Abstract

We describe a novel fabrication method of three-dimensional (3D) microstructures using local electrophoresis deposition together with laser trapping. A liquid cell consisting of two-faced conductive substrates was filled with a colloidal solution of Au nanoparticles. The nanoparticles were trapped by a laser spot and positioned on the bottom substrate, then deposited onto the surface by the application of electrical voltage between the two substrates. By moving the liquid cell downward while maintaining the deposition, 3D microstructures were successfully fabricated. The smallest diameter of the fabricated pillar was 500 nm, almost the same as that of the Airy disc. The Young’s modulus of the fabricated structure was 1.5 GPa.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond laser-assisted three-dimensional microfabrication in silica

Andrius Marcinkevičius, Saulius Juodkazis, Mitsuru Watanabe, Masafumi Miwa, Shigeki Matsuo, Hiroaki Misawa, and Junji Nishii
Opt. Lett. 26(5) 277-279 (2001)

Three dimensional laser microfabrication in diamond using a dual adaptive optics system

Richard D. Simmonds, Patrick S. Salter, Alexander Jesacher, and Martin J. Booth
Opt. Express 19(24) 24122-24128 (2011)

Independent and simultaneous three-dimensional optical trapping and imaging

Maya Yevnin, Dror Kasimov, Yael Gluckman, Yuval Ebenstein, and Yael Roichman
Biomed. Opt. Express 4(10) 2087-2094 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. L. Rogach, N. A. Kotov, D. S. Koktysh, J. W. Ostrander, and G. A. Ragoiha, “Electrophoretic deposition of latex-based 3D colloidal photonic crystals: a technique for rapid production of high-quality opals,” Chem. Mater. 12(9), 2721–2726 (2000).
    [Crossref]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  3. A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005).
    [Crossref] [PubMed]
  4. S. Matsui, T. Kaito, J. Fujita, M. Komuro, K. Kanda, and Y. Haruyama, “Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 18, 3181 (2000).
    [Crossref]
  5. T. Morita, R. Kometani, K. Watanabe, K. Kanda, Y. Haruyama, T. Hoshino, K. Kondo, T. Kaito, T. Ishihashi, J. Fujita, M. Ishida, Y. Ochiai, T. Tajima, and S. Matsui, “Free-space-wiring fabrication in nano-space by focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 21, 2737 (2003).
    [Crossref]
  6. J. Fujita, M. Ishida, T. Ichihashi, Y. Ochiai, T. Kaito, and S. Matsui, “Growth of three-dimensional nano-structures using FIB-CVD and its mechanical properties,” Nucl. Instrum. Methods Phys. Res. B 206, 472–477 (2003).
    [Crossref]
  7. D. Guo, R. Kometani, S. Warisawa, and S. Ishihara, “Growth of ultra-long free-space-nanowire by the real-time feedback control of the scanning speed on focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 31, 061601 (2013).
    [Crossref]
  8. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
    [Crossref] [PubMed]
  9. S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76(19), 2656–2658 (2000).
    [Crossref]
  10. S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006).
    [Crossref]
  11. K. Matsuda, S. Takahashi, and K. Takamasu, “Development of in-process visualization system for laser-assisted three-dimensional microfabrication using photocatalyst nanoparticles,” Int. J. Precis. Eng. Manuf. 11(6), 811–815 (2010).
    [Crossref]
  12. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [Crossref]
  13. A. Ashkin, “Applicationf of laser radiation pressure,” Science 210(4474), 1081–1088 (1980).
    [Crossref] [PubMed]
  14. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
    [Crossref] [PubMed]
  15. K. Svoboda and S. M. Block, “Optical trapping of metallic rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
    [Crossref] [PubMed]
  16. T. T. Perkins, S. R. Quake, D. E. Smith, and S. Chu, “Relaxation of a single DNA molecule observed by optical microscopy,” Science 264(5160), 822–826 (1994).
    [Crossref] [PubMed]
  17. D. G. Grier, “Optical tweezers in colloid and interface science,” Curr. Opin. Colloid Interface Sci. 2(3), 264–270 (1997).
    [Crossref]
  18. J. Won, T. Inaba, H. Masuhara, H. Fujiwara, K. Sasaki, S. Miyawaki, and S. Sato, “Photothermal fixation of laser-trapped polymer microparticles on polymer substrates,” Appl. Phys. Lett. 75(11), 1506–1508 (1999).
    [Crossref]
  19. S. Ito, H. Yoshikawa, and H. masuhara, “Optical patterning and photochemical fixation of polymer nanoparticles on glass substrates,” Appl. Phys. Lett. 78(17), 2556–2568 (2001).
    [Crossref]
  20. S. Ito, H. Yoshikawa, and H. masuhara, “Laser manipulation and fixation of single gold nanoparticles in solution at room temperature,” Appl. Phys. Lett. 80(3), 482–484 (2002).
    [Crossref]
  21. F. Iwata, M. Kaji, A. Suzuki, and S. Ito, “Local electrophoresis deposition of nanomaterials deposition by a laser trapping technique,” Nanotechnol. 20, 235303 (2009).
    [Crossref]
  22. F. Iwata, Y. Mizuguchi, H. Ko, and T. Ushiki, “Nanomanipulation of biological samples using a compact atomic force microscope under scanning electron microscope observation,” J. Electron Microsc. 60(6) 359–366 (2011).
    [Crossref]
  23. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
    [Crossref] [PubMed]
  24. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett. 16(19), 1463–1465 (1991).
    [Crossref] [PubMed]
  25. C. H. Sow, A. A. Bettiol, Y.Y. G. Lee, F. C. Cheong, C.T. Lim, and F. Watt, “Multiple-spot optical tweezers created with microlens arrays fabricated by proton beam writing,” Appl. Phys.  B 78(6), 705–709 (2004).
    [Crossref]
  26. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
    [Crossref]
  27. R. L. Eriksen, V. R. Daria, and J. Glück, “Fully dynamic multiple-beam optical tweezers,” Opt. Express 10(14), 597–602 (2002).
    [Crossref] [PubMed]

2013 (1)

D. Guo, R. Kometani, S. Warisawa, and S. Ishihara, “Growth of ultra-long free-space-nanowire by the real-time feedback control of the scanning speed on focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 31, 061601 (2013).
[Crossref]

2011 (1)

F. Iwata, Y. Mizuguchi, H. Ko, and T. Ushiki, “Nanomanipulation of biological samples using a compact atomic force microscope under scanning electron microscope observation,” J. Electron Microsc. 60(6) 359–366 (2011).
[Crossref]

2010 (1)

K. Matsuda, S. Takahashi, and K. Takamasu, “Development of in-process visualization system for laser-assisted three-dimensional microfabrication using photocatalyst nanoparticles,” Int. J. Precis. Eng. Manuf. 11(6), 811–815 (2010).
[Crossref]

2009 (1)

F. Iwata, M. Kaji, A. Suzuki, and S. Ito, “Local electrophoresis deposition of nanomaterials deposition by a laser trapping technique,” Nanotechnol. 20, 235303 (2009).
[Crossref]

2006 (1)

S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006).
[Crossref]

2005 (1)

A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005).
[Crossref] [PubMed]

2004 (1)

C. H. Sow, A. A. Bettiol, Y.Y. G. Lee, F. C. Cheong, C.T. Lim, and F. Watt, “Multiple-spot optical tweezers created with microlens arrays fabricated by proton beam writing,” Appl. Phys.  B 78(6), 705–709 (2004).
[Crossref]

2003 (2)

T. Morita, R. Kometani, K. Watanabe, K. Kanda, Y. Haruyama, T. Hoshino, K. Kondo, T. Kaito, T. Ishihashi, J. Fujita, M. Ishida, Y. Ochiai, T. Tajima, and S. Matsui, “Free-space-wiring fabrication in nano-space by focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 21, 2737 (2003).
[Crossref]

J. Fujita, M. Ishida, T. Ichihashi, Y. Ochiai, T. Kaito, and S. Matsui, “Growth of three-dimensional nano-structures using FIB-CVD and its mechanical properties,” Nucl. Instrum. Methods Phys. Res. B 206, 472–477 (2003).
[Crossref]

2002 (2)

R. L. Eriksen, V. R. Daria, and J. Glück, “Fully dynamic multiple-beam optical tweezers,” Opt. Express 10(14), 597–602 (2002).
[Crossref] [PubMed]

S. Ito, H. Yoshikawa, and H. masuhara, “Laser manipulation and fixation of single gold nanoparticles in solution at room temperature,” Appl. Phys. Lett. 80(3), 482–484 (2002).
[Crossref]

2001 (1)

S. Ito, H. Yoshikawa, and H. masuhara, “Optical patterning and photochemical fixation of polymer nanoparticles on glass substrates,” Appl. Phys. Lett. 78(17), 2556–2568 (2001).
[Crossref]

2000 (5)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
[Crossref]

S. Matsui, T. Kaito, J. Fujita, M. Komuro, K. Kanda, and Y. Haruyama, “Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 18, 3181 (2000).
[Crossref]

A. L. Rogach, N. A. Kotov, D. S. Koktysh, J. W. Ostrander, and G. A. Ragoiha, “Electrophoretic deposition of latex-based 3D colloidal photonic crystals: a technique for rapid production of high-quality opals,” Chem. Mater. 12(9), 2721–2726 (2000).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76(19), 2656–2658 (2000).
[Crossref]

1999 (1)

J. Won, T. Inaba, H. Masuhara, H. Fujiwara, K. Sasaki, S. Miyawaki, and S. Sato, “Photothermal fixation of laser-trapped polymer microparticles on polymer substrates,” Appl. Phys. Lett. 75(11), 1506–1508 (1999).
[Crossref]

1997 (2)

D. G. Grier, “Optical tweezers in colloid and interface science,” Curr. Opin. Colloid Interface Sci. 2(3), 264–270 (1997).
[Crossref]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
[Crossref] [PubMed]

1994 (2)

K. Svoboda and S. M. Block, “Optical trapping of metallic rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
[Crossref] [PubMed]

T. T. Perkins, S. R. Quake, D. E. Smith, and S. Chu, “Relaxation of a single DNA molecule observed by optical microscopy,” Science 264(5160), 822–826 (1994).
[Crossref] [PubMed]

1991 (1)

1987 (2)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[Crossref] [PubMed]

1980 (1)

A. Ashkin, “Applicationf of laser radiation pressure,” Science 210(4474), 1081–1088 (1980).
[Crossref] [PubMed]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[Crossref] [PubMed]

A. Ashkin, “Applicationf of laser radiation pressure,” Science 210(4474), 1081–1088 (1980).
[Crossref] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Bettiol, A. A.

C. H. Sow, A. A. Bettiol, Y.Y. G. Lee, F. C. Cheong, C.T. Lim, and F. Watt, “Multiple-spot optical tweezers created with microlens arrays fabricated by proton beam writing,” Appl. Phys.  B 78(6), 705–709 (2004).
[Crossref]

Block, S. M.

Cheong, F. C.

C. H. Sow, A. A. Bettiol, Y.Y. G. Lee, F. C. Cheong, C.T. Lim, and F. Watt, “Multiple-spot optical tweezers created with microlens arrays fabricated by proton beam writing,” Appl. Phys.  B 78(6), 705–709 (2004).
[Crossref]

Chu, S.

T. T. Perkins, S. R. Quake, D. E. Smith, and S. Chu, “Relaxation of a single DNA molecule observed by optical microscopy,” Science 264(5160), 822–826 (1994).
[Crossref] [PubMed]

Daria, V. R.

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[Crossref] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

Eriksen, R. L.

Fujita, J.

T. Morita, R. Kometani, K. Watanabe, K. Kanda, Y. Haruyama, T. Hoshino, K. Kondo, T. Kaito, T. Ishihashi, J. Fujita, M. Ishida, Y. Ochiai, T. Tajima, and S. Matsui, “Free-space-wiring fabrication in nano-space by focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 21, 2737 (2003).
[Crossref]

J. Fujita, M. Ishida, T. Ichihashi, Y. Ochiai, T. Kaito, and S. Matsui, “Growth of three-dimensional nano-structures using FIB-CVD and its mechanical properties,” Nucl. Instrum. Methods Phys. Res. B 206, 472–477 (2003).
[Crossref]

S. Matsui, T. Kaito, J. Fujita, M. Komuro, K. Kanda, and Y. Haruyama, “Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 18, 3181 (2000).
[Crossref]

Fujiwara, H.

J. Won, T. Inaba, H. Masuhara, H. Fujiwara, K. Sasaki, S. Miyawaki, and S. Sato, “Photothermal fixation of laser-trapped polymer microparticles on polymer substrates,” Appl. Phys. Lett. 75(11), 1506–1508 (1999).
[Crossref]

Glück, J.

Grier, D. G.

D. G. Grier, “Optical tweezers in colloid and interface science,” Curr. Opin. Colloid Interface Sci. 2(3), 264–270 (1997).
[Crossref]

Guo, D.

D. Guo, R. Kometani, S. Warisawa, and S. Ishihara, “Growth of ultra-long free-space-nanowire by the real-time feedback control of the scanning speed on focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 31, 061601 (2013).
[Crossref]

Haist, T.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
[Crossref]

Haruyama, Y.

T. Morita, R. Kometani, K. Watanabe, K. Kanda, Y. Haruyama, T. Hoshino, K. Kondo, T. Kaito, T. Ishihashi, J. Fujita, M. Ishida, Y. Ochiai, T. Tajima, and S. Matsui, “Free-space-wiring fabrication in nano-space by focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 21, 2737 (2003).
[Crossref]

S. Matsui, T. Kaito, J. Fujita, M. Komuro, K. Kanda, and Y. Haruyama, “Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 18, 3181 (2000).
[Crossref]

Hoshino, T.

T. Morita, R. Kometani, K. Watanabe, K. Kanda, Y. Haruyama, T. Hoshino, K. Kondo, T. Kaito, T. Ishihashi, J. Fujita, M. Ishida, Y. Ochiai, T. Tajima, and S. Matsui, “Free-space-wiring fabrication in nano-space by focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 21, 2737 (2003).
[Crossref]

Ichihashi, T.

J. Fujita, M. Ishida, T. Ichihashi, Y. Ochiai, T. Kaito, and S. Matsui, “Growth of three-dimensional nano-structures using FIB-CVD and its mechanical properties,” Nucl. Instrum. Methods Phys. Res. B 206, 472–477 (2003).
[Crossref]

Ikuta, K.

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76(19), 2656–2658 (2000).
[Crossref]

Inaba, T.

J. Won, T. Inaba, H. Masuhara, H. Fujiwara, K. Sasaki, S. Miyawaki, and S. Sato, “Photothermal fixation of laser-trapped polymer microparticles on polymer substrates,” Appl. Phys. Lett. 75(11), 1506–1508 (1999).
[Crossref]

Inoue, H.

S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006).
[Crossref]

Ishida, M.

J. Fujita, M. Ishida, T. Ichihashi, Y. Ochiai, T. Kaito, and S. Matsui, “Growth of three-dimensional nano-structures using FIB-CVD and its mechanical properties,” Nucl. Instrum. Methods Phys. Res. B 206, 472–477 (2003).
[Crossref]

T. Morita, R. Kometani, K. Watanabe, K. Kanda, Y. Haruyama, T. Hoshino, K. Kondo, T. Kaito, T. Ishihashi, J. Fujita, M. Ishida, Y. Ochiai, T. Tajima, and S. Matsui, “Free-space-wiring fabrication in nano-space by focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 21, 2737 (2003).
[Crossref]

Ishihara, S.

D. Guo, R. Kometani, S. Warisawa, and S. Ishihara, “Growth of ultra-long free-space-nanowire by the real-time feedback control of the scanning speed on focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 31, 061601 (2013).
[Crossref]

Ishihashi, T.

T. Morita, R. Kometani, K. Watanabe, K. Kanda, Y. Haruyama, T. Hoshino, K. Kondo, T. Kaito, T. Ishihashi, J. Fujita, M. Ishida, Y. Ochiai, T. Tajima, and S. Matsui, “Free-space-wiring fabrication in nano-space by focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 21, 2737 (2003).
[Crossref]

Ishikawa, A.

A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005).
[Crossref] [PubMed]

Ito, S.

F. Iwata, M. Kaji, A. Suzuki, and S. Ito, “Local electrophoresis deposition of nanomaterials deposition by a laser trapping technique,” Nanotechnol. 20, 235303 (2009).
[Crossref]

S. Ito, H. Yoshikawa, and H. masuhara, “Laser manipulation and fixation of single gold nanoparticles in solution at room temperature,” Appl. Phys. Lett. 80(3), 482–484 (2002).
[Crossref]

S. Ito, H. Yoshikawa, and H. masuhara, “Optical patterning and photochemical fixation of polymer nanoparticles on glass substrates,” Appl. Phys. Lett. 78(17), 2556–2568 (2001).
[Crossref]

Iwata, F.

F. Iwata, Y. Mizuguchi, H. Ko, and T. Ushiki, “Nanomanipulation of biological samples using a compact atomic force microscope under scanning electron microscope observation,” J. Electron Microsc. 60(6) 359–366 (2011).
[Crossref]

F. Iwata, M. Kaji, A. Suzuki, and S. Ito, “Local electrophoresis deposition of nanomaterials deposition by a laser trapping technique,” Nanotechnol. 20, 235303 (2009).
[Crossref]

Kaito, T.

T. Morita, R. Kometani, K. Watanabe, K. Kanda, Y. Haruyama, T. Hoshino, K. Kondo, T. Kaito, T. Ishihashi, J. Fujita, M. Ishida, Y. Ochiai, T. Tajima, and S. Matsui, “Free-space-wiring fabrication in nano-space by focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 21, 2737 (2003).
[Crossref]

J. Fujita, M. Ishida, T. Ichihashi, Y. Ochiai, T. Kaito, and S. Matsui, “Growth of three-dimensional nano-structures using FIB-CVD and its mechanical properties,” Nucl. Instrum. Methods Phys. Res. B 206, 472–477 (2003).
[Crossref]

S. Matsui, T. Kaito, J. Fujita, M. Komuro, K. Kanda, and Y. Haruyama, “Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 18, 3181 (2000).
[Crossref]

Kaji, M.

F. Iwata, M. Kaji, A. Suzuki, and S. Ito, “Local electrophoresis deposition of nanomaterials deposition by a laser trapping technique,” Nanotechnol. 20, 235303 (2009).
[Crossref]

Kanda, K.

T. Morita, R. Kometani, K. Watanabe, K. Kanda, Y. Haruyama, T. Hoshino, K. Kondo, T. Kaito, T. Ishihashi, J. Fujita, M. Ishida, Y. Ochiai, T. Tajima, and S. Matsui, “Free-space-wiring fabrication in nano-space by focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 21, 2737 (2003).
[Crossref]

S. Matsui, T. Kaito, J. Fujita, M. Komuro, K. Kanda, and Y. Haruyama, “Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 18, 3181 (2000).
[Crossref]

Kawata, S.

A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005).
[Crossref] [PubMed]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
[Crossref] [PubMed]

Kitamura, N.

Ko, H.

F. Iwata, Y. Mizuguchi, H. Ko, and T. Ushiki, “Nanomanipulation of biological samples using a compact atomic force microscope under scanning electron microscope observation,” J. Electron Microsc. 60(6) 359–366 (2011).
[Crossref]

Koktysh, D. S.

A. L. Rogach, N. A. Kotov, D. S. Koktysh, J. W. Ostrander, and G. A. Ragoiha, “Electrophoretic deposition of latex-based 3D colloidal photonic crystals: a technique for rapid production of high-quality opals,” Chem. Mater. 12(9), 2721–2726 (2000).
[Crossref]

Kometani, R.

D. Guo, R. Kometani, S. Warisawa, and S. Ishihara, “Growth of ultra-long free-space-nanowire by the real-time feedback control of the scanning speed on focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 31, 061601 (2013).
[Crossref]

T. Morita, R. Kometani, K. Watanabe, K. Kanda, Y. Haruyama, T. Hoshino, K. Kondo, T. Kaito, T. Ishihashi, J. Fujita, M. Ishida, Y. Ochiai, T. Tajima, and S. Matsui, “Free-space-wiring fabrication in nano-space by focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 21, 2737 (2003).
[Crossref]

Komuro, M.

S. Matsui, T. Kaito, J. Fujita, M. Komuro, K. Kanda, and Y. Haruyama, “Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 18, 3181 (2000).
[Crossref]

Kondo, K.

T. Morita, R. Kometani, K. Watanabe, K. Kanda, Y. Haruyama, T. Hoshino, K. Kondo, T. Kaito, T. Ishihashi, J. Fujita, M. Ishida, Y. Ochiai, T. Tajima, and S. Matsui, “Free-space-wiring fabrication in nano-space by focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 21, 2737 (2003).
[Crossref]

Koshioka, M.

Kotov, N. A.

A. L. Rogach, N. A. Kotov, D. S. Koktysh, J. W. Ostrander, and G. A. Ragoiha, “Electrophoretic deposition of latex-based 3D colloidal photonic crystals: a technique for rapid production of high-quality opals,” Chem. Mater. 12(9), 2721–2726 (2000).
[Crossref]

Lee, Y.Y. G.

C. H. Sow, A. A. Bettiol, Y.Y. G. Lee, F. C. Cheong, C.T. Lim, and F. Watt, “Multiple-spot optical tweezers created with microlens arrays fabricated by proton beam writing,” Appl. Phys.  B 78(6), 705–709 (2004).
[Crossref]

Liesener, J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
[Crossref]

Lim, C.T.

C. H. Sow, A. A. Bettiol, Y.Y. G. Lee, F. C. Cheong, C.T. Lim, and F. Watt, “Multiple-spot optical tweezers created with microlens arrays fabricated by proton beam writing,” Appl. Phys.  B 78(6), 705–709 (2004).
[Crossref]

Maruo, S.

S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006).
[Crossref]

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76(19), 2656–2658 (2000).
[Crossref]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
[Crossref] [PubMed]

masuhara, H.

S. Ito, H. Yoshikawa, and H. masuhara, “Laser manipulation and fixation of single gold nanoparticles in solution at room temperature,” Appl. Phys. Lett. 80(3), 482–484 (2002).
[Crossref]

S. Ito, H. Yoshikawa, and H. masuhara, “Optical patterning and photochemical fixation of polymer nanoparticles on glass substrates,” Appl. Phys. Lett. 78(17), 2556–2568 (2001).
[Crossref]

J. Won, T. Inaba, H. Masuhara, H. Fujiwara, K. Sasaki, S. Miyawaki, and S. Sato, “Photothermal fixation of laser-trapped polymer microparticles on polymer substrates,” Appl. Phys. Lett. 75(11), 1506–1508 (1999).
[Crossref]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett. 16(19), 1463–1465 (1991).
[Crossref] [PubMed]

Matsuda, K.

K. Matsuda, S. Takahashi, and K. Takamasu, “Development of in-process visualization system for laser-assisted three-dimensional microfabrication using photocatalyst nanoparticles,” Int. J. Precis. Eng. Manuf. 11(6), 811–815 (2010).
[Crossref]

Matsui, S.

T. Morita, R. Kometani, K. Watanabe, K. Kanda, Y. Haruyama, T. Hoshino, K. Kondo, T. Kaito, T. Ishihashi, J. Fujita, M. Ishida, Y. Ochiai, T. Tajima, and S. Matsui, “Free-space-wiring fabrication in nano-space by focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 21, 2737 (2003).
[Crossref]

J. Fujita, M. Ishida, T. Ichihashi, Y. Ochiai, T. Kaito, and S. Matsui, “Growth of three-dimensional nano-structures using FIB-CVD and its mechanical properties,” Nucl. Instrum. Methods Phys. Res. B 206, 472–477 (2003).
[Crossref]

S. Matsui, T. Kaito, J. Fujita, M. Komuro, K. Kanda, and Y. Haruyama, “Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 18, 3181 (2000).
[Crossref]

Misawa, H.

Miyawaki, S.

J. Won, T. Inaba, H. Masuhara, H. Fujiwara, K. Sasaki, S. Miyawaki, and S. Sato, “Photothermal fixation of laser-trapped polymer microparticles on polymer substrates,” Appl. Phys. Lett. 75(11), 1506–1508 (1999).
[Crossref]

Mizuguchi, Y.

F. Iwata, Y. Mizuguchi, H. Ko, and T. Ushiki, “Nanomanipulation of biological samples using a compact atomic force microscope under scanning electron microscope observation,” J. Electron Microsc. 60(6) 359–366 (2011).
[Crossref]

Morita, T.

T. Morita, R. Kometani, K. Watanabe, K. Kanda, Y. Haruyama, T. Hoshino, K. Kondo, T. Kaito, T. Ishihashi, J. Fujita, M. Ishida, Y. Ochiai, T. Tajima, and S. Matsui, “Free-space-wiring fabrication in nano-space by focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 21, 2737 (2003).
[Crossref]

Nakamura, O.

Ochiai, Y.

J. Fujita, M. Ishida, T. Ichihashi, Y. Ochiai, T. Kaito, and S. Matsui, “Growth of three-dimensional nano-structures using FIB-CVD and its mechanical properties,” Nucl. Instrum. Methods Phys. Res. B 206, 472–477 (2003).
[Crossref]

T. Morita, R. Kometani, K. Watanabe, K. Kanda, Y. Haruyama, T. Hoshino, K. Kondo, T. Kaito, T. Ishihashi, J. Fujita, M. Ishida, Y. Ochiai, T. Tajima, and S. Matsui, “Free-space-wiring fabrication in nano-space by focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 21, 2737 (2003).
[Crossref]

Ostrander, J. W.

A. L. Rogach, N. A. Kotov, D. S. Koktysh, J. W. Ostrander, and G. A. Ragoiha, “Electrophoretic deposition of latex-based 3D colloidal photonic crystals: a technique for rapid production of high-quality opals,” Chem. Mater. 12(9), 2721–2726 (2000).
[Crossref]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Perkins, T. T.

T. T. Perkins, S. R. Quake, D. E. Smith, and S. Chu, “Relaxation of a single DNA molecule observed by optical microscopy,” Science 264(5160), 822–826 (1994).
[Crossref] [PubMed]

Quake, S. R.

T. T. Perkins, S. R. Quake, D. E. Smith, and S. Chu, “Relaxation of a single DNA molecule observed by optical microscopy,” Science 264(5160), 822–826 (1994).
[Crossref] [PubMed]

Ragoiha, G. A.

A. L. Rogach, N. A. Kotov, D. S. Koktysh, J. W. Ostrander, and G. A. Ragoiha, “Electrophoretic deposition of latex-based 3D colloidal photonic crystals: a technique for rapid production of high-quality opals,” Chem. Mater. 12(9), 2721–2726 (2000).
[Crossref]

Reicherter, M.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
[Crossref]

Rogach, A. L.

A. L. Rogach, N. A. Kotov, D. S. Koktysh, J. W. Ostrander, and G. A. Ragoiha, “Electrophoretic deposition of latex-based 3D colloidal photonic crystals: a technique for rapid production of high-quality opals,” Chem. Mater. 12(9), 2721–2726 (2000).
[Crossref]

Sasaki, K.

J. Won, T. Inaba, H. Masuhara, H. Fujiwara, K. Sasaki, S. Miyawaki, and S. Sato, “Photothermal fixation of laser-trapped polymer microparticles on polymer substrates,” Appl. Phys. Lett. 75(11), 1506–1508 (1999).
[Crossref]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett. 16(19), 1463–1465 (1991).
[Crossref] [PubMed]

Sato, S.

J. Won, T. Inaba, H. Masuhara, H. Fujiwara, K. Sasaki, S. Miyawaki, and S. Sato, “Photothermal fixation of laser-trapped polymer microparticles on polymer substrates,” Appl. Phys. Lett. 75(11), 1506–1508 (1999).
[Crossref]

Smith, D. E.

T. T. Perkins, S. R. Quake, D. E. Smith, and S. Chu, “Relaxation of a single DNA molecule observed by optical microscopy,” Science 264(5160), 822–826 (1994).
[Crossref] [PubMed]

Sow, C. H.

C. H. Sow, A. A. Bettiol, Y.Y. G. Lee, F. C. Cheong, C.T. Lim, and F. Watt, “Multiple-spot optical tweezers created with microlens arrays fabricated by proton beam writing,” Appl. Phys.  B 78(6), 705–709 (2004).
[Crossref]

Suzuki, A.

F. Iwata, M. Kaji, A. Suzuki, and S. Ito, “Local electrophoresis deposition of nanomaterials deposition by a laser trapping technique,” Nanotechnol. 20, 235303 (2009).
[Crossref]

Svoboda, K.

Tajima, T.

T. Morita, R. Kometani, K. Watanabe, K. Kanda, Y. Haruyama, T. Hoshino, K. Kondo, T. Kaito, T. Ishihashi, J. Fujita, M. Ishida, Y. Ochiai, T. Tajima, and S. Matsui, “Free-space-wiring fabrication in nano-space by focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 21, 2737 (2003).
[Crossref]

Takahashi, S.

K. Matsuda, S. Takahashi, and K. Takamasu, “Development of in-process visualization system for laser-assisted three-dimensional microfabrication using photocatalyst nanoparticles,” Int. J. Precis. Eng. Manuf. 11(6), 811–815 (2010).
[Crossref]

Takamasu, K.

K. Matsuda, S. Takahashi, and K. Takamasu, “Development of in-process visualization system for laser-assisted three-dimensional microfabrication using photocatalyst nanoparticles,” Int. J. Precis. Eng. Manuf. 11(6), 811–815 (2010).
[Crossref]

Tanaka, T.

A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005).
[Crossref] [PubMed]

Tiziani, H. J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
[Crossref]

Ushiki, T.

F. Iwata, Y. Mizuguchi, H. Ko, and T. Ushiki, “Nanomanipulation of biological samples using a compact atomic force microscope under scanning electron microscope observation,” J. Electron Microsc. 60(6) 359–366 (2011).
[Crossref]

Warisawa, S.

D. Guo, R. Kometani, S. Warisawa, and S. Ishihara, “Growth of ultra-long free-space-nanowire by the real-time feedback control of the scanning speed on focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 31, 061601 (2013).
[Crossref]

Watanabe, K.

T. Morita, R. Kometani, K. Watanabe, K. Kanda, Y. Haruyama, T. Hoshino, K. Kondo, T. Kaito, T. Ishihashi, J. Fujita, M. Ishida, Y. Ochiai, T. Tajima, and S. Matsui, “Free-space-wiring fabrication in nano-space by focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 21, 2737 (2003).
[Crossref]

Watt, F.

C. H. Sow, A. A. Bettiol, Y.Y. G. Lee, F. C. Cheong, C.T. Lim, and F. Watt, “Multiple-spot optical tweezers created with microlens arrays fabricated by proton beam writing,” Appl. Phys.  B 78(6), 705–709 (2004).
[Crossref]

Won, J.

J. Won, T. Inaba, H. Masuhara, H. Fujiwara, K. Sasaki, S. Miyawaki, and S. Sato, “Photothermal fixation of laser-trapped polymer microparticles on polymer substrates,” Appl. Phys. Lett. 75(11), 1506–1508 (1999).
[Crossref]

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[Crossref] [PubMed]

Yoshikawa, H.

S. Ito, H. Yoshikawa, and H. masuhara, “Laser manipulation and fixation of single gold nanoparticles in solution at room temperature,” Appl. Phys. Lett. 80(3), 482–484 (2002).
[Crossref]

S. Ito, H. Yoshikawa, and H. masuhara, “Optical patterning and photochemical fixation of polymer nanoparticles on glass substrates,” Appl. Phys. Lett. 78(17), 2556–2568 (2001).
[Crossref]

Appl. Phys (1)

C. H. Sow, A. A. Bettiol, Y.Y. G. Lee, F. C. Cheong, C.T. Lim, and F. Watt, “Multiple-spot optical tweezers created with microlens arrays fabricated by proton beam writing,” Appl. Phys.  B 78(6), 705–709 (2004).
[Crossref]

Appl. Phys. Lett. (5)

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76(19), 2656–2658 (2000).
[Crossref]

S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006).
[Crossref]

J. Won, T. Inaba, H. Masuhara, H. Fujiwara, K. Sasaki, S. Miyawaki, and S. Sato, “Photothermal fixation of laser-trapped polymer microparticles on polymer substrates,” Appl. Phys. Lett. 75(11), 1506–1508 (1999).
[Crossref]

S. Ito, H. Yoshikawa, and H. masuhara, “Optical patterning and photochemical fixation of polymer nanoparticles on glass substrates,” Appl. Phys. Lett. 78(17), 2556–2568 (2001).
[Crossref]

S. Ito, H. Yoshikawa, and H. masuhara, “Laser manipulation and fixation of single gold nanoparticles in solution at room temperature,” Appl. Phys. Lett. 80(3), 482–484 (2002).
[Crossref]

Chem. Mater. (1)

A. L. Rogach, N. A. Kotov, D. S. Koktysh, J. W. Ostrander, and G. A. Ragoiha, “Electrophoretic deposition of latex-based 3D colloidal photonic crystals: a technique for rapid production of high-quality opals,” Chem. Mater. 12(9), 2721–2726 (2000).
[Crossref]

Curr. Opin. Colloid Interface Sci. (1)

D. G. Grier, “Optical tweezers in colloid and interface science,” Curr. Opin. Colloid Interface Sci. 2(3), 264–270 (1997).
[Crossref]

Int. J. Precis. Eng. Manuf. (1)

K. Matsuda, S. Takahashi, and K. Takamasu, “Development of in-process visualization system for laser-assisted three-dimensional microfabrication using photocatalyst nanoparticles,” Int. J. Precis. Eng. Manuf. 11(6), 811–815 (2010).
[Crossref]

J. Electron Microsc. (1)

F. Iwata, Y. Mizuguchi, H. Ko, and T. Ushiki, “Nanomanipulation of biological samples using a compact atomic force microscope under scanning electron microscope observation,” J. Electron Microsc. 60(6) 359–366 (2011).
[Crossref]

J. Vac. Sci. Technol. B (3)

S. Matsui, T. Kaito, J. Fujita, M. Komuro, K. Kanda, and Y. Haruyama, “Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 18, 3181 (2000).
[Crossref]

T. Morita, R. Kometani, K. Watanabe, K. Kanda, Y. Haruyama, T. Hoshino, K. Kondo, T. Kaito, T. Ishihashi, J. Fujita, M. Ishida, Y. Ochiai, T. Tajima, and S. Matsui, “Free-space-wiring fabrication in nano-space by focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 21, 2737 (2003).
[Crossref]

D. Guo, R. Kometani, S. Warisawa, and S. Ishihara, “Growth of ultra-long free-space-nanowire by the real-time feedback control of the scanning speed on focused-ion-beam chemical vapor deposition,” J. Vac. Sci. Technol. B 31, 061601 (2013).
[Crossref]

Nanotechnol. (1)

F. Iwata, M. Kaji, A. Suzuki, and S. Ito, “Local electrophoresis deposition of nanomaterials deposition by a laser trapping technique,” Nanotechnol. 20, 235303 (2009).
[Crossref]

Nature (1)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[Crossref] [PubMed]

Nucl. Instrum. Methods Phys. Res. B (1)

J. Fujita, M. Ishida, T. Ichihashi, Y. Ochiai, T. Kaito, and S. Matsui, “Growth of three-dimensional nano-structures using FIB-CVD and its mechanical properties,” Nucl. Instrum. Methods Phys. Res. B 206, 472–477 (2003).
[Crossref]

Opt. Commun. (1)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. Lett. (3)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005).
[Crossref] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Science (3)

A. Ashkin, “Applicationf of laser radiation pressure,” Science 210(4474), 1081–1088 (1980).
[Crossref] [PubMed]

T. T. Perkins, S. R. Quake, D. E. Smith, and S. Chu, “Relaxation of a single DNA molecule observed by optical microscopy,” Science 264(5160), 822–826 (1994).
[Crossref] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The schematic of the fabrication method for 3D structures. Pillar structures can be fabricated by moving the stage downward while deposition is underway. (b) The schematic of the experimental setup for local electrophoresis deposition assisted by a laser trapping technique.
Fig. 2
Fig. 2 Schematic of measurement method for the spring constant of a fabricated pillar using an AFM cantilever.
Fig. 3
Fig. 3 SEM images of the fabricated structures. (a)–(c) Changing the piezo-actuator displacement where the laser beam was shut off under movement of the actuator. (d)–(f) Magnified images of dashed-line squares (I), (II) and (III) in image (c), respectively.
Fig. 4
Fig. 4 (a)–(f) SEM images of the typical fabricated pillars by changing laser intensity from 1.50 mW to 2.75 mW in increments of 0.25 mW, respectively; (g) relationship between the diameter of the pillars and the laser intensity. (h) SEM image of the fabricated pillar whose diameter was the smallest one in this experiment.
Fig. 5
Fig. 5 SEM images of measurement of the deflection of the fabricated pillar and the cantilever: (a) The cantilever and the fabricated pillar used in the experiment; (b) the fabricated pillar deflected with the cantilever; (c) a superimposed image of Figs. 5(a) and (b); (d) superimposed image of the cantilever captured before and after applying a loading force to the fabricated pillar.
Fig. 6
Fig. 6 SEM images of the spring structure: (a) SEM image of the spring structure; (b) side view of the spring structure. Every pitch of the spring structure was same length of 12 μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E = k L 3 3 I ,

Metrics