Abstract

Arrayed hexagonal metal nanostructures are used to maximize the local current density while providing effective thermal management at the nanoscale, thereby allowing for increased emission from photoconductive terahertz (THz) sources. The THz emission field amplitude was increased by 60% above that of a commercial THz photoconductive antenna, even though the hexagonal nanostructured device had 75% of the bias voltage. The arrayed hexagonal outperforms our previously investigated strip array nanoplasmonic structure by providing stronger localization of the current density near the metal surface with an operating bandwidth of 2.6 THz. This approach is promising to achieve efficient THz sources.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz photoconductive antenna with metal nanoislands

Sang-Gil Park, Yongje Choi, Young-Jae Oh, and Ki-Hun Jeong
Opt. Express 20(23) 25530-25535 (2012)

Computational modeling of plasmonic thin-film terahertz photoconductive antennas

Nathan Burford and Magda El-Shenawee
J. Opt. Soc. Am. B 33(4) 748-759 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13(11), 2424–2436 (1996).
    [Crossref]
  2. D. Auston, K. Cheung, J. Valdmanis, and D. Kleinman, “Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
    [Crossref]
  3. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995).
    [Crossref] [PubMed]
  4. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
    [Crossref] [PubMed]
  5. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
    [Crossref]
  6. R. Kasalynas, Venckevicius, and G. Valusis, “Continuous wave spectroscopic terahertz imaging with InGaAs bow-tie diodes at room temperature,” IEEE Sens. J. 13(1), 50–54 (2013).
    [Crossref]
  7. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
    [Crossref] [PubMed]
  8. D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
    [Crossref]
  9. K. Serita, S. Mizuno, H. Murakami, I. Kawayama, Y. Takahashi, M. Yoshimura, Y. Mori, J. Darmo, and M. Tonouchi, “Scanning laser terahertz near-field imaging system,” Opt. Express 20(12), 12959–12965 (2012).
    [Crossref] [PubMed]
  10. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
    [Crossref]
  11. C. Yu, S. Fan, Y. Sun, and E. Pickwell-Macpherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2(1), 33–45 (2012).
    [PubMed]
  12. S. L. Dexheimer, Terahertz Spectroscopy: Principles and Applications (CRC, 2008).
  13. R. Faulks, S. Rihani, H. E. Beere, M. J. Evans, D. A. Ritchie, and M. Pepper, “Pulsed terahertz time domain spectroscopy of vertically structured photoconductive antennas,” Appl. Phys. Lett. 96(8), 081106 (2010).
    [Crossref]
  14. B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).
  15. S. Yu, B. J. Drouin, and J. C. Pearson, “Terahertz Spectroscopy of the Bending Vibrations of Acetylene12c2h2,” Astrophys. J. 705(1), 786–790 (2009).
    [Crossref]
  16. M. Walther, D. Cooke, C. Sherstan, M. Hajar, M. Freeman, and F. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
    [Crossref]
  17. B. Heshmat, M. Masnadi-Shirazi, R. B. Lewis, J. Zhang, T. Tiedje, R. Gordon, and T. E. Darcie, “Enhanced Terahertz Bandwidth and Power from GaAsBi-based Sources,” Adv. Opt. Mater. 1(10), 714–719 (2013).
    [Crossref]
  18. B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
    [Crossref] [PubMed]
  19. S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
    [Crossref] [PubMed]
  20. D. M. Mittleman, “Frontiers in terahertz sources and plasmonics,” Nat. Photonics 7(9), 666–669 (2013).
    [Crossref]
  21. C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
    [Crossref]
  22. S. Jafarlou, M. Neshat, and S. Safavi-Naeini, “A hybrid analysis method for plasmonic enhanced terahertz photomixer sources,” Opt. Express 21(9), 11115–11124 (2013).
    [Crossref] [PubMed]
  23. V. Pačebutas, K. Bertulis, L. Dapkus, G. Aleksejenko, A. Krotkus, K. M. Yu, and W. Walukiewicz, “Characterization of low-temperature molecular-beam-epitaxy grown GaBiAs layers,” Semicond. Sci. Technol. 22(7), 819–823 (2007).
    [Crossref]
  24. V. Pačebutas, K. Bertulis, A. Bičiūnas, and A. Krotkus, “Low-temperature MBE-grown GaBiAs layers for terahertz optoelectronic applications,” Phys. Status Solidi 6(12), 2649–2651 (2009).
    [Crossref]
  25. C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500,” Appl. Phys. Lett. 85(21), 4965 (2004).
    [Crossref]
  26. M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
    [Crossref]
  27. J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005).
    [Crossref]
  28. D. Kostakis, Saeedkia, and M. Missous, “Terahertz Generation and Detection Using Low Temperature Grown InGaAs-InAlAs Photoconductive Antennas at 1.55,” IEEE Trans. THz. Sci. Technol. 2(6), 617–622 (2012).
  29. M. Mittendorff, M. Xu, R. J. Dietz, H. Künzel, B. Sartorius, H. Schneider, M. Helm, and S. Winnerl, “Large area photoconductive terahertz emitter for 1.55 μm excitation based on an InGaAs heterostructure,” Nanotechnology 24(21), 214007 (2013).
    [Crossref] [PubMed]
  30. K. Moon, D. W. Park, I. M. Lee, N. Kim, H. Ko, S. P. Han, D. Lee, J. W. Park, S. K. Noh, and K. H. Park, “Low-temperature-grown InGaAs terahertz photomixer embedded in InP thermal spreading layer regrown by metalorganic chemical vapor deposition,” Opt. Lett. 38(24), 5466–5469 (2013).
    [Crossref] [PubMed]
  31. S. Rihani, R. Faulks, H. E. Beere, I. Farrer, M. Evans, D. A. Ritchie, and M. Pepper, “Enhanced terahertz emission from a multilayered low temperature grown GaAs structure,” Appl. Phys. Lett. 96(9), 091101 (2010).
    [Crossref]
  32. M. Tani, S. Matsuura, K. Sakai, and S.-i. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36(30), 7853–7859 (1997).
    [Crossref] [PubMed]
  33. Y. Lee, Principles of Terahertz Science and Technology (Springer, 2009).
  34. S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
    [Crossref]
  35. J. Y. Suen, W. Li, Z. D. Taylor, and E. R. Brown, “Characterization and modeling of a terahertz photoconductive switch,” Appl. Phys. Lett. 96(14), 141103 (2010).
    [Crossref]
  36. L. Tian and W. Shi, “Analysis of operation mechanism of semi-insulating GaAs photoconductive semiconductor switches,” J. Appl. Phys. 103(12), 124512 (2008).
    [Crossref]
  37. P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, and V. I. Balykin, “Giant optical nonlinearity of a single plasmonic nanostructure,” Opt. Express 21(12), 13896–13905 (2013).
    [Crossref] [PubMed]
  38. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
    [Crossref] [PubMed]
  39. H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
    [Crossref] [PubMed]
  40. A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
    [Crossref]
  41. T. Liu, M. Tani, M. Nakajima, M. Hangyo, and C. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
    [Crossref]
  42. BATOP instruction manual, “Instruction manual and data sheet PCA-40-05-10-800-x”, http://www.batop.com/products/terahertz/photoconductive-antenna/photoconductive-antenna-800nm.html .
  43. T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
    [Crossref] [PubMed]
  44. V. Apostolopoulos and M. E. Barnes, “THz emitters based on the photo-Dember effect,” J. Phys. D Appl. Phys. 47(37), 374002 (2014).
    [Crossref]
  45. M. van Exter and D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microw. Theory Tech. 38(11), 1684–1691 (1990).
    [Crossref]
  46. E. Castro-Camus, J. Lloyd-Hughes, and M. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71(19), 195301 (2005).
    [Crossref]
  47. K. Sala, G. Kenney-Wallace, and G. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. 16(9), 990–996 (1980).
    [Crossref]
  48. C. A. Balanis, Antenna Theory Analysis and Design (John Wiley & Sons, Canada, 2005).
  49. J. Krause, M. Wagner, S. Winnerl, M. Helm, and D. Stehr, “Tunable narrowband THz pulse generation in scalable large area photoconductive antennas,” Opt. Express 19(20), 19114–19121 (2011).
    [Crossref] [PubMed]
  50. A. Krotkus, “Semiconductors for terahertz photonics applications,” J. Phys. D Appl. Phys. 43(27), 273001 (2010).
    [Crossref]
  51. C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
    [Crossref]

2014 (4)

C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

V. Apostolopoulos and M. E. Barnes, “THz emitters based on the photo-Dember effect,” J. Phys. D Appl. Phys. 47(37), 374002 (2014).
[Crossref]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

2013 (8)

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
[Crossref] [PubMed]

P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, and V. I. Balykin, “Giant optical nonlinearity of a single plasmonic nanostructure,” Opt. Express 21(12), 13896–13905 (2013).
[Crossref] [PubMed]

S. Jafarlou, M. Neshat, and S. Safavi-Naeini, “A hybrid analysis method for plasmonic enhanced terahertz photomixer sources,” Opt. Express 21(9), 11115–11124 (2013).
[Crossref] [PubMed]

M. Mittendorff, M. Xu, R. J. Dietz, H. Künzel, B. Sartorius, H. Schneider, M. Helm, and S. Winnerl, “Large area photoconductive terahertz emitter for 1.55 μm excitation based on an InGaAs heterostructure,” Nanotechnology 24(21), 214007 (2013).
[Crossref] [PubMed]

K. Moon, D. W. Park, I. M. Lee, N. Kim, H. Ko, S. P. Han, D. Lee, J. W. Park, S. K. Noh, and K. H. Park, “Low-temperature-grown InGaAs terahertz photomixer embedded in InP thermal spreading layer regrown by metalorganic chemical vapor deposition,” Opt. Lett. 38(24), 5466–5469 (2013).
[Crossref] [PubMed]

R. Kasalynas, Venckevicius, and G. Valusis, “Continuous wave spectroscopic terahertz imaging with InGaAs bow-tie diodes at room temperature,” IEEE Sens. J. 13(1), 50–54 (2013).
[Crossref]

B. Heshmat, M. Masnadi-Shirazi, R. B. Lewis, J. Zhang, T. Tiedje, R. Gordon, and T. E. Darcie, “Enhanced Terahertz Bandwidth and Power from GaAsBi-based Sources,” Adv. Opt. Mater. 1(10), 714–719 (2013).
[Crossref]

D. M. Mittleman, “Frontiers in terahertz sources and plasmonics,” Nat. Photonics 7(9), 666–669 (2013).
[Crossref]

2012 (5)

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
[Crossref] [PubMed]

C. Yu, S. Fan, Y. Sun, and E. Pickwell-Macpherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2(1), 33–45 (2012).
[PubMed]

K. Serita, S. Mizuno, H. Murakami, I. Kawayama, Y. Takahashi, M. Yoshimura, Y. Mori, J. Darmo, and M. Tonouchi, “Scanning laser terahertz near-field imaging system,” Opt. Express 20(12), 12959–12965 (2012).
[Crossref] [PubMed]

D. Kostakis, Saeedkia, and M. Missous, “Terahertz Generation and Detection Using Low Temperature Grown InGaAs-InAlAs Photoconductive Antennas at 1.55,” IEEE Trans. THz. Sci. Technol. 2(6), 617–622 (2012).

2011 (4)

J. Krause, M. Wagner, S. Winnerl, M. Helm, and D. Stehr, “Tunable narrowband THz pulse generation in scalable large area photoconductive antennas,” Opt. Express 19(20), 19114–19121 (2011).
[Crossref] [PubMed]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[Crossref]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref] [PubMed]

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

2010 (5)

J. Y. Suen, W. Li, Z. D. Taylor, and E. R. Brown, “Characterization and modeling of a terahertz photoconductive switch,” Appl. Phys. Lett. 96(14), 141103 (2010).
[Crossref]

S. Rihani, R. Faulks, H. E. Beere, I. Farrer, M. Evans, D. A. Ritchie, and M. Pepper, “Enhanced terahertz emission from a multilayered low temperature grown GaAs structure,” Appl. Phys. Lett. 96(9), 091101 (2010).
[Crossref]

R. Faulks, S. Rihani, H. E. Beere, M. J. Evans, D. A. Ritchie, and M. Pepper, “Pulsed terahertz time domain spectroscopy of vertically structured photoconductive antennas,” Appl. Phys. Lett. 96(8), 081106 (2010).
[Crossref]

C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
[Crossref] [PubMed]

A. Krotkus, “Semiconductors for terahertz photonics applications,” J. Phys. D Appl. Phys. 43(27), 273001 (2010).
[Crossref]

2009 (3)

S. Yu, B. J. Drouin, and J. C. Pearson, “Terahertz Spectroscopy of the Bending Vibrations of Acetylene12c2h2,” Astrophys. J. 705(1), 786–790 (2009).
[Crossref]

V. Pačebutas, K. Bertulis, A. Bičiūnas, and A. Krotkus, “Low-temperature MBE-grown GaBiAs layers for terahertz optoelectronic applications,” Phys. Status Solidi 6(12), 2649–2651 (2009).
[Crossref]

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref] [PubMed]

2008 (1)

L. Tian and W. Shi, “Analysis of operation mechanism of semi-insulating GaAs photoconductive semiconductor switches,” J. Appl. Phys. 103(12), 124512 (2008).
[Crossref]

2007 (3)

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[Crossref]

V. Pačebutas, K. Bertulis, L. Dapkus, G. Aleksejenko, A. Krotkus, K. M. Yu, and W. Walukiewicz, “Characterization of low-temperature molecular-beam-epitaxy grown GaBiAs layers,” Semicond. Sci. Technol. 22(7), 819–823 (2007).
[Crossref]

M. Walther, D. Cooke, C. Sherstan, M. Hajar, M. Freeman, and F. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
[Crossref]

2005 (3)

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, and M. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71(19), 195301 (2005).
[Crossref]

2004 (1)

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500,” Appl. Phys. Lett. 85(21), 4965 (2004).
[Crossref]

2003 (2)

T. Liu, M. Tani, M. Nakajima, M. Hangyo, and C. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
[Crossref] [PubMed]

2002 (1)

B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).

1999 (1)

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[Crossref]

1997 (1)

1996 (1)

1995 (1)

1990 (1)

M. van Exter and D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microw. Theory Tech. 38(11), 1684–1691 (1990).
[Crossref]

1984 (1)

D. Auston, K. Cheung, J. Valdmanis, and D. Kleinman, “Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
[Crossref]

1980 (1)

K. Sala, G. Kenney-Wallace, and G. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. 16(9), 990–996 (1980).
[Crossref]

Afanasiev, A. E.

Ahn, J.

S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
[Crossref] [PubMed]

Aleksejenko, G.

V. Pačebutas, K. Bertulis, L. Dapkus, G. Aleksejenko, A. Krotkus, K. M. Yu, and W. Walukiewicz, “Characterization of low-temperature molecular-beam-epitaxy grown GaBiAs layers,” Semicond. Sci. Technol. 22(7), 819–823 (2007).
[Crossref]

Aouani, H.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref] [PubMed]

Apostolopoulos, V.

V. Apostolopoulos and M. E. Barnes, “THz emitters based on the photo-Dember effect,” J. Phys. D Appl. Phys. 47(37), 374002 (2014).
[Crossref]

Auston, D.

D. Auston, K. Cheung, J. Valdmanis, and D. Kleinman, “Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
[Crossref]

Awad, M.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[Crossref]

Baker, C.

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500,” Appl. Phys. Lett. 85(21), 4965 (2004).
[Crossref]

Balykin, V. I.

Baraniuk, R. G.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[Crossref]

Barnes, M. E.

V. Apostolopoulos and M. E. Barnes, “THz emitters based on the photo-Dember effect,” J. Phys. D Appl. Phys. 47(37), 374002 (2014).
[Crossref]

Battiato, M.

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
[Crossref] [PubMed]

Baturin, A. S.

Beere, H. E.

S. Rihani, R. Faulks, H. E. Beere, I. Farrer, M. Evans, D. A. Ritchie, and M. Pepper, “Enhanced terahertz emission from a multilayered low temperature grown GaAs structure,” Appl. Phys. Lett. 96(9), 091101 (2010).
[Crossref]

R. Faulks, S. Rihani, H. E. Beere, M. J. Evans, D. A. Ritchie, and M. Pepper, “Pulsed terahertz time domain spectroscopy of vertically structured photoconductive antennas,” Appl. Phys. Lett. 96(8), 081106 (2010).
[Crossref]

Benker, N.

J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005).
[Crossref]

Berry, C. W.

C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

Bertulis, K.

V. Pačebutas, K. Bertulis, A. Bičiūnas, and A. Krotkus, “Low-temperature MBE-grown GaBiAs layers for terahertz optoelectronic applications,” Phys. Status Solidi 6(12), 2649–2651 (2009).
[Crossref]

V. Pačebutas, K. Bertulis, L. Dapkus, G. Aleksejenko, A. Krotkus, K. M. Yu, and W. Walukiewicz, “Characterization of low-temperature molecular-beam-epitaxy grown GaBiAs layers,” Semicond. Sci. Technol. 22(7), 819–823 (2007).
[Crossref]

Biciunas, A.

V. Pačebutas, K. Bertulis, A. Bičiūnas, and A. Krotkus, “Low-temperature MBE-grown GaBiAs layers for terahertz optoelectronic applications,” Phys. Status Solidi 6(12), 2649–2651 (2009).
[Crossref]

Blair, S.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref] [PubMed]

Blügel, S.

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
[Crossref] [PubMed]

Bradley, I. V.

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500,” Appl. Phys. Lett. 85(21), 4965 (2004).
[Crossref]

Brown, E. R.

J. Y. Suen, W. Li, Z. D. Taylor, and E. R. Brown, “Characterization and modeling of a terahertz photoconductive switch,” Appl. Phys. Lett. 96(14), 141103 (2010).
[Crossref]

Burton Lewis, R.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Castro-Camus, E.

E. Castro-Camus, J. Lloyd-Hughes, and M. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71(19), 195301 (2005).
[Crossref]

Cheung, K.

D. Auston, K. Cheung, J. Valdmanis, and D. Kleinman, “Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
[Crossref]

Cole, B. E.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Cooke, D.

M. Walther, D. Cooke, C. Sherstan, M. Hajar, M. Freeman, and F. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
[Crossref]

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[Crossref]

Crozier, K. B.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref] [PubMed]

Dapkus, L.

V. Pačebutas, K. Bertulis, L. Dapkus, G. Aleksejenko, A. Krotkus, K. M. Yu, and W. Walukiewicz, “Characterization of low-temperature molecular-beam-epitaxy grown GaBiAs layers,” Semicond. Sci. Technol. 22(7), 819–823 (2007).
[Crossref]

Darcie, T. E.

B. Heshmat, M. Masnadi-Shirazi, R. B. Lewis, J. Zhang, T. Tiedje, R. Gordon, and T. E. Darcie, “Enhanced Terahertz Bandwidth and Power from GaAsBi-based Sources,” Adv. Opt. Mater. 1(10), 714–719 (2013).
[Crossref]

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Darmo, J.

Devaux, E.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref] [PubMed]

Dietz, R. J.

M. Mittendorff, M. Xu, R. J. Dietz, H. Künzel, B. Sartorius, H. Schneider, M. Helm, and S. Winnerl, “Large area photoconductive terahertz emitter for 1.55 μm excitation based on an InGaAs heterostructure,” Nanotechnology 24(21), 214007 (2013).
[Crossref] [PubMed]

Döhler, G. H.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Drouin, B. J.

S. Yu, B. J. Drouin, and J. C. Pearson, “Terahertz Spectroscopy of the Bending Vibrations of Acetylene12c2h2,” Astrophys. J. 705(1), 786–790 (2009).
[Crossref]

Ebbesen, T. W.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref] [PubMed]

Eilers, G.

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
[Crossref] [PubMed]

Evans, M.

S. Rihani, R. Faulks, H. E. Beere, I. Farrer, M. Evans, D. A. Ritchie, and M. Pepper, “Enhanced terahertz emission from a multilayered low temperature grown GaAs structure,” Appl. Phys. Lett. 96(9), 091101 (2010).
[Crossref]

Evans, M. J.

R. Faulks, S. Rihani, H. E. Beere, M. J. Evans, D. A. Ritchie, and M. Pepper, “Pulsed terahertz time domain spectroscopy of vertically structured photoconductive antennas,” Appl. Phys. Lett. 96(8), 081106 (2010).
[Crossref]

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500,” Appl. Phys. Lett. 85(21), 4965 (2004).
[Crossref]

Fan, S.

C. Yu, S. Fan, Y. Sun, and E. Pickwell-Macpherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2(1), 33–45 (2012).
[PubMed]

Farrer, I.

S. Rihani, R. Faulks, H. E. Beere, I. Farrer, M. Evans, D. A. Ritchie, and M. Pepper, “Enhanced terahertz emission from a multilayered low temperature grown GaAs structure,” Appl. Phys. Lett. 96(9), 091101 (2010).
[Crossref]

Faulks, R.

S. Rihani, R. Faulks, H. E. Beere, I. Farrer, M. Evans, D. A. Ritchie, and M. Pepper, “Enhanced terahertz emission from a multilayered low temperature grown GaAs structure,” Appl. Phys. Lett. 96(9), 091101 (2010).
[Crossref]

R. Faulks, S. Rihani, H. E. Beere, M. J. Evans, D. A. Ritchie, and M. Pepper, “Pulsed terahertz time domain spectroscopy of vertically structured photoconductive antennas,” Appl. Phys. Lett. 96(8), 081106 (2010).
[Crossref]

Fischer, B. M.

B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).

Freeman, M.

M. Walther, D. Cooke, C. Sherstan, M. Hajar, M. Freeman, and F. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
[Crossref]

Freimuth, F.

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
[Crossref] [PubMed]

Fuess, H.

J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005).
[Crossref]

Gérard, D.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref] [PubMed]

Gordon, R.

B. Heshmat, M. Masnadi-Shirazi, R. B. Lewis, J. Zhang, T. Tiedje, R. Gordon, and T. E. Darcie, “Enhanced Terahertz Bandwidth and Power from GaAsBi-based Sources,” Adv. Opt. Mater. 1(10), 714–719 (2013).
[Crossref]

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Gossard, A. C.

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Gregory, I. S.

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500,” Appl. Phys. Lett. 85(21), 4965 (2004).
[Crossref]

Grischkowsky, D. R.

M. van Exter and D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microw. Theory Tech. 38(11), 1684–1691 (1990).
[Crossref]

Gupta, M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[Crossref]

Hajar, M.

M. Walther, D. Cooke, C. Sherstan, M. Hajar, M. Freeman, and F. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
[Crossref]

Hall, G.

K. Sala, G. Kenney-Wallace, and G. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. 16(9), 990–996 (1980).
[Crossref]

Han, S. P.

Hangyo, M.

T. Liu, M. Tani, M. Nakajima, M. Hangyo, and C. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]

Hartnagel, H. L.

J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005).
[Crossref]

Hashemi, M. R.

C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

Hegmann, F.

M. Walther, D. Cooke, C. Sherstan, M. Hajar, M. Freeman, and F. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
[Crossref]

Helm, M.

M. Mittendorff, M. Xu, R. J. Dietz, H. Künzel, B. Sartorius, H. Schneider, M. Helm, and S. Winnerl, “Large area photoconductive terahertz emitter for 1.55 μm excitation based on an InGaAs heterostructure,” Nanotechnology 24(21), 214007 (2013).
[Crossref] [PubMed]

J. Krause, M. Wagner, S. Winnerl, M. Helm, and D. Stehr, “Tunable narrowband THz pulse generation in scalable large area photoconductive antennas,” Opt. Express 19(20), 19114–19121 (2011).
[Crossref] [PubMed]

Herfort, J.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[Crossref]

Heshmat, B.

B. Heshmat, M. Masnadi-Shirazi, R. B. Lewis, J. Zhang, T. Tiedje, R. Gordon, and T. E. Darcie, “Enhanced Terahertz Bandwidth and Power from GaAsBi-based Sources,” Adv. Opt. Mater. 1(10), 714–719 (2013).
[Crossref]

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Hochrein, T.

Hu, B. B.

Inoue, H.

Jacobsen, R. H.

Jafarlou, S.

Jansen, C.

Jarrahi, M.

C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

Jeong, K. H.

S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
[Crossref] [PubMed]

Jepsen, P. U.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[Crossref]

B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).

P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13(11), 2424–2436 (1996).
[Crossref]

Jin, K. H.

S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
[Crossref] [PubMed]

Johnston, M.

E. Castro-Camus, J. Lloyd-Hughes, and M. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71(19), 195301 (2005).
[Crossref]

Jördens, C.

Kampfrath, T.

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
[Crossref] [PubMed]

Kasalynas, R.

R. Kasalynas, Venckevicius, and G. Valusis, “Continuous wave spectroscopic terahertz imaging with InGaAs bow-tie diodes at room temperature,” IEEE Sens. J. 13(1), 50–54 (2013).
[Crossref]

Kawase, K.

Kawayama, I.

Keiding, S. R.

Kemp, M. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Kenney-Wallace, G.

K. Sala, G. Kenney-Wallace, and G. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. 16(9), 990–996 (1980).
[Crossref]

Kim, N.

Kleine-Ostmann, T.

J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005).
[Crossref]

Kleinman, D.

D. Auston, K. Cheung, J. Valdmanis, and D. Kleinman, “Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
[Crossref]

Ko, H.

Koch, M.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[Crossref]

C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
[Crossref] [PubMed]

J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005).
[Crossref]

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[Crossref]

Kostakis, D.

D. Kostakis, Saeedkia, and M. Missous, “Terahertz Generation and Detection Using Low Temperature Grown InGaAs-InAlAs Photoconductive Antennas at 1.55,” IEEE Trans. THz. Sci. Technol. 2(6), 617–622 (2012).

Krause, J.

Krotkus, A.

A. Krotkus, “Semiconductors for terahertz photonics applications,” J. Phys. D Appl. Phys. 43(27), 273001 (2010).
[Crossref]

V. Pačebutas, K. Bertulis, A. Bičiūnas, and A. Krotkus, “Low-temperature MBE-grown GaBiAs layers for terahertz optoelectronic applications,” Phys. Status Solidi 6(12), 2649–2651 (2009).
[Crossref]

V. Pačebutas, K. Bertulis, L. Dapkus, G. Aleksejenko, A. Krotkus, K. M. Yu, and W. Walukiewicz, “Characterization of low-temperature molecular-beam-epitaxy grown GaBiAs layers,” Semicond. Sci. Technol. 22(7), 819–823 (2007).
[Crossref]

Krumbholz, N.

Künzel, H.

M. Mittendorff, M. Xu, R. J. Dietz, H. Künzel, B. Sartorius, H. Schneider, M. Helm, and S. Winnerl, “Large area photoconductive terahertz emitter for 1.55 μm excitation based on an InGaAs heterostructure,” Nanotechnology 24(21), 214007 (2013).
[Crossref] [PubMed]

Kurz, H.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[Crossref]

Kuzin, A. A.

Lee, D.

Lee, I. M.

Lewis, R. B.

B. Heshmat, M. Masnadi-Shirazi, R. B. Lewis, J. Zhang, T. Tiedje, R. Gordon, and T. E. Darcie, “Enhanced Terahertz Bandwidth and Power from GaAsBi-based Sources,” Adv. Opt. Mater. 1(10), 714–719 (2013).
[Crossref]

Li, W.

J. Y. Suen, W. Li, Z. D. Taylor, and E. R. Brown, “Characterization and modeling of a terahertz photoconductive switch,” Appl. Phys. Lett. 96(14), 141103 (2010).
[Crossref]

Linfield, E. H.

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500,” Appl. Phys. Lett. 85(21), 4965 (2004).
[Crossref]

Liu, T.

T. Liu, M. Tani, M. Nakajima, M. Hangyo, and C. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]

Lloyd-Hughes, J.

E. Castro-Camus, J. Lloyd-Hughes, and M. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71(19), 195301 (2005).
[Crossref]

Lo, T.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Lu, H.

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

Mahdavi, F.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref] [PubMed]

Mährlein, S.

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
[Crossref] [PubMed]

Maldonado, P.

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
[Crossref] [PubMed]

Malzer, S.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Masnadi-Shirazi, M.

B. Heshmat, M. Masnadi-Shirazi, R. B. Lewis, J. Zhang, T. Tiedje, R. Gordon, and T. E. Darcie, “Enhanced Terahertz Bandwidth and Power from GaAsBi-based Sources,” Adv. Opt. Mater. 1(10), 714–719 (2013).
[Crossref]

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Matsuura, S.

Melentiev, P. N.

Missous, M.

D. Kostakis, Saeedkia, and M. Missous, “Terahertz Generation and Detection Using Low Temperature Grown InGaAs-InAlAs Photoconductive Antennas at 1.55,” IEEE Trans. THz. Sci. Technol. 2(6), 617–622 (2012).

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500,” Appl. Phys. Lett. 85(21), 4965 (2004).
[Crossref]

Mittendorff, M.

M. Mittendorff, M. Xu, R. J. Dietz, H. Künzel, B. Sartorius, H. Schneider, M. Helm, and S. Winnerl, “Large area photoconductive terahertz emitter for 1.55 μm excitation based on an InGaAs heterostructure,” Nanotechnology 24(21), 214007 (2013).
[Crossref] [PubMed]

Mittleman, D. M.

D. M. Mittleman, “Frontiers in terahertz sources and plasmonics,” Nat. Photonics 7(9), 666–669 (2013).
[Crossref]

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[Crossref]

Mizuno, S.

Mokrousov, Y.

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
[Crossref] [PubMed]

Moon, K.

Mori, Y.

Münzenberg, M.

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
[Crossref] [PubMed]

Murakami, H.

Nagel, M.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[Crossref]

Nakajima, M.

T. Liu, M. Tani, M. Nakajima, M. Hangyo, and C. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]

Nakashima, S.-i.

Nanal, V.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

Neelamani, R.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[Crossref]

Neshat, M.

Noh, S. K.

Nötzold, J.

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
[Crossref] [PubMed]

Nuss, M. C.

Ogawa, Y.

Oppeneer, P. M.

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
[Crossref] [PubMed]

Pacebutas, V.

V. Pačebutas, K. Bertulis, A. Bičiūnas, and A. Krotkus, “Low-temperature MBE-grown GaBiAs layers for terahertz optoelectronic applications,” Phys. Status Solidi 6(12), 2649–2651 (2009).
[Crossref]

V. Pačebutas, K. Bertulis, L. Dapkus, G. Aleksejenko, A. Krotkus, K. M. Yu, and W. Walukiewicz, “Characterization of low-temperature molecular-beam-epitaxy grown GaBiAs layers,” Semicond. Sci. Technol. 22(7), 819–823 (2007).
[Crossref]

Pahlevaninezhad, H.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Pal, S.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

Pan, C.

T. Liu, M. Tani, M. Nakajima, M. Hangyo, and C. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]

Pang, Y.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Park, D. W.

Park, J. W.

Park, K. H.

Park, S. G.

S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
[Crossref] [PubMed]

Pearson, J. C.

S. Yu, B. J. Drouin, and J. C. Pearson, “Terahertz Spectroscopy of the Bending Vibrations of Acetylene12c2h2,” Astrophys. J. 705(1), 786–790 (2009).
[Crossref]

Pepper, M.

R. Faulks, S. Rihani, H. E. Beere, M. J. Evans, D. A. Ritchie, and M. Pepper, “Pulsed terahertz time domain spectroscopy of vertically structured photoconductive antennas,” Appl. Phys. Lett. 96(8), 081106 (2010).
[Crossref]

S. Rihani, R. Faulks, H. E. Beere, I. Farrer, M. Evans, D. A. Ritchie, and M. Pepper, “Enhanced terahertz emission from a multilayered low temperature grown GaAs structure,” Appl. Phys. Lett. 96(9), 091101 (2010).
[Crossref]

Peters, O.

Pickwell-Macpherson, E.

C. Yu, S. Fan, Y. Sun, and E. Pickwell-Macpherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2(1), 33–45 (2012).
[PubMed]

Pillay, R. G.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

Ploog, K.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[Crossref]

Prabhu, S. S.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

Preu, S.

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Radu, I.

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
[Crossref] [PubMed]

Rigneault, H.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref] [PubMed]

Rihani, S.

S. Rihani, R. Faulks, H. E. Beere, I. Farrer, M. Evans, D. A. Ritchie, and M. Pepper, “Enhanced terahertz emission from a multilayered low temperature grown GaAs structure,” Appl. Phys. Lett. 96(9), 091101 (2010).
[Crossref]

R. Faulks, S. Rihani, H. E. Beere, M. J. Evans, D. A. Ritchie, and M. Pepper, “Pulsed terahertz time domain spectroscopy of vertically structured photoconductive antennas,” Appl. Phys. Lett. 96(8), 081106 (2010).
[Crossref]

Ritchie, D. A.

R. Faulks, S. Rihani, H. E. Beere, M. J. Evans, D. A. Ritchie, and M. Pepper, “Pulsed terahertz time domain spectroscopy of vertically structured photoconductive antennas,” Appl. Phys. Lett. 96(8), 081106 (2010).
[Crossref]

S. Rihani, R. Faulks, H. E. Beere, I. Farrer, M. Evans, D. A. Ritchie, and M. Pepper, “Enhanced terahertz emission from a multilayered low temperature grown GaAs structure,” Appl. Phys. Lett. 96(9), 091101 (2010).
[Crossref]

Rudd, J. V.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[Crossref]

Rutz, F.

J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005).
[Crossref]

Saeedkia,

D. Kostakis, Saeedkia, and M. Missous, “Terahertz Generation and Detection Using Low Temperature Grown InGaAs-InAlAs Photoconductive Antennas at 1.55,” IEEE Trans. THz. Sci. Technol. 2(6), 617–622 (2012).

Safavi-Naeini, S.

Sakai, K.

Sala, K.

K. Sala, G. Kenney-Wallace, and G. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. 16(9), 990–996 (1980).
[Crossref]

Salhi, M.

Sartorius, B.

M. Mittendorff, M. Xu, R. J. Dietz, H. Künzel, B. Sartorius, H. Schneider, M. Helm, and S. Winnerl, “Large area photoconductive terahertz emitter for 1.55 μm excitation based on an InGaAs heterostructure,” Nanotechnology 24(21), 214007 (2013).
[Crossref] [PubMed]

Scheller, M.

Schneider, H.

M. Mittendorff, M. Xu, R. J. Dietz, H. Künzel, B. Sartorius, H. Schneider, M. Helm, and S. Winnerl, “Large area photoconductive terahertz emitter for 1.55 μm excitation based on an InGaAs heterostructure,” Nanotechnology 24(21), 214007 (2013).
[Crossref] [PubMed]

Schonbrun, E.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref] [PubMed]

Serita, K.

Shen, Y. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Sherstan, C.

M. Walther, D. Cooke, C. Sherstan, M. Hajar, M. Freeman, and F. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
[Crossref]

Shi, W.

L. Tian and W. Shi, “Analysis of operation mechanism of semi-insulating GaAs photoconductive semiconductor switches,” J. Appl. Phys. 103(12), 124512 (2008).
[Crossref]

Sigmund, J.

J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005).
[Crossref]

Singh, A.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

Stehr, D.

Steinvurzel, P.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref] [PubMed]

Suen, J. Y.

J. Y. Suen, W. Li, Z. D. Taylor, and E. R. Brown, “Characterization and modeling of a terahertz photoconductive switch,” Appl. Phys. Lett. 96(14), 141103 (2010).
[Crossref]

Sun, Y.

C. Yu, S. Fan, Y. Sun, and E. Pickwell-Macpherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2(1), 33–45 (2012).
[PubMed]

Surdi, H.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

Sydlo, C.

J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005).
[Crossref]

Taday, P. F.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Takahashi, Y.

Tani, M.

T. Liu, M. Tani, M. Nakajima, M. Hangyo, and C. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]

M. Tani, S. Matsuura, K. Sakai, and S.-i. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36(30), 7853–7859 (1997).
[Crossref] [PubMed]

Taylor, Z. D.

J. Y. Suen, W. Li, Z. D. Taylor, and E. R. Brown, “Characterization and modeling of a terahertz photoconductive switch,” Appl. Phys. Lett. 96(14), 141103 (2010).
[Crossref]

Tian, L.

L. Tian and W. Shi, “Analysis of operation mechanism of semi-insulating GaAs photoconductive semiconductor switches,” J. Appl. Phys. 103(12), 124512 (2008).
[Crossref]

Tiedje, T.

B. Heshmat, M. Masnadi-Shirazi, R. B. Lewis, J. Zhang, T. Tiedje, R. Gordon, and T. E. Darcie, “Enhanced Terahertz Bandwidth and Power from GaAsBi-based Sources,” Adv. Opt. Mater. 1(10), 714–719 (2013).
[Crossref]

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Tonouchi, M.

Tribe, W. R.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500,” Appl. Phys. Lett. 85(21), 4965 (2004).
[Crossref]

Valdmanis, J.

D. Auston, K. Cheung, J. Valdmanis, and D. Kleinman, “Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
[Crossref]

Valusis, G.

R. Kasalynas, Venckevicius, and G. Valusis, “Continuous wave spectroscopic terahertz imaging with InGaAs bow-tie diodes at room temperature,” IEEE Sens. J. 13(1), 50–54 (2013).
[Crossref]

van Exter, M.

M. van Exter and D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microw. Theory Tech. 38(11), 1684–1691 (1990).
[Crossref]

Venckevicius,

R. Kasalynas, Venckevicius, and G. Valusis, “Continuous wave spectroscopic terahertz imaging with InGaAs bow-tie diodes at room temperature,” IEEE Sens. J. 13(1), 50–54 (2013).
[Crossref]

Vieweg, N.

Wagner, M.

Walther, M.

M. Walther, D. Cooke, C. Sherstan, M. Hajar, M. Freeman, and F. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
[Crossref]

B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).

Walukiewicz, W.

V. Pačebutas, K. Bertulis, L. Dapkus, G. Aleksejenko, A. Krotkus, K. M. Yu, and W. Walukiewicz, “Characterization of low-temperature molecular-beam-epitaxy grown GaBiAs layers,” Semicond. Sci. Technol. 22(7), 819–823 (2007).
[Crossref]

Wang, K.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref] [PubMed]

Wang, L. J.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Watanabe, Y.

Wenger, J.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref] [PubMed]

Wietzke, S.

Winnerl, S.

M. Mittendorff, M. Xu, R. J. Dietz, H. Künzel, B. Sartorius, H. Schneider, M. Helm, and S. Winnerl, “Large area photoconductive terahertz emitter for 1.55 μm excitation based on an InGaAs heterostructure,” Nanotechnology 24(21), 214007 (2013).
[Crossref] [PubMed]

J. Krause, M. Wagner, S. Winnerl, M. Helm, and D. Stehr, “Tunable narrowband THz pulse generation in scalable large area photoconductive antennas,” Opt. Express 19(20), 19114–19121 (2011).
[Crossref] [PubMed]

Wolf, M.

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
[Crossref] [PubMed]

Xu, M.

M. Mittendorff, M. Xu, R. J. Dietz, H. Künzel, B. Sartorius, H. Schneider, M. Helm, and S. Winnerl, “Large area photoconductive terahertz emitter for 1.55 μm excitation based on an InGaAs heterostructure,” Nanotechnology 24(21), 214007 (2013).
[Crossref] [PubMed]

Xu, T.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref] [PubMed]

Ye, J. C.

S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
[Crossref] [PubMed]

Yi, M.

S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
[Crossref] [PubMed]

Yoshimura, M.

Yu, C.

C. Yu, S. Fan, Y. Sun, and E. Pickwell-Macpherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2(1), 33–45 (2012).
[PubMed]

Yu, K. M.

V. Pačebutas, K. Bertulis, L. Dapkus, G. Aleksejenko, A. Krotkus, K. M. Yu, and W. Walukiewicz, “Characterization of low-temperature molecular-beam-epitaxy grown GaBiAs layers,” Semicond. Sci. Technol. 22(7), 819–823 (2007).
[Crossref]

Yu, S.

S. Yu, B. J. Drouin, and J. C. Pearson, “Terahertz Spectroscopy of the Bending Vibrations of Acetylene12c2h2,” Astrophys. J. 705(1), 786–790 (2009).
[Crossref]

Zbarsky, V.

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
[Crossref] [PubMed]

Zhang, J.

B. Heshmat, M. Masnadi-Shirazi, R. B. Lewis, J. Zhang, T. Tiedje, R. Gordon, and T. E. Darcie, “Enhanced Terahertz Bandwidth and Power from GaAsBi-based Sources,” Adv. Opt. Mater. 1(10), 714–719 (2013).
[Crossref]

ACS Nano (2)

S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
[Crossref] [PubMed]

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

B. Heshmat, M. Masnadi-Shirazi, R. B. Lewis, J. Zhang, T. Tiedje, R. Gordon, and T. E. Darcie, “Enhanced Terahertz Bandwidth and Power from GaAsBi-based Sources,” Adv. Opt. Mater. 1(10), 714–719 (2013).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[Crossref]

Appl. Phys. Lett. (11)

S. Rihani, R. Faulks, H. E. Beere, I. Farrer, M. Evans, D. A. Ritchie, and M. Pepper, “Enhanced terahertz emission from a multilayered low temperature grown GaAs structure,” Appl. Phys. Lett. 96(9), 091101 (2010).
[Crossref]

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

T. Liu, M. Tani, M. Nakajima, M. Hangyo, and C. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

R. Faulks, S. Rihani, H. E. Beere, M. J. Evans, D. A. Ritchie, and M. Pepper, “Pulsed terahertz time domain spectroscopy of vertically structured photoconductive antennas,” Appl. Phys. Lett. 96(8), 081106 (2010).
[Crossref]

C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500,” Appl. Phys. Lett. 85(21), 4965 (2004).
[Crossref]

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[Crossref]

J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005).
[Crossref]

J. Y. Suen, W. Li, Z. D. Taylor, and E. R. Brown, “Characterization and modeling of a terahertz photoconductive switch,” Appl. Phys. Lett. 96(14), 141103 (2010).
[Crossref]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

Astrophys. J. (1)

S. Yu, B. J. Drouin, and J. C. Pearson, “Terahertz Spectroscopy of the Bending Vibrations of Acetylene12c2h2,” Astrophys. J. 705(1), 786–790 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Sala, G. Kenney-Wallace, and G. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. 16(9), 990–996 (1980).
[Crossref]

IEEE Sens. J. (1)

R. Kasalynas, Venckevicius, and G. Valusis, “Continuous wave spectroscopic terahertz imaging with InGaAs bow-tie diodes at room temperature,” IEEE Sens. J. 13(1), 50–54 (2013).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

M. van Exter and D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microw. Theory Tech. 38(11), 1684–1691 (1990).
[Crossref]

IEEE Trans. THz. Sci. Technol. (1)

D. Kostakis, Saeedkia, and M. Missous, “Terahertz Generation and Detection Using Low Temperature Grown InGaAs-InAlAs Photoconductive Antennas at 1.55,” IEEE Trans. THz. Sci. Technol. 2(6), 617–622 (2012).

J. Appl. Phys. (2)

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

L. Tian and W. Shi, “Analysis of operation mechanism of semi-insulating GaAs photoconductive semiconductor switches,” J. Appl. Phys. 103(12), 124512 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (2)

A. Krotkus, “Semiconductors for terahertz photonics applications,” J. Phys. D Appl. Phys. 43(27), 273001 (2010).
[Crossref]

V. Apostolopoulos and M. E. Barnes, “THz emitters based on the photo-Dember effect,” J. Phys. D Appl. Phys. 47(37), 374002 (2014).
[Crossref]

Laser Photon. Rev. (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[Crossref]

Nano Lett. (1)

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Nanotechnology (1)

M. Mittendorff, M. Xu, R. J. Dietz, H. Künzel, B. Sartorius, H. Schneider, M. Helm, and S. Winnerl, “Large area photoconductive terahertz emitter for 1.55 μm excitation based on an InGaAs heterostructure,” Nanotechnology 24(21), 214007 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

D. M. Mittleman, “Frontiers in terahertz sources and plasmonics,” Nat. Photonics 7(9), 666–669 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Med. Biol. (1)

B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).

Phys. Rev. B (2)

M. Walther, D. Cooke, C. Sherstan, M. Hajar, M. Freeman, and F. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, and M. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71(19), 195301 (2005).
[Crossref]

Phys. Rev. Lett. (1)

D. Auston, K. Cheung, J. Valdmanis, and D. Kleinman, “Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
[Crossref]

Phys. Status Solidi (1)

V. Pačebutas, K. Bertulis, A. Bičiūnas, and A. Krotkus, “Low-temperature MBE-grown GaBiAs layers for terahertz optoelectronic applications,” Phys. Status Solidi 6(12), 2649–2651 (2009).
[Crossref]

Quant. Imaging Med. Surg. (1)

C. Yu, S. Fan, Y. Sun, and E. Pickwell-Macpherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2(1), 33–45 (2012).
[PubMed]

Semicond. Sci. Technol. (1)

V. Pačebutas, K. Bertulis, L. Dapkus, G. Aleksejenko, A. Krotkus, K. M. Yu, and W. Walukiewicz, “Characterization of low-temperature molecular-beam-epitaxy grown GaBiAs layers,” Semicond. Sci. Technol. 22(7), 819–823 (2007).
[Crossref]

Other (4)

S. L. Dexheimer, Terahertz Spectroscopy: Principles and Applications (CRC, 2008).

BATOP instruction manual, “Instruction manual and data sheet PCA-40-05-10-800-x”, http://www.batop.com/products/terahertz/photoconductive-antenna/photoconductive-antenna-800nm.html .

C. A. Balanis, Antenna Theory Analysis and Design (John Wiley & Sons, Canada, 2005).

Y. Lee, Principles of Terahertz Science and Technology (Springer, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 a) Scanning electron microscope image of the 20 µm dipole on SI-GaAs substrate. b) The active area of the hexagonal plasmonic array. c) The active area of the strip plasmonic array. The diagram shows apex angle θ, gap size d and periodicity p.
Fig. 2
Fig. 2 a) Pulsed mode terahertz setup. BS is a Beam splitter, SL is silicon lens, TX is the transmitter PCA and RX is the commercial PCA receiver. b) and c) are received time and frequency domain signals. Red line is the response of the hexagonal array device resulting in 32 nA peak-to-peak current amplitude, blue line is the strip array device with 11.38 nA peak-to-peak current, green line is the Batop commercial device as a transmitter with 19.8 nA peak-to-peak current and black line is the received THz signal of a 5 µm gap dipole with 7.57 nA peak-to-peak current. Dashed lines in c) are HITRAN water absorption lines.
Fig. 3
Fig. 3 Electrical characteristics of our semi-insulating GaAs based samples under laser illumination.
Fig. 4
Fig. 4 a) Peak THz received current of the samples with pump power. b) Enhancement ratio with respect to 5 µm gap dipole (Iplasmonic/I5 µm gap).
Fig. 5
Fig. 5 FDTD simulation results for log10(|P|) at 785 nm and in an arbitrary scale. a) 2D surface power density profile of a single cell period from top, b) cross section view of a single hexagonal cell with 100 nm gap distance, c) cross section view of a 100 nm strip plasmonic structure.
Fig. 6
Fig. 6 Electrical characteristics of photoconductive switches in dark.
Fig. 7
Fig. 7 FDTD simulation results for the photocurrent (P.E) over a unit cell of the plasmonic structures inside the SI-GaAs substrate. Red line is the photocurrent of the hexagonal structure. Blue line is the photocurrent of the strip structure and black is the photocurrent of the GaAs without plasmonic structures on the surface.
Fig. 8
Fig. 8 Conductivity response of GaAs as a function of frequency.

Tables (1)

Tables Icon

Table 1 Theoretical and measured emission amplitudes of plasmonic photoconductive antennas.

Metrics