. Barcones, B. Koopmans, R. Nötzel, M. K. Smit, and M. T. Hill, “Plasmonic distributed feedback lasers at telecommunications wavelengths,” Opt. Express 19, 15109–15118 (2011).
    [Crossref] [PubMed]
  18. K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85, 041301 (2012).
    [Crossref]
  19. K. Ding and C. Z. Ning, “Metallic subwavelength-cavity semiconductor nanolasers,” Light: Science and Applications 1, e20 (2012).
    [Crossref]
  20. A. Bousseksou, R. Colombelli, A. Babuty, Y. D. Wilde, Y. Chassagneux, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “A semiconductor laser device for the generation of surface-plasmons upon electrical injection,” Opt. Express 17, 9391–9400 (2009).
    [Crossref] [PubMed]
  21. R. A. Flynn, C. S. Kim, I. Vurgaftman, M. Kim, J. R. Meyer, A. J. Mäkinen, K. Bussmann, L. Cheng, F.-S. Choa, and J. P. Long, “A room-temperature semiconductor spaser operating near 1.5 μm,” Opt. Express 19, 8954–8961 (2011).
    [Crossref] [PubMed]
  22. Y. Li, H. Zhang, N. Zhu, T. Mei, D. H. Zhang, and J. Teng, “Short-range surface plasmon propagation supported by stimulated amplification using electrical injection,” Opt. Express 19, 22107–22112 (2011).
    [Crossref] [PubMed]
  23. D. Y. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett. 12, 2459–2463 (2012).
    [Crossref] [PubMed]
  24. D. Costantini, A. Bousseksou, M. Fevrier, B. Dagens, and R. Colombelli, “Loss and gain measurements of tensile-strained quantum well diode lasers for plasmonic devices at telecom wavelengths,” IEEE J. Quantum Electron 48, 73–78 (2012).
    [Crossref]
  25. D. Costantini, L. Greusard, A. Bousseksou, R. Rungsawang, T. P. Zhang, S. Callard, J. Decobert, F. Lelarge, G.-H. Duan, Y. De Wilde, and R. Colombelli, “In situ generation of surface plasmon polaritons using a near-infrared laser diode,” Nano Lett. 12, 4693–4697 (2012).
    [Crossref] [PubMed]
  26. D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102, 101106 (2013).
    [Crossref]
  27. A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett. 33, 1261–1263 (2008).
    [Crossref] [PubMed]
  28. Q. Ding, A. Mizrahi, Y. Fainman, and V. Lomakin, “Dielectric shielded nanoscale patch laser resonators,” Opt. Lett. 36, 1812–1814 (2011).
    [Crossref] [PubMed]
  29. W.-C. Liu, “High sensitivity of surface plasmon of weakly-distorted metallic surfaces,” Opt. Express 13, 9766–9773 (2005).
    [Crossref] [PubMed]
  30. M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, “Extremely short-length surface plasmon resonance devices,” Opt. Express 16, 20227–20240 (2008).
    [Crossref] [PubMed]
  31. P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2012).
    [Crossref]
  32. S. J. Al-Bader and M. Imtaar, “Optical fiber hybrid-surface plasmon polaritons,” J. Opt. Soc. Am. B 10, 83–88 (1993).
    [Crossref]
  33. Y.-C. Lu, L. Yang, W.-P. Huang, and S.-S. Jian, “Improved full-vector finite-difference complex mode solver for optical waveguides of circular symmetry,” J. Lightwave Technol. 26, 1868–1876 (2008).
    [Crossref]
  34. P.-J. Chiang and S. W. Chang, “Frequency-domain formulation of photonic crystals using sources and gain,” Opt. Express 21, 1972–1985 (2013).
    [Crossref] [PubMed]
  35. S. W. Chang, “Full frequency-domain approach to reciprocal microlasers and nanolasers–perspective from Lorentz reciprocity,” Opt. Express 19, 21116–21134 (2011).
    [Crossref] [PubMed]
  36. P.-J. Chiang, C.-L. Wu, C.-H. Teng, C.-S. Yang, and H.-C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron 44, 56–66 (2008).
    [Crossref]
  37. P.-J. Chiang and Y.-C. Chiang, “Pseudospectral frequency-domain formulae based on modified perfectly matched layers for calculating both guided and leaky modes,” IEEE Photon. Technol. Lett. 22, 908–910 (2010).
    [Crossref]
  38. T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008).
    [Crossref]
  39. T. Okamoto and S. Kawata, “Dispersion relation and radiation properties of plasmonic crystals with triangular lattices,” Opt. Express 20, 5168–5177 (2012).
    [Crossref] [PubMed]
  40. L. Li, J. Chandezon, G. Granet, and J.-P. Plumey, “Rigorous and efficient grating-analysis method made easy for optical engineers,” Appl. Opt. 38, 304–313 (1999).
    [Crossref]
  41. M. Neviere and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design, Optical Science and Engineering (CRC Press, 2002).
  42. T. Visser, H. Blok, B. Demeulenaere, and D. Lenstra, “Confinement factors and gain in optical amplifiers,” IEEE J. Quantum Electron 33, 1763–1766 (1997).
    [Crossref]
  43. A. V. Maslov and C.-Z. Ning, “Modal gain in a semiconductor nanowire laser with anisotropic bandstructure,” IEEE J. Quantum Electron 40, 1389–1397 (2004).
    [Crossref]
  44. S. W. Chang and S. L. Chuang, “Fundamental formulation for plasmonic nanolasers,” IEEE J. Quantum Electron 45, 1014–1023 (2009).
    [Crossref]
  45. T. W. Nee and A. K. Green, “Optical properties of InGaAs lattice-matched to InP,” J. Appl. Phys. 68, 5314–5317 (1990).
    [Crossref]
  46. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  47. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  48. C.-Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, U. W. Pohl, and D. Bimberg, “Low thermal impedance of substrate-free metal cavity surface-emitting microlasers,” IEEE Photon Technol. Lett. 23, 1031–1033 (2011).
    [Crossref]

2013 (2)

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102, 101106 (2013).
[Crossref]

P.-J. Chiang and S. W. Chang, “Frequency-domain formulation of photonic crystals using sources and gain,” Opt. Express 21, 1972–1985 (2013).
[Crossref] [PubMed]

2012 (7)

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2012).
[Crossref]

T. Okamoto and S. Kawata, “Dispersion relation and radiation properties of plasmonic crystals with triangular lattices,” Opt. Express 20, 5168–5177 (2012).
[Crossref] [PubMed]

D. Y. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett. 12, 2459–2463 (2012).
[Crossref] [PubMed]

D. Costantini, A. Bousseksou, M. Fevrier, B. Dagens, and R. Colombelli, “Loss and gain measurements of tensile-strained quantum well diode lasers for plasmonic devices at telecom wavelengths,” IEEE J. Quantum Electron 48, 73–78 (2012).
[Crossref]

D. Costantini, L. Greusard, A. Bousseksou, R. Rungsawang, T. P. Zhang, S. Callard, J. Decobert, F. Lelarge, G.-H. Duan, Y. De Wilde, and R. Colombelli, “In situ generation of surface plasmon polaritons using a near-infrared laser diode,” Nano Lett. 12, 4693–4697 (2012).
[Crossref] [PubMed]

K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85, 041301 (2012).
[Crossref]

K. Ding and C. Z. Ning, “Metallic subwavelength-cavity semiconductor nanolasers,” Light: Science and Applications 1, e20 (2012).
[Crossref]

2011 (6)

2010 (2)

P.-J. Chiang and Y.-C. Chiang, “Pseudospectral frequency-domain formulae based on modified perfectly matched layers for calculating both guided and leaky modes,” IEEE Photon. Technol. Lett. 22, 908–910 (2010).
[Crossref]

L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18, 14395–14400 (2010).
[Crossref] [PubMed]

2009 (4)

2008 (5)

Y.-C. Lu, L. Yang, W.-P. Huang, and S.-S. Jian, “Improved full-vector finite-difference complex mode solver for optical waveguides of circular symmetry,” J. Lightwave Technol. 26, 1868–1876 (2008).
[Crossref]

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008).
[Crossref]

P.-J. Chiang, C.-L. Wu, C.-H. Teng, C.-S. Yang, and H.-C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron 44, 56–66 (2008).
[Crossref]

M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, “Extremely short-length surface plasmon resonance devices,” Opt. Express 16, 20227–20240 (2008).
[Crossref] [PubMed]

A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett. 33, 1261–1263 (2008).
[Crossref] [PubMed]

2007 (3)

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91, 123112 (2007).
[Crossref]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

2006 (1)

2005 (4)

A. V. Zayats, I. I. Smolyaninovb, and A. A. Maradudinc, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence,” Anal. Chem. 77, 3261–3266 (2005).
[Crossref] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano. Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

W.-C. Liu, “High sensitivity of surface plasmon of weakly-distorted metallic surfaces,” Opt. Express 13, 9766–9773 (2005).
[Crossref] [PubMed]

2004 (1)

A. V. Maslov and C.-Z. Ning, “Modal gain in a semiconductor nanowire laser with anisotropic bandstructure,” IEEE J. Quantum Electron 40, 1389–1397 (2004).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

2000 (1)

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloid. Surface A 171, 115–130 (2000).
[Crossref]

1999 (2)

J. Homola, S. S. Yee, and G. Gauglitzb, “Surface plasmon resonance sensors: review,” Sensors and Actuators B: Chemical 54, 3–15 (1999).
[Crossref]

L. Li, J. Chandezon, G. Granet, and J.-P. Plumey, “Rigorous and efficient grating-analysis method made easy for optical engineers,” Appl. Opt. 38, 304–313 (1999).
[Crossref]

1997 (1)

T. Visser, H. Blok, B. Demeulenaere, and D. Lenstra, “Confinement factors and gain in optical amplifiers,” IEEE J. Quantum Electron 33, 1763–1766 (1997).
[Crossref]

1993 (1)

1990 (1)

T. W. Nee and A. K. Green, “Optical properties of InGaAs lattice-matched to InP,” J. Appl. Phys. 68, 5314–5317 (1990).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Al-Bader, S. J.

Arsenin, A. V.

D. Y. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett. 12, 2459–2463 (2012).
[Crossref] [PubMed]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater 8, 867–871 (2009).
[Crossref] [PubMed]

Babuty, A.

Barcones, B.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Beaudoin, G.

Berini, P.

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2012).
[Crossref]

Bimberg, D.

C.-Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, U. W. Pohl, and D. Bimberg, “Low thermal impedance of substrate-free metal cavity surface-emitting microlasers,” IEEE Photon Technol. Lett. 23, 1031–1033 (2011).
[Crossref]

Blok, H.

T. Visser, H. Blok, B. Demeulenaere, and D. Lenstra, “Confinement factors and gain in optical amplifiers,” IEEE J. Quantum Electron 33, 1763–1766 (1997).
[Crossref]

Bousseksou, A.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102, 101106 (2013).
[Crossref]

D. Costantini, A. Bousseksou, M. Fevrier, B. Dagens, and R. Colombelli, “Loss and gain measurements of tensile-strained quantum well diode lasers for plasmonic devices at telecom wavelengths,” IEEE J. Quantum Electron 48, 73–78 (2012).
[Crossref]

D. Costantini, L. Greusard, A. Bousseksou, R. Rungsawang, T. P. Zhang, S. Callard, J. Decobert, F. Lelarge, G.-H. Duan, Y. De Wilde, and R. Colombelli, “In situ generation of surface plasmon polaritons using a near-infrared laser diode,” Nano Lett. 12, 4693–4697 (2012).
[Crossref] [PubMed]

A. Bousseksou, R. Colombelli, A. Babuty, Y. D. Wilde, Y. Chassagneux, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “A semiconductor laser device for the generation of surface-plasmons upon electrical injection,” Opt. Express 17, 9391–9400 (2009).
[Crossref] [PubMed]

Bussmann, K.

Callard, S.

D. Costantini, L. Greusard, A. Bousseksou, R. Rungsawang, T. P. Zhang, S. Callard, J. Decobert, F. Lelarge, G.-H. Duan, Y. De Wilde, and R. Colombelli, “In situ generation of surface plasmon polaritons using a near-infrared laser diode,” Nano Lett. 12, 4693–4697 (2012).
[Crossref] [PubMed]

Chandezon, J.

Chang, H.-C.

P.-J. Chiang, C.-L. Wu, C.-H. Teng, C.-S. Yang, and H.-C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron 44, 56–66 (2008).
[Crossref]

Chang, S. W.

P.-J. Chiang and S. W. Chang, “Frequency-domain formulation of photonic crystals using sources and gain,” Opt. Express 21, 1972–1985 (2013).
[Crossref] [PubMed]

S. W. Chang, “Full frequency-domain approach to reciprocal microlasers and nanolasers–perspective from Lorentz reciprocity,” Opt. Express 19, 21116–21134 (2011).
[Crossref] [PubMed]

C.-Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, U. W. Pohl, and D. Bimberg, “Low thermal impedance of substrate-free metal cavity surface-emitting microlasers,” IEEE Photon Technol. Lett. 23, 1031–1033 (2011).
[Crossref]

S. W. Chang and S. L. Chuang, “Fundamental formulation for plasmonic nanolasers,” IEEE J. Quantum Electron 45, 1014–1023 (2009).
[Crossref]

Chassagneux, Y.

Cheng, L.

Chiang, P.-J.

P.-J. Chiang and S. W. Chang, “Frequency-domain formulation of photonic crystals using sources and gain,” Opt. Express 21, 1972–1985 (2013).
[Crossref] [PubMed]

P.-J. Chiang and Y.-C. Chiang, “Pseudospectral frequency-domain formulae based on modified perfectly matched layers for calculating both guided and leaky modes,” IEEE Photon. Technol. Lett. 22, 908–910 (2010).
[Crossref]

P.-J. Chiang, C.-L. Wu, C.-H. Teng, C.-S. Yang, and H.-C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron 44, 56–66 (2008).
[Crossref]

Chiang, Y.-C.

P.-J. Chiang and Y.-C. Chiang, “Pseudospectral frequency-domain formulae based on modified perfectly matched layers for calculating both guided and leaky modes,” IEEE Photon. Technol. Lett. 22, 908–910 (2010).
[Crossref]

Choa, F.-S.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Chu, H. S.

Chuang, S. L.

C.-Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, U. W. Pohl, and D. Bimberg, “Low thermal impedance of substrate-free metal cavity surface-emitting microlasers,” IEEE Photon Technol. Lett. 23, 1031–1033 (2011).
[Crossref]

S. W. Chang and S. L. Chuang, “Fundamental formulation for plasmonic nanolasers,” IEEE J. Quantum Electron 45, 1014–1023 (2009).
[Crossref]

Colombelli, R.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102, 101106 (2013).
[Crossref]

D. Costantini, L. Greusard, A. Bousseksou, R. Rungsawang, T. P. Zhang, S. Callard, J. Decobert, F. Lelarge, G.-H. Duan, Y. De Wilde, and R. Colombelli, “In situ generation of surface plasmon polaritons using a near-infrared laser diode,” Nano Lett. 12, 4693–4697 (2012).
[Crossref] [PubMed]

D. Costantini, A. Bousseksou, M. Fevrier, B. Dagens, and R. Colombelli, “Loss and gain measurements of tensile-strained quantum well diode lasers for plasmonic devices at telecom wavelengths,” IEEE J. Quantum Electron 48, 73–78 (2012).
[Crossref]

A. Bousseksou, R. Colombelli, A. Babuty, Y. D. Wilde, Y. Chassagneux, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “A semiconductor laser device for the generation of surface-plasmons upon electrical injection,” Opt. Express 17, 9391–9400 (2009).
[Crossref] [PubMed]

Costantini, D.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102, 101106 (2013).
[Crossref]

D. Costantini, L. Greusard, A. Bousseksou, R. Rungsawang, T. P. Zhang, S. Callard, J. Decobert, F. Lelarge, G.-H. Duan, Y. De Wilde, and R. Colombelli, “In situ generation of surface plasmon polaritons using a near-infrared laser diode,” Nano Lett. 12, 4693–4697 (2012).
[Crossref] [PubMed]

D. Costantini, A. Bousseksou, M. Fevrier, B. Dagens, and R. Colombelli, “Loss and gain measurements of tensile-strained quantum well diode lasers for plasmonic devices at telecom wavelengths,” IEEE J. Quantum Electron 48, 73–78 (2012).
[Crossref]

Dagens, B.

D. Costantini, A. Bousseksou, M. Fevrier, B. Dagens, and R. Colombelli, “Loss and gain measurements of tensile-strained quantum well diode lasers for plasmonic devices at telecom wavelengths,” IEEE J. Quantum Electron 48, 73–78 (2012).
[Crossref]

De Leon, I.

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2012).
[Crossref]

de Vries, T.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

de Waardt, H.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

De Wilde, Y.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102, 101106 (2013).
[Crossref]

D. Costantini, L. Greusard, A. Bousseksou, R. Rungsawang, T. P. Zhang, S. Callard, J. Decobert, F. Lelarge, G.-H. Duan, Y. De Wilde, and R. Colombelli, “In situ generation of surface plasmon polaritons using a near-infrared laser diode,” Nano Lett. 12, 4693–4697 (2012).
[Crossref] [PubMed]

Decobert, J.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102, 101106 (2013).
[Crossref]

D. Costantini, L. Greusard, A. Bousseksou, R. Rungsawang, T. P. Zhang, S. Callard, J. Decobert, F. Lelarge, G.-H. Duan, Y. De Wilde, and R. Colombelli, “In situ generation of surface plasmon polaritons using a near-infrared laser diode,” Nano Lett. 12, 4693–4697 (2012).
[Crossref] [PubMed]

Demeulenaere, B.

T. Visser, H. Blok, B. Demeulenaere, and D. Lenstra, “Confinement factors and gain in optical amplifiers,” IEEE J. Quantum Electron 33, 1763–1766 (1997).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Ding, K.

K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85, 041301 (2012).
[Crossref]

K. Ding and C. Z. Ning, “Metallic subwavelength-cavity semiconductor nanolasers,” Light: Science and Applications 1, e20 (2012).
[Crossref]

Ding, Q.

Duan, G.-H.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102, 101106 (2013).
[Crossref]

D. Costantini, L. Greusard, A. Bousseksou, R. Rungsawang, T. P. Zhang, S. Callard, J. Decobert, F. Lelarge, G.-H. Duan, Y. De Wilde, and R. Colombelli, “In situ generation of surface plasmon polaritons using a near-infrared laser diode,” Nano Lett. 12, 4693–4697 (2012).
[Crossref] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Eijkemans, T. J.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater 8, 867–871 (2009).
[Crossref] [PubMed]

Fainman, Y.

Fedyanin, D. Y.

D. Y. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett. 12, 2459–2463 (2012).
[Crossref] [PubMed]

Feng, L.

Fevrier, M.

D. Costantini, A. Bousseksou, M. Fevrier, B. Dagens, and R. Colombelli, “Loss and gain measurements of tensile-strained quantum well diode lasers for plasmonic devices at telecom wavelengths,” IEEE J. Quantum Electron 48, 73–78 (2012).
[Crossref]

Flynn, R. A.

Gauglitzb, G.

J. Homola, S. S. Yee, and G. Gauglitzb, “Surface plasmon resonance sensors: review,” Sensors and Actuators B: Chemical 54, 3–15 (1999).
[Crossref]

Geluk, E. J.

Germann, T. D.

C.-Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, U. W. Pohl, and D. Bimberg, “Low thermal impedance of substrate-free metal cavity surface-emitting microlasers,” IEEE Photon Technol. Lett. 23, 1031–1033 (2011).
[Crossref]

Gole, A.

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence,” Anal. Chem. 77, 3261–3266 (2005).
[Crossref] [PubMed]

Grady, N. K.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano. Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

Granet, G.

Green, A. K.

T. W. Nee and A. K. Green, “Optical properties of InGaAs lattice-matched to InP,” J. Appl. Phys. 68, 5314–5317 (1990).
[Crossref]

Greffet, J.-J.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102, 101106 (2013).
[Crossref]

Greusard, L.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102, 101106 (2013).
[Crossref]

D. Costantini, L. Greusard, A. Bousseksou, R. Rungsawang, T. P. Zhang, S. Callard, J. Decobert, F. Lelarge, G.-H. Duan, Y. De Wilde, and R. Colombelli, “In situ generation of surface plasmon polaritons using a near-infrared laser diode,” Nano Lett. 12, 4693–4697 (2012).
[Crossref] [PubMed]

Habert, B.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102, 101106 (2013).
[Crossref]

Halas, N. J.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano. Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater 8, 867–871 (2009).
[Crossref] [PubMed]

Hill, M. T.

K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85, 041301 (2012).
[Crossref]

M. J. Marell, B. Smalbrugge, E. J. Geluk, P. J. van Veldhoven, B. Barcones, B. Koopmans, R. Nötzel, M. K. Smit, and M. T. Hill, “Plasmonic distributed feedback lasers at telecommunications wavelengths,” Opt. Express 19, 15109–15118 (2011).
[Crossref] [PubMed]

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref] [PubMed]

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Hollars, C. W.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano. Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitzb, “Surface plasmon resonance sensors: review,” Sensors and Actuators B: Chemical 54, 3–15 (1999).
[Crossref]

Huang, W.-P.

Huser, T. R.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano. Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

Hwang, G. M.

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91, 123112 (2007).
[Crossref]

Imtaar, M.

Jackson, J. B.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano. Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

Jian, S.-S.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater 8, 867–871 (2009).
[Crossref] [PubMed]

Karouta, F.

Kashyap, R.

Kats, A. V.

Kawata, S.

T. Okamoto and S. Kawata, “Dispersion relation and radiation properties of plasmonic crystals with triangular lattices,” Opt. Express 20, 5168–5177 (2012).
[Crossref] [PubMed]

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008).
[Crossref]

Kim, C. S.

Kim, M.

Knoll, W.

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloid. Surface A 171, 115–130 (2000).
[Crossref]

Koh, W. S.

Koopmans, B.

Krasavin, A. V.

D. Y. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett. 12, 2459–2463 (2012).
[Crossref] [PubMed]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Materials Science, vol. 25 (Springer, 1995).
[Crossref]

Kwon, S. H.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Lane, S. M.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano. Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

Lee, Y. H.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Lelarge, F.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102, 101106 (2013).
[Crossref]

D. Costantini, L. Greusard, A. Bousseksou, R. Rungsawang, T. P. Zhang, S. Callard, J. Decobert, F. Lelarge, G.-H. Duan, Y. De Wilde, and R. Colombelli, “In situ generation of surface plasmon polaritons using a near-infrared laser diode,” Nano Lett. 12, 4693–4697 (2012).
[Crossref] [PubMed]

Lenstra, D.

T. Visser, H. Blok, B. Demeulenaere, and D. Lenstra, “Confinement factors and gain in optical amplifiers,” IEEE J. Quantum Electron 33, 1763–1766 (1997).
[Crossref]

Leong, E. S. P.

Li, E. P.

Li, L.

Li, Y.

Liebermann, T.

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloid. Surface A 171, 115–130 (2000).
[Crossref]

Liu, W.-C.

Liu, Z. C.

K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85, 041301 (2012).
[Crossref]

Lomakin, V.

Long, J. P.

Lu, C.-Y.

C.-Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, U. W. Pohl, and D. Bimberg, “Low thermal impedance of substrate-free metal cavity surface-emitting microlasers,” IEEE Photon Technol. Lett. 23, 1031–1033 (2011).
[Crossref]

Lu, Y.-C.

Mäkinen, A. J.

Maradudinc, A. A.

A. V. Zayats, I. I. Smolyaninovb, and A. A. Maradudinc, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

Marell, M.

Marell, M. J.

Marell, M. J. H.

K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85, 041301 (2012).
[Crossref]

Marquier, F.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102, 101106 (2013).
[Crossref]

Maslov, A. V.

A. V. Maslov and C.-Z. Ning, “Modal gain in a semiconductor nanowire laser with anisotropic bandstructure,” IEEE J. Quantum Electron 40, 1389–1397 (2004).
[Crossref]

Mei, T.

Meyer, J. R.

Mizrahi, A.

Murphy, C. J.

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence,” Anal. Chem. 77, 3261–3266 (2005).
[Crossref] [PubMed]

Nee, T. W.

T. W. Nee and A. K. Green, “Optical properties of InGaAs lattice-matched to InP,” J. Appl. Phys. 68, 5314–5317 (1990).
[Crossref]

Nemova, G.

Nesterov, M. L.

Neviere, M.

M. Neviere and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design, Optical Science and Engineering (CRC Press, 2002).

Nezhad, M. P.

Ning, C. Z.

K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85, 041301 (2012).
[Crossref]

K. Ding and C. Z. Ning, “Metallic subwavelength-cavity semiconductor nanolasers,” Light: Science and Applications 1, e20 (2012).
[Crossref]

Ning, C.-Z.

Nöetzel, R.

K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85, 041301 (2012).
[Crossref]

Nordlander, P.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano. Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

Notzel, R.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Nötzel, R.

Oei, Y. S.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Oei, Y.-S.

Okamoto, T.

T. Okamoto and S. Kawata, “Dispersion relation and radiation properties of plasmonic crystals with triangular lattices,” Opt. Express 20, 5168–5177 (2012).
[Crossref] [PubMed]

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008).
[Crossref]

Orendorff, C. J.

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence,” Anal. Chem. 77, 3261–3266 (2005).
[Crossref] [PubMed]

Oubre, C.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano. Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

Pang, L.

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91, 123112 (2007).
[Crossref]

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater 8, 867–871 (2009).
[Crossref] [PubMed]

Patriarche, G.

Plumey, J.-P.

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater 8, 867–871 (2009).
[Crossref] [PubMed]

Pohl, U. W.

C.-Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, U. W. Pohl, and D. Bimberg, “Low thermal impedance of substrate-free metal cavity surface-emitting microlasers,” IEEE Photon Technol. Lett. 23, 1031–1033 (2011).
[Crossref]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater 8, 867–871 (2009).
[Crossref] [PubMed]

Popov, E.

M. Neviere and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design, Optical Science and Engineering (CRC Press, 2002).

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics, vol. 111 (Springer, 1988).

Rungsawang, R.

D. Costantini, L. Greusard, A. Bousseksou, R. Rungsawang, T. P. Zhang, S. Callard, J. Decobert, F. Lelarge, G.-H. Duan, Y. De Wilde, and R. Colombelli, “In situ generation of surface plasmon polaritons using a near-infrared laser diode,” Nano Lett. 12, 4693–4697 (2012).
[Crossref] [PubMed]

Sagnes, I.

Sau, T. K.

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence,” Anal. Chem. 77, 3261–3266 (2005).
[Crossref] [PubMed]

Simonen, J.

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008).
[Crossref]

Sirtori, C.

Slutsky, B.

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91, 123112 (2007).
[Crossref]

Slutsky, B. A.

Smalbrugge, B.

Smit, M. K.

Smolyaninovb, I. I.

A. V. Zayats, I. I. Smolyaninovb, and A. A. Maradudinc, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

Stockman, M. I.

M. I. Stockman, Electromagnetic Theory of SERS, Surface-Enhanced Raman Scattering, Topics in Applied Physics, vol. 103 (SpringerBerlin, 2006). pp. 47–65.

Sun, M.

Talley, C. E.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano. Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

Teng, C.-H.

P.-J. Chiang, C.-L. Wu, C.-H. Teng, C.-S. Yang, and H.-C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron 44, 56–66 (2008).
[Crossref]

Teng, J.

Turitsyn, S. K.

Turkiewicz, J. P.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

van Otten, F. W. M.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

van Veldhoven, P. J.

K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85, 041301 (2012).
[Crossref]

M. J. Marell, B. Smalbrugge, E. J. Geluk, P. J. van Veldhoven, B. Barcones, B. Koopmans, R. Nötzel, M. K. Smit, and M. T. Hill, “Plasmonic distributed feedback lasers at telecommunications wavelengths,” Opt. Express 19, 15109–15118 (2011).
[Crossref] [PubMed]

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref] [PubMed]

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Visser, T.

T. Visser, H. Blok, B. Demeulenaere, and D. Lenstra, “Confinement factors and gain in optical amplifiers,” IEEE J. Quantum Electron 33, 1763–1766 (1997).
[Crossref]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Materials Science, vol. 25 (Springer, 1995).
[Crossref]

Vurgaftman, I.

Wilde, Y. D.

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Wu, C.-L.

P.-J. Chiang, C.-L. Wu, C.-H. Teng, C.-S. Yang, and H.-C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron 44, 56–66 (2008).
[Crossref]

Wu, L.

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater 8, 867–871 (2009).
[Crossref] [PubMed]

Yang, C.-S.

P.-J. Chiang, C.-L. Wu, C.-H. Teng, C.-S. Yang, and H.-C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron 44, 56–66 (2008).
[Crossref]

Yang, L.

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitzb, “Surface plasmon resonance sensors: review,” Sensors and Actuators B: Chemical 54, 3–15 (1999).
[Crossref]

Yin, L. J.

K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85, 041301 (2012).
[Crossref]

Zayats, A. V.

D. Y. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett. 12, 2459–2463 (2012).
[Crossref] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater 8, 867–871 (2009).
[Crossref] [PubMed]

A. V. Zayats, I. I. Smolyaninovb, and A. A. Maradudinc, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

Zhang, D. H.

Zhang, H.

Zhang, T. P.

D. Costantini, L. Greusard, A. Bousseksou, R. Rungsawang, T. P. Zhang, S. Callard, J. Decobert, F. Lelarge, G.-H. Duan, Y. De Wilde, and R. Colombelli, “In situ generation of surface plasmon polaritons using a near-infrared laser diode,” Nano Lett. 12, 4693–4697 (2012).
[Crossref] [PubMed]

Zhu, N.

Zhu, Y.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref] [PubMed]

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Anal. Chem. (1)

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence,” Anal. Chem. 77, 3261–3266 (2005).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102, 101106 (2013).
[Crossref]

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91, 123112 (2007).
[Crossref]

Colloid. Surface A (1)

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloid. Surface A 171, 115–130 (2000).
[Crossref]

IEEE J. Quantum Electron (5)

D. Costantini, A. Bousseksou, M. Fevrier, B. Dagens, and R. Colombelli, “Loss and gain measurements of tensile-strained quantum well diode lasers for plasmonic devices at telecom wavelengths,” IEEE J. Quantum Electron 48, 73–78 (2012).
[Crossref]

P.-J. Chiang, C.-L. Wu, C.-H. Teng, C.-S. Yang, and H.-C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron 44, 56–66 (2008).
[Crossref]

T. Visser, H. Blok, B. Demeulenaere, and D. Lenstra, “Confinement factors and gain in optical amplifiers,” IEEE J. Quantum Electron 33, 1763–1766 (1997).
[Crossref]

A. V. Maslov and C.-Z. Ning, “Modal gain in a semiconductor nanowire laser with anisotropic bandstructure,” IEEE J. Quantum Electron 40, 1389–1397 (2004).
[Crossref]

S. W. Chang and S. L. Chuang, “Fundamental formulation for plasmonic nanolasers,” IEEE J. Quantum Electron 45, 1014–1023 (2009).
[Crossref]

IEEE Photon Technol. Lett. (1)

C.-Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, U. W. Pohl, and D. Bimberg, “Low thermal impedance of substrate-free metal cavity surface-emitting microlasers,” IEEE Photon Technol. Lett. 23, 1031–1033 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (1)

P.-J. Chiang and Y.-C. Chiang, “Pseudospectral frequency-domain formulae based on modified perfectly matched layers for calculating both guided and leaky modes,” IEEE Photon. Technol. Lett. 22, 908–910 (2010).
[Crossref]

J. Appl. Phys. (1)

T. W. Nee and A. K. Green, “Optical properties of InGaAs lattice-matched to InP,” J. Appl. Phys. 68, 5314–5317 (1990).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Light: Science and Applications (1)

K. Ding and C. Z. Ning, “Metallic subwavelength-cavity semiconductor nanolasers,” Light: Science and Applications 1, e20 (2012).
[Crossref]

Nano Lett. (2)

D. Y. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett. 12, 2459–2463 (2012).
[Crossref] [PubMed]

D. Costantini, L. Greusard, A. Bousseksou, R. Rungsawang, T. P. Zhang, S. Callard, J. Decobert, F. Lelarge, G.-H. Duan, Y. De Wilde, and R. Colombelli, “In situ generation of surface plasmon polaritons using a near-infrared laser diode,” Nano Lett. 12, 4693–4697 (2012).
[Crossref] [PubMed]

Nano. Lett. (1)

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano. Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

Nat. Mater (1)

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater 8, 867–871 (2009).
[Crossref] [PubMed]

Nat. Photonics (2)

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2012).
[Crossref]

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (11)

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref] [PubMed]

M. J. Marell, B. Smalbrugge, E. J. Geluk, P. J. van Veldhoven, B. Barcones, B. Koopmans, R. Nötzel, M. K. Smit, and M. T. Hill, “Plasmonic distributed feedback lasers at telecommunications wavelengths,” Opt. Express 19, 15109–15118 (2011).
[Crossref] [PubMed]

A. Bousseksou, R. Colombelli, A. Babuty, Y. D. Wilde, Y. Chassagneux, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “A semiconductor laser device for the generation of surface-plasmons upon electrical injection,” Opt. Express 17, 9391–9400 (2009).
[Crossref] [PubMed]

R. A. Flynn, C. S. Kim, I. Vurgaftman, M. Kim, J. R. Meyer, A. J. Mäkinen, K. Bussmann, L. Cheng, F.-S. Choa, and J. P. Long, “A room-temperature semiconductor spaser operating near 1.5 μm,” Opt. Express 19, 8954–8961 (2011).
[Crossref] [PubMed]

Y. Li, H. Zhang, N. Zhu, T. Mei, D. H. Zhang, and J. Teng, “Short-range surface plasmon propagation supported by stimulated amplification using electrical injection,” Opt. Express 19, 22107–22112 (2011).
[Crossref] [PubMed]

P.-J. Chiang and S. W. Chang, “Frequency-domain formulation of photonic crystals using sources and gain,” Opt. Express 21, 1972–1985 (2013).
[Crossref] [PubMed]

S. W. Chang, “Full frequency-domain approach to reciprocal microlasers and nanolasers–perspective from Lorentz reciprocity,” Opt. Express 19, 21116–21134 (2011).
[Crossref] [PubMed]

T. Okamoto and S. Kawata, “Dispersion relation and radiation properties of plasmonic crystals with triangular lattices,” Opt. Express 20, 5168–5177 (2012).
[Crossref] [PubMed]

L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18, 14395–14400 (2010).
[Crossref] [PubMed]

W.-C. Liu, “High sensitivity of surface plasmon of weakly-distorted metallic surfaces,” Opt. Express 13, 9766–9773 (2005).
[Crossref] [PubMed]

M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, “Extremely short-length surface plasmon resonance devices,” Opt. Express 16, 20227–20240 (2008).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninovb, and A. A. Maradudinc, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

Phys. Rev. B (3)

K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85, 041301 (2012).
[Crossref]

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Sensors and Actuators B: Chemical (1)

J. Homola, S. S. Yee, and G. Gauglitzb, “Surface plasmon resonance sensors: review,” Sensors and Actuators B: Chemical 54, 3–15 (1999).
[Crossref]

Other (5)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics, vol. 111 (Springer, 1988).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Materials Science, vol. 25 (Springer, 1995).
[Crossref]

M. I. Stockman, Electromagnetic Theory of SERS, Surface-Enhanced Raman Scattering, Topics in Applied Physics, vol. 103 (SpringerBerlin, 2006). pp. 47–65.

M. Neviere and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design, Optical Science and Engineering (CRC Press, 2002).

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) The schematic diagram of a unit cell in the laser cavity. The active region, dielectric buffer, WG cladding, and two metal regions are denoted as Ωa, Ωb, Ωc, and Ωm,1(2), respectively. A window (Ωw, dashed-line region) at the center of Ag covering will be opened to let out the surface field. (b) The limiting case at d3 = 0. The metal is approximated as a PEC. The electric fields of TE modes vanish on the nodal plane. (c) The corresponding TE modes in a symmetric WG twice wider in the core. They are odd TE modes of the symmetric WG and all have finite cutoff frequencies.
Fig. 2
Fig. 2 Normalized magnitude profiles of the fundamental TM (|Ey(y)|) and TE (|Ez(y)|) modes at h̄ω = 0.8 eV. The TM mode peaks at the metal-semiconductor interface.
Fig. 3
Fig. 3 (a) Dispersion relations of the fundamental TM and TE modes in the metal-semiconductor slab WG. The results from typical WG calculations and proposed GE approach agree well. The TE dispersion is close to the light line of InP (blue dashed line). (b) The transparency gains gtr,n(ω) as a function of h̄ω for the same two modes. They match well with the curves h̄ω n,k x versus g′th,n,k x from the GE approach. The material gain at N = 4 × 1018 cm−3 is shown in black squares.
Fig. 4
Fig. 4 (a) The effective indices neff,n(ω) of the fundamental TM and TE modes versus d3 at h̄ω = 0.95 eV. The blue dashed line is the refractive index nc(ω) = 3.202 of InP at the same photon energy. (b) The transparency gains gtr,n(ω) of the SPP-like mode versus d3 at h̄ω = 0.8, 0.87, and 0.95 eV. The material gain at h̄ω = 0.8 eV and N = 4 × 1018 cm−3 is shown as the blue dashed line.
Fig. 5
Fig. 5 The normalized magnitude distributions of |Ey(y)| and |Dy(y)| for the SPP-like mode in the presence of a dielectric buffer layer whose thickness d2 is 0.04 μm [(a) and (b)] and 0.07 μm [(c) and (d)], respectively. The photon energy h̄ω is 0.8 eV. The thick dielectric layer redistribute fields into the active region and lower WG cladding.
Fig. 6
Fig. 6 (a) The transparency gains gtr,n(ω) of the SSP-like modes at h̄ω = 0.8 eV with buffer thicknesses d2 = 0.04, 0.05, and 0.06 μm. The larger d2 makes the transparency gain lower. (b) The transparency gain spectra at d2 = 0.04, 0.05, and 0.06 μm. The cladding thickness d3 is 0.1 μm. The gain spectrum at N = 4×1018 cm−3 is shown in black squares. Considerable gain margins are present between the transparency gains and material one.
Fig. 7
Fig. 7 (a) The dispersion relations h̄ω n,k x of the three SPP-like modes at W1 = 0.7Λ and d2 = 0.04, 0.05, and 0.06 μm. The three upper SPP branches become leaky modes once they cross the light line of InP (cyan dotted line). The red region marks the gain window of the lower SPP mode at d2 = 0.06 μm. (b) Comparisons between the material gain at N = 4 × 1018 cm−3 (black squares) and threshold gains g′th,n,k x of the three lower SPP branches in (a). The gain margins are smaller than their counterparts in Fig. 6(b)
Fig. 8
Fig. 8 (a) The dispersion relations h̄ω n,k x at d2 = 0.06 μm for W1 = 0.5, 0.55, 0.6, and 0.7Λ. The smaller width W1 makes dielectric buffers narrower and red shifts the dispersion relations. The light line of InP is shown as the cyan dotted line. (b) The threshold gains g′th,n,k x of the lower SPP branches corresponding to the four widths W1 in (a). The wider Au contacts at the smaller W1 increase the threshold gain. Both the gain window and margin decrease accordingly. The material gain at N = 4 × 1018 cm−3 is shown in black squares.
Fig. 9
Fig. 9 Normalized field distributions |Ey( ρ )| of (a) the lower SPP branch with the full Ag covering at the bandedge, and (b) the counterpart with a window which has a small width W2 = 0.1Λ ≈ 23.4 nm on the Ag covering. The thickness d2 and width W1 are 0.06 μm and 0.7Λ, respectively. With the window, the surface field can reach the ambient environment for SW-enhanced applications of captured molecules and nanostructures.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

× × f n , k x ( ρ , ω ) ( ω c ) 2 ε r ( ρ , ω ) f n , k x ( ρ , ω ) = i ω μ 0 j s , n , k x ( ρ , ω ) ,
j s , n , k x ( ρ , ω ) = i ω ε 0 Δ ε r , n , k x ( ω ) U ( ρ ) f n , k x ( ρ , ω ) ,
f n , k x ( ρ + Λ x ^ , ω ) = e i k x Λ f n , k x ( ρ , ω ) ,
( 2 x 2 + 2 y 2 ) f n , k x ( ρ , ω ) ( ω c ) 2 ε u ( ω ) f n , k x ( ρ , ω ) = δ u a ( ω c ) 2 Δ ε r , n , k x ( ω ) f n , k x ( ρ , ω ) .
g th , n , k x = 2 ( ω c ) Im [ ε a ( ω ) + Δ ε r , n , k x ( ω ) ε a ( ω ) ] | ω = ω n , k x .
g th , n , k x ( ω c ) Im [ Δ ε r , n , k x ( ω ) ] Re [ ε a ( ω ) ] | ω = ω n , k x .
g tr , n ( ω ) α M , n ( ω ) Γ wg , n ( ω ) , Γ wg , n ( ω ) = n a ( ω ) 2 η 0 Ω a d y | E n ( y , ω ) | 2 d y 1 2 Re [ E n ( y , ω ) × H n * ( y , ω ) ] x ^ ,

Metrics