Abstract

We report the fabrication of in-line photonic microcells (PMCs) by encapsulating tapered microfibers (MFs) inside glass tubes. The encapsulation isolates MFs from external environment and makes them more suitable for real-world applications. Based on PMCs with encapsulated highly birefringent (Hi-Bi) MFs, we demonstrated pressure, temperature and refractive index (RI) sensors as well as long period grating devices. A fiber Sagnac loop interferometer incorporating a Hi-Bi microfiber PMC demonstrated RI sensitivity of 2024 nm per RI unit (nm/RIU) in gaseous environment and 21231 nm/RIU in water.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microfiber Mach-Zehnder interferometer based on long period grating for sensing applications

Yanzhen Tan, Li-Peng Sun, Long Jin, Jie Li, and Bai-Ou Guan
Opt. Express 21(1) 154-164 (2013)

Tunable comb filters and refractive index sensors based on fiber loop mirror with inline high birefringence microfiber

Wa Jin, Chao Wang, Haifeng Xuan, and Wei Jin
Opt. Lett. 38(21) 4277-4280 (2013)

Suspended core photonic microcells for sensing and device applications

Chao Wang, Wei Jin, Jun Ma, Ying Wang, Hoi Lut Ho, and Xin Shi
Opt. Lett. 38(11) 1881-1883 (2013)

References

  • View by:
  • |
  • |
  • |

  1. X. S. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32(12), 1710–1712 (2007).
    [Crossref] [PubMed]
  2. M. Sumetsky, “Basic elements for microfiber photonics: Micro/nanofibers and microfiber coil resonators,” J. Lightwave Technol. 26(1), 21–27 (2008).
    [Crossref]
  3. P. Pal and W. H. Knox, “Fabrication and characterization of fused microfiber resonators,” IEEE Photon. Technol. Lett. 21(12), 766–768 (2009).
    [Crossref]
  4. S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, and M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12(13), 2864–2869 (2004).
    [Crossref] [PubMed]
  5. G. Salceda-Delgado, D. Monzon-Hernandez, A. Martinez-Rios, G. A. Cardenas-Sevilla, and J. Villatoro, “Optical microfiber mode interferometer for temperature-independent refractometric sensing,” Opt. Lett. 37(11), 1974–1976 (2012).
    [Crossref] [PubMed]
  6. Y. Cao, W. Jin, L. H. Ho, and Z. Liu, “Evanescent-wave photoacoustic spectroscopy with optical micro/nano fibers,” Opt. Lett. 37(2), 214–216 (2012).
    [Crossref] [PubMed]
  7. L. Xiao, M. D. W. Grogan, W. J. Wadsworth, R. England, and T. A. Birks, “Stable low-loss optical nanofibres embedded in hydrophobic aerogel,” Opt. Express 19(2), 764–769 (2011).
    [Crossref] [PubMed]
  8. F. Xu and G. Brambilla, “Preservation of micro-optical fibers by embedding,” Jpn. J. Appl. Phys. 47(8), 6675–6677 (2008).
    [Crossref]
  9. T. A. Birks, W. J. Wadsworth, and P. S. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25(19), 1415–1417 (2000).
    [Crossref] [PubMed]
  10. F. Xu and G. Brambilla, “Preservation of micro-optical fibers by embedding,” Jpn. J. Appl. Phys. 47(8), 6675–6677 (2008).
    [Crossref]
  11. N. Lou, R. Jha, J. L. Domínguez-Juárez, V. Finazzi, J. Villatoro, G. Badenes, and V. Pruneri, “Embedded optical micro/nano-fibers for stable devices,” Opt. Lett. 35(4), 571–573 (2010).
    [Crossref] [PubMed]
  12. G. Vienne, Y. Li, and L. M. Tong, “Effect of host polymer on microfiber resonator,” IEEE Photon. Technol. Lett. 19(18), 1386–1388 (2007).
    [Crossref]
  13. L. M. Xiao, M. D. W. Grogan, W. J. Wadsworth, R. England, and T. A. Birks, “Stable low-loss optical nanofibres embedded in hydrophobic aerogel,” Opt. Express 19(2), 764–769 (2011).
    [Crossref] [PubMed]
  14. H. Xuan, J. Ju, and W. Jin, “Highly birefringent optical microfibers,” Opt. Express 18(4), 3828–3839 (2010).
    [Crossref] [PubMed]
  15. W. Jin, C. Wang, H. Xuan, and W. Jin, “Tunable comb filters and refractive index sensors based on fiber loop mirror with inline high birefringence microfiber,” Opt. Lett. 38(21), 4277–4280 (2013).
    [Crossref] [PubMed]
  16. S. Geacai, I. Nita, O. Iulian, and E. Geacai, “Refractive indices for biodiesel mixtures,” U. P. B. Sci. Bull. Series B 74(4), 149–160 (2012).
  17. D.-W. Duan, Y.-J. Rao, and T. Zhu, “High sensitivity gas refractometer based on all-fiber open-cavity Fabry–Perot interferometer formed by large lateral offset splicing,” J. Opt. Soc. Am. B 29(5), 912–915 (2012).
    [Crossref]
  18. Z. Liu, C. Wu, M.-L. V. Tse, C. Lu, and H.-Y. Tam, “Ultrahigh birefringence index-guiding photonic crystal fiber and its application for pressure and temperature discrimination,” Opt. Lett. 38(9), 1385–1387 (2013).
    [Crossref] [PubMed]
  19. W. Jin, H.-F. Xuan, C. Wang, and W. Jin, “High sensitivity pressure sensor based on a birefringent microfiber loop mirror,” Proc. SPIE 8924, 89242Z (2013).
    [Crossref]
  20. P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19(3), 677–717 (1990).
    [Crossref]
  21. J. Li, L.-P. Sun, S. Gao, Z. Quan, Y.-L. Chang, Y. Ran, L. Jin, and B.-O. Guan, “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Opt. Lett. 36(18), 3593–3595 (2011).
    [Crossref] [PubMed]
  22. H. Xuan, W. Jin, and S. Liu, “Long-period gratings in wavelength-scale microfibers,” Opt. Lett. 35(1), 85–87 (2010).
    [Crossref] [PubMed]
  23. H. Xuan, W. Jin, and M. Zhang, “CO2 laser induced long period gratings in optical microfibers,” Opt. Express 17(24), 21882–21890 (2009).
    [Crossref] [PubMed]

2013 (3)

2012 (4)

2011 (3)

2010 (3)

2009 (2)

H. Xuan, W. Jin, and M. Zhang, “CO2 laser induced long period gratings in optical microfibers,” Opt. Express 17(24), 21882–21890 (2009).
[Crossref] [PubMed]

P. Pal and W. H. Knox, “Fabrication and characterization of fused microfiber resonators,” IEEE Photon. Technol. Lett. 21(12), 766–768 (2009).
[Crossref]

2008 (3)

F. Xu and G. Brambilla, “Preservation of micro-optical fibers by embedding,” Jpn. J. Appl. Phys. 47(8), 6675–6677 (2008).
[Crossref]

F. Xu and G. Brambilla, “Preservation of micro-optical fibers by embedding,” Jpn. J. Appl. Phys. 47(8), 6675–6677 (2008).
[Crossref]

M. Sumetsky, “Basic elements for microfiber photonics: Micro/nanofibers and microfiber coil resonators,” J. Lightwave Technol. 26(1), 21–27 (2008).
[Crossref]

2007 (2)

X. S. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32(12), 1710–1712 (2007).
[Crossref] [PubMed]

G. Vienne, Y. Li, and L. M. Tong, “Effect of host polymer on microfiber resonator,” IEEE Photon. Technol. Lett. 19(18), 1386–1388 (2007).
[Crossref]

2004 (1)

2000 (1)

1990 (1)

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19(3), 677–717 (1990).
[Crossref]

Badenes, G.

Birks, T.

Birks, T. A.

Brambilla, G.

F. Xu and G. Brambilla, “Preservation of micro-optical fibers by embedding,” Jpn. J. Appl. Phys. 47(8), 6675–6677 (2008).
[Crossref]

F. Xu and G. Brambilla, “Preservation of micro-optical fibers by embedding,” Jpn. J. Appl. Phys. 47(8), 6675–6677 (2008).
[Crossref]

Cao, Y.

Cardenas-Sevilla, G. A.

Chang, Y.-L.

Chen, Y.

Domínguez-Juárez, J. L.

Duan, D.-W.

England, R.

Finazzi, V.

Gallagher, J. S.

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19(3), 677–717 (1990).
[Crossref]

Gao, S.

Geacai, E.

S. Geacai, I. Nita, O. Iulian, and E. Geacai, “Refractive indices for biodiesel mixtures,” U. P. B. Sci. Bull. Series B 74(4), 149–160 (2012).

Geacai, S.

S. Geacai, I. Nita, O. Iulian, and E. Geacai, “Refractive indices for biodiesel mixtures,” U. P. B. Sci. Bull. Series B 74(4), 149–160 (2012).

Grogan, M. D. W.

Guan, B.-O.

Ho, L. H.

Iulian, O.

S. Geacai, I. Nita, O. Iulian, and E. Geacai, “Refractive indices for biodiesel mixtures,” U. P. B. Sci. Bull. Series B 74(4), 149–160 (2012).

Jha, R.

Jiang, X. S.

Jin, L.

Jin, W.

Ju, J.

Knox, W. H.

P. Pal and W. H. Knox, “Fabrication and characterization of fused microfiber resonators,” IEEE Photon. Technol. Lett. 21(12), 766–768 (2009).
[Crossref]

Leon-Saval, S.

Levelt Sengers, J. M. H.

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19(3), 677–717 (1990).
[Crossref]

Li, J.

Li, Y.

G. Vienne, Y. Li, and L. M. Tong, “Effect of host polymer on microfiber resonator,” IEEE Photon. Technol. Lett. 19(18), 1386–1388 (2007).
[Crossref]

Liu, S.

Liu, Z.

Lou, N.

Lu, C.

Martinez-Rios, A.

Mason, M.

Monzon-Hernandez, D.

Nita, I.

S. Geacai, I. Nita, O. Iulian, and E. Geacai, “Refractive indices for biodiesel mixtures,” U. P. B. Sci. Bull. Series B 74(4), 149–160 (2012).

Pal, P.

P. Pal and W. H. Knox, “Fabrication and characterization of fused microfiber resonators,” IEEE Photon. Technol. Lett. 21(12), 766–768 (2009).
[Crossref]

Pruneri, V.

Quan, Z.

Ran, Y.

Rao, Y.-J.

Russell, P. S.

Salceda-Delgado, G.

Schiebener, P.

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19(3), 677–717 (1990).
[Crossref]

St. J. Russell, P.

Straub, J.

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19(3), 677–717 (1990).
[Crossref]

Sumetsky, M.

Sun, L.-P.

Tam, H.-Y.

Tong, L. M.

X. S. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32(12), 1710–1712 (2007).
[Crossref] [PubMed]

G. Vienne, Y. Li, and L. M. Tong, “Effect of host polymer on microfiber resonator,” IEEE Photon. Technol. Lett. 19(18), 1386–1388 (2007).
[Crossref]

Tse, M.-L. V.

Vienne, G.

G. Vienne, Y. Li, and L. M. Tong, “Effect of host polymer on microfiber resonator,” IEEE Photon. Technol. Lett. 19(18), 1386–1388 (2007).
[Crossref]

X. S. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32(12), 1710–1712 (2007).
[Crossref] [PubMed]

Villatoro, J.

Wadsworth, W.

Wadsworth, W. J.

Wang, C.

W. Jin, H.-F. Xuan, C. Wang, and W. Jin, “High sensitivity pressure sensor based on a birefringent microfiber loop mirror,” Proc. SPIE 8924, 89242Z (2013).
[Crossref]

W. Jin, C. Wang, H. Xuan, and W. Jin, “Tunable comb filters and refractive index sensors based on fiber loop mirror with inline high birefringence microfiber,” Opt. Lett. 38(21), 4277–4280 (2013).
[Crossref] [PubMed]

Wu, C.

Xiao, L.

Xiao, L. M.

Xu, F.

F. Xu and G. Brambilla, “Preservation of micro-optical fibers by embedding,” Jpn. J. Appl. Phys. 47(8), 6675–6677 (2008).
[Crossref]

F. Xu and G. Brambilla, “Preservation of micro-optical fibers by embedding,” Jpn. J. Appl. Phys. 47(8), 6675–6677 (2008).
[Crossref]

Xuan, H.

Xuan, H.-F.

W. Jin, H.-F. Xuan, C. Wang, and W. Jin, “High sensitivity pressure sensor based on a birefringent microfiber loop mirror,” Proc. SPIE 8924, 89242Z (2013).
[Crossref]

Zhang, M.

Zhu, T.

IEEE Photon. Technol. Lett. (2)

P. Pal and W. H. Knox, “Fabrication and characterization of fused microfiber resonators,” IEEE Photon. Technol. Lett. 21(12), 766–768 (2009).
[Crossref]

G. Vienne, Y. Li, and L. M. Tong, “Effect of host polymer on microfiber resonator,” IEEE Photon. Technol. Lett. 19(18), 1386–1388 (2007).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Ref. Data (1)

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19(3), 677–717 (1990).
[Crossref]

Jpn. J. Appl. Phys. (2)

F. Xu and G. Brambilla, “Preservation of micro-optical fibers by embedding,” Jpn. J. Appl. Phys. 47(8), 6675–6677 (2008).
[Crossref]

F. Xu and G. Brambilla, “Preservation of micro-optical fibers by embedding,” Jpn. J. Appl. Phys. 47(8), 6675–6677 (2008).
[Crossref]

Opt. Express (5)

Opt. Lett. (9)

J. Li, L.-P. Sun, S. Gao, Z. Quan, Y.-L. Chang, Y. Ran, L. Jin, and B.-O. Guan, “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Opt. Lett. 36(18), 3593–3595 (2011).
[Crossref] [PubMed]

H. Xuan, W. Jin, and S. Liu, “Long-period gratings in wavelength-scale microfibers,” Opt. Lett. 35(1), 85–87 (2010).
[Crossref] [PubMed]

W. Jin, C. Wang, H. Xuan, and W. Jin, “Tunable comb filters and refractive index sensors based on fiber loop mirror with inline high birefringence microfiber,” Opt. Lett. 38(21), 4277–4280 (2013).
[Crossref] [PubMed]

N. Lou, R. Jha, J. L. Domínguez-Juárez, V. Finazzi, J. Villatoro, G. Badenes, and V. Pruneri, “Embedded optical micro/nano-fibers for stable devices,” Opt. Lett. 35(4), 571–573 (2010).
[Crossref] [PubMed]

Z. Liu, C. Wu, M.-L. V. Tse, C. Lu, and H.-Y. Tam, “Ultrahigh birefringence index-guiding photonic crystal fiber and its application for pressure and temperature discrimination,” Opt. Lett. 38(9), 1385–1387 (2013).
[Crossref] [PubMed]

G. Salceda-Delgado, D. Monzon-Hernandez, A. Martinez-Rios, G. A. Cardenas-Sevilla, and J. Villatoro, “Optical microfiber mode interferometer for temperature-independent refractometric sensing,” Opt. Lett. 37(11), 1974–1976 (2012).
[Crossref] [PubMed]

Y. Cao, W. Jin, L. H. Ho, and Z. Liu, “Evanescent-wave photoacoustic spectroscopy with optical micro/nano fibers,” Opt. Lett. 37(2), 214–216 (2012).
[Crossref] [PubMed]

T. A. Birks, W. J. Wadsworth, and P. S. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25(19), 1415–1417 (2000).
[Crossref] [PubMed]

X. S. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32(12), 1710–1712 (2007).
[Crossref] [PubMed]

Proc. SPIE (1)

W. Jin, H.-F. Xuan, C. Wang, and W. Jin, “High sensitivity pressure sensor based on a birefringent microfiber loop mirror,” Proc. SPIE 8924, 89242Z (2013).
[Crossref]

U. P. B. Sci. Bull. Series B (1)

S. Geacai, I. Nita, O. Iulian, and E. Geacai, “Refractive indices for biodiesel mixtures,” U. P. B. Sci. Bull. Series B 74(4), 149–160 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Setup for encapsulating a microfiber inside a glass capillary.
Fig. 2
Fig. 2 (a) Schematic and (b) photo of a PMC with an encapsulated MF; (c-e) microscope images of the PMC: (c) the external and (d) the internal of the capillary end, (e) the MF inside the capillary.
Fig. 3
Fig. 3 Spectrums of output light from a SLI containing a Hi-Bi MF. (a) Spectrums before and after encapsulation. (b) Spectrums of encapsulated Hi-Bi MF after one month and non-encapsulated MF left open in air for two days.
Fig. 4
Fig. 4 (a) Output spectrums of a SLI incorporating an encapsulated Hi-Bi microfiber at two different temperatures (25 and 100); (b) Dip wavelength around 1558 nm as a function of temperature for the Hi-Bi MF with (black solid line) and without (red dash line) encapsulation.
Fig. 5
Fig. 5 (a) Setup for producing gas mixtures with different refractive indexes. MFC: mass flow controller. (b) Dip wavelength as a function of refractive index. Inset: spectrums for five different gas mixtures.
Fig. 6
Fig. 6 Dip wavelength around 1558 nm (at room temperature) as a function of gas pressure from 1 to 9 bar.
Fig. 7
Fig. 7 (a) Measured transmission spectrums when temperature is varied from 25 to 50 °C, inset: the region around the hole at the end of the capillarity. (b) Wavelength of the dip around 1548 nm as function of temperature.
Fig. 8
Fig. 8 (a) Measured transmission spectrums of the SLI with a Hi-Bi MF microcell filled with RI liquid when temperature is varied from 30 to 40 °C. (b) Dip wavelength as a function of temperature.
Fig. 9
Fig. 9 (a) Calculated Birefringence as a function of normalized diameter. (b) Sensitivity as a function of the fiber width a at 1550 nm. The experimental results are marked as open circles. Long period grating (LPG) devices.
Fig. 10
Fig. 10 (a) Microscope image of an LPG showing the periodic notches along the encapsulated Hi-Bi MF. (b) Transmission spectrums of the LPG for two orthogonal polarization eigen states.
Fig. 11
Fig. 11 (a) Transmission spectrums of an encapsulated Hi-Bi MF LPG. The LPG was inscribed on the non-encapsulated MF with a CO2 laser before it is encapsulated. (b) The transmission spectrums of the LPG at different times (immediately after encapsulation and one month after encapsulation).The slow and fast axes correspond to the major and minor axes of the MF’s elliptical cross-section.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n m = v H 2 n H 2 + v N 2 n N 2
S = d λ d n = λ B / n B λ B / λ = λ B / n G

Metrics