Abstract

In this paper, we propose an edge directive moving least square (ED-MLS) based superresolution method for computational integral imaging reconstruction(CIIR). Due to the low resolution of the elemental images and the alignment error of the microlenses, it is not easy to obtain an accurate registration result in integral imaging, which makes it difficult to apply superresolution to the CIIR application. To overcome this problem, we propose the edge directive moving least square (ED-MLS) based superresolution method which utilizes the properties of the moving least square. The proposed ED-MLS based superresolution takes the direction of the edge into account in the moving least square reconstruction to deal with the abrupt brightness changes in the edge regions, and is less sensitive to the registration error. Furthermore, we propose a framework which shows how the data have to be collected for the superresolution problem in the CIIR application. Experimental results verify that the resolution of the elemental images is enhanced, and that a high resolution reconstructed 3-D image can be obtained with the proposed method.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Image quality enhancement in 3D computational integral imaging by use of interpolation methods

Dong-Hak Shin and Hoon Yoo
Opt. Express 15(19) 12039-12049 (2007)

References

  • View by:
  • |
  • |
  • |

  1. J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt. 50(34), H87–H115 (2011).
    [Crossref] [PubMed]
  2. A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
    [Crossref]
  3. H. Arimoto and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26(3), 157–159 (2001).
    [Crossref]
  4. S. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12(3), 483–491 (2004).
    [Crossref] [PubMed]
  5. D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. 44(11), 8016–8018 (2005).
    [Crossref]
  6. S.-H. Hong and B. Javidi, “Improved resolution 3D object reconstruction using computational integral imaging with time multiplexing,” Opt. Express 12(19), 4579–4588 (2004).
    [Crossref] [PubMed]
  7. M. Zhang, Y. Piao, and E.-S. Kim, “Occlusion-removed scheme using depth-reversed method in computational integral imaging,” Appl. Opt. 49(14), 2571–2580 (2010).
    [Crossref]
  8. J.-Y. Jang, D. Shin, and E.-S. Kim, “Optical three-dimensional refocusing from elemental images based on a sifting property of the periodic δ-function array in integral-imaging,” Opt. Express 22(2), 1533–1550 (2014).
    [Crossref] [PubMed]
  9. L. Erdmann and K. J. Gabriel, “High-resolution digital integral photography by use of a scanning microlens array,” Appl. Opt. 40(31), 5592–5599 (2001).
    [Crossref]
  10. J.-S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging with nonstationary micro-optics,” Opt. Lett. 27, 324–326 (2002).
    [Crossref]
  11. H. Navarro, J.C. Barreiro, G. Saavedra, M. Martinez-Corral, and B. Javidi, “High-resolution far-field integral-imaging camera by double snapshot,” Opt. Express 20(2), 890–895 (2012).
    [Crossref] [PubMed]
  12. M. Martinez-Corral, B. Javidi, R. Martinez-Cuenca, and G. Saavedra, “Integral imaging with improved depth of field by use of amplitude-modulated microlens arrays,” Appl. Opt. 43(31), 5806–5813 (2004).
    [Crossref] [PubMed]
  13. H. Yoo, “Axially moving a lenslet array for high-resolution 3D images in computational integral imaging,” Opt. Express 21(7), 8873–8878 (2013).
    [Crossref] [PubMed]
  14. Y.-T. Lim, J.-H. Park, K.-C. Kwon, and N. Kim, “Resolution-enhanced integral imaging microscopy that uses lens array shifting,” Opt. Express 17(21), 19253–19263 (2009).
    [Crossref]
  15. J.-H. Park, J. Kim, Y. Kim, and B. Lee, “Resolution-enhanced three-dimension/two-dimension convertible display based on integral imaging,” Opt. Express 13(6), 1875–1884 (2005).
    [Crossref] [PubMed]
  16. C.-W. Chen, M. Cho, Y.-P. Huang, and B. Javidi, “Improved Viewing Zones for Projection Type Integral Imaging 3D Display Using Adaptive Liquid Crystal Prism Array,” J. Display Technol. 10(3), 198–203 (2014).
    [Crossref]
  17. M.A. Alam, G. Baasantseren, M.-U. Erdenebat, N. Kim, and J.-H. Park, “Resolution enhancement of integral imaging three-dimensional display using directional elemental image projection,” J. Soc. Inf. Display 20(4), 221–227 (2012).
    [Crossref]
  18. D.-C. Hwang, J.-S. Park, S.-C. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3-D reconstructed images in integral imaging using intermediate-view reconstruction technique,” Appl. Opt. 45(19), 4631–4637 (2006).
    [Crossref] [PubMed]
  19. J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45(11), 117004 (2006).
    [Crossref]
  20. S.-C. Park, M.-K. Park, and M.-G. Kang, “Super-resolution image reconstruction: A technical overview,” IEEE Signal Process. Mag.21–36May, (2003).
    [Crossref]
  21. A. Stern and B. Javidi, “Three-dimensional image sensing and reconstruction with time-division multiplexed computational integral imaging,” Appl. Opt. 42, 7036–7042 (2003).
    [Crossref] [PubMed]
  22. K. Nitta, R. Shogenji, S. Miyatake, and J. Tanida, “Image reconstruction for thin observation module by bound optics by using the iterative backprojection method,” Appl. Opt. 45, 2893–2900 (2006).
    [Crossref] [PubMed]
  23. K. Choi and T. J. Schulz, “Signal-processing approaches for image-resolution restoration for TOMBO imagery,” Appl. Opt. 47, B104–B116 (2008).
    [Crossref] [PubMed]
  24. M. Shankar, R. Willett, N. Pitsianis, T. Schulz, R. Gibbons, R. Te Kolste, J. Carriere, C. Chen, D. Prather, and D. Brady, “Thin infrared imaging systems through multichannel sampling,” Appl. Opt. 47, B1–B10 (2008).
    [Crossref] [PubMed]
  25. A. V. Kanaev, D. A. Scribner, J. R. Ackerman, and E. F. Fleet, “Analysis and application of multiframe superresolution processing for conventional imaging systems and lenslet arrays,” Appl. Opt. 46, 4320–4328 (2007).
    [Crossref] [PubMed]
  26. J.-H. Park, Y. Kim, and B. Lee, “Elemental image generation based on integral imaging with enhanced resolution,” Information Optics and Photonics Technology, Photonics Asia, Proc. SPIE5642, Beijing, China, 184–196, Nov. (2004).
  27. Y. Wang and Y. Piao, “Super-Resolution Processing of Computational Reconstructed Images,” Proc. Signal Processing (ICSP), 2010 IEEE 10th International Conference1033–1035 (2010).
  28. D. Levin, “The approximation power of moving least-squares,” Math. Comp. 67(224), 1517–1531 (1998).
    [Crossref]
  29. D.-H. Shin, B. Lee, and J.-J. Lee, “Occlusion removal method of partially occluded 3D object using sub-image block matching in computational integral imaging,” Opt. Express 16, 16294–16304 (2008).
    [Crossref] [PubMed]
  30. G. H. Golub and C.F. Van Loan, Matrix Computations (Johns Hopkins University Press, 1991).

2014 (2)

2013 (1)

2012 (2)

H. Navarro, J.C. Barreiro, G. Saavedra, M. Martinez-Corral, and B. Javidi, “High-resolution far-field integral-imaging camera by double snapshot,” Opt. Express 20(2), 890–895 (2012).
[Crossref] [PubMed]

M.A. Alam, G. Baasantseren, M.-U. Erdenebat, N. Kim, and J.-H. Park, “Resolution enhancement of integral imaging three-dimensional display using directional elemental image projection,” J. Soc. Inf. Display 20(4), 221–227 (2012).
[Crossref]

2011 (1)

2010 (1)

2009 (1)

2008 (3)

2007 (1)

2006 (4)

K. Nitta, R. Shogenji, S. Miyatake, and J. Tanida, “Image reconstruction for thin observation module by bound optics by using the iterative backprojection method,” Appl. Opt. 45, 2893–2900 (2006).
[Crossref] [PubMed]

D.-C. Hwang, J.-S. Park, S.-C. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3-D reconstructed images in integral imaging using intermediate-view reconstruction technique,” Appl. Opt. 45(19), 4631–4637 (2006).
[Crossref] [PubMed]

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45(11), 117004 (2006).
[Crossref]

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
[Crossref]

2005 (2)

D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. 44(11), 8016–8018 (2005).
[Crossref]

J.-H. Park, J. Kim, Y. Kim, and B. Lee, “Resolution-enhanced three-dimension/two-dimension convertible display based on integral imaging,” Opt. Express 13(6), 1875–1884 (2005).
[Crossref] [PubMed]

2004 (3)

2003 (2)

S.-C. Park, M.-K. Park, and M.-G. Kang, “Super-resolution image reconstruction: A technical overview,” IEEE Signal Process. Mag.21–36May, (2003).
[Crossref]

A. Stern and B. Javidi, “Three-dimensional image sensing and reconstruction with time-division multiplexed computational integral imaging,” Appl. Opt. 42, 7036–7042 (2003).
[Crossref] [PubMed]

2002 (1)

2001 (2)

1998 (1)

D. Levin, “The approximation power of moving least-squares,” Math. Comp. 67(224), 1517–1531 (1998).
[Crossref]

Ackerman, J. R.

Alam, M.A.

M.A. Alam, G. Baasantseren, M.-U. Erdenebat, N. Kim, and J.-H. Park, “Resolution enhancement of integral imaging three-dimensional display using directional elemental image projection,” J. Soc. Inf. Display 20(4), 221–227 (2012).
[Crossref]

Arimoto, H.

Baasantseren, G.

M.A. Alam, G. Baasantseren, M.-U. Erdenebat, N. Kim, and J.-H. Park, “Resolution enhancement of integral imaging three-dimensional display using directional elemental image projection,” J. Soc. Inf. Display 20(4), 221–227 (2012).
[Crossref]

Barreiro, J.C.

Brady, D.

Carriere, J.

Chen, C.

Chen, C.-W.

Chen, N.

Cho, M.

Choi, H.-J.

Choi, K.

Erdenebat, M.-U.

M.A. Alam, G. Baasantseren, M.-U. Erdenebat, N. Kim, and J.-H. Park, “Resolution enhancement of integral imaging three-dimensional display using directional elemental image projection,” J. Soc. Inf. Display 20(4), 221–227 (2012).
[Crossref]

Erdmann, L.

Fleet, E. F.

Gabriel, K. J.

Gibbons, R.

Golub, G. H.

G. H. Golub and C.F. Van Loan, Matrix Computations (Johns Hopkins University Press, 1991).

Hahn, J.

Hong, J.

Hong, S.

Hong, S.-H.

Huang, Y.-P.

Hwang, D.-C.

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45(11), 117004 (2006).
[Crossref]

D.-C. Hwang, J.-S. Park, S.-C. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3-D reconstructed images in integral imaging using intermediate-view reconstruction technique,” Appl. Opt. 45(19), 4631–4637 (2006).
[Crossref] [PubMed]

Jang, J.-S.

Jang, J.-Y.

Javidi, B.

C.-W. Chen, M. Cho, Y.-P. Huang, and B. Javidi, “Improved Viewing Zones for Projection Type Integral Imaging 3D Display Using Adaptive Liquid Crystal Prism Array,” J. Display Technol. 10(3), 198–203 (2014).
[Crossref]

H. Navarro, J.C. Barreiro, G. Saavedra, M. Martinez-Corral, and B. Javidi, “High-resolution far-field integral-imaging camera by double snapshot,” Opt. Express 20(2), 890–895 (2012).
[Crossref] [PubMed]

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
[Crossref]

S. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12(3), 483–491 (2004).
[Crossref] [PubMed]

S.-H. Hong and B. Javidi, “Improved resolution 3D object reconstruction using computational integral imaging with time multiplexing,” Opt. Express 12(19), 4579–4588 (2004).
[Crossref] [PubMed]

M. Martinez-Corral, B. Javidi, R. Martinez-Cuenca, and G. Saavedra, “Integral imaging with improved depth of field by use of amplitude-modulated microlens arrays,” Appl. Opt. 43(31), 5806–5813 (2004).
[Crossref] [PubMed]

A. Stern and B. Javidi, “Three-dimensional image sensing and reconstruction with time-division multiplexed computational integral imaging,” Appl. Opt. 42, 7036–7042 (2003).
[Crossref] [PubMed]

J.-S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging with nonstationary micro-optics,” Opt. Lett. 27, 324–326 (2002).
[Crossref]

H. Arimoto and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26(3), 157–159 (2001).
[Crossref]

Kanaev, A. V.

Kang, M.-G.

S.-C. Park, M.-K. Park, and M.-G. Kang, “Super-resolution image reconstruction: A technical overview,” IEEE Signal Process. Mag.21–36May, (2003).
[Crossref]

Kim, E.-S.

Kim, H.

Kim, J.

Kim, N.

M.A. Alam, G. Baasantseren, M.-U. Erdenebat, N. Kim, and J.-H. Park, “Resolution enhancement of integral imaging three-dimensional display using directional elemental image projection,” J. Soc. Inf. Display 20(4), 221–227 (2012).
[Crossref]

Y.-T. Lim, J.-H. Park, K.-C. Kwon, and N. Kim, “Resolution-enhanced integral imaging microscopy that uses lens array shifting,” Opt. Express 17(21), 19253–19263 (2009).
[Crossref]

Kim, S.-C.

Kim, Y.

Kwon, K.-C.

Lee, B.

Lee, J.-J.

Levin, D.

D. Levin, “The approximation power of moving least-squares,” Math. Comp. 67(224), 1517–1531 (1998).
[Crossref]

Lim, Y.-T.

Martinez-Corral, M.

Martinez-Cuenca, R.

Min, S.-W.

Miyatake, S.

Navarro, H.

Nitta, K.

Park, J.-H.

M.A. Alam, G. Baasantseren, M.-U. Erdenebat, N. Kim, and J.-H. Park, “Resolution enhancement of integral imaging three-dimensional display using directional elemental image projection,” J. Soc. Inf. Display 20(4), 221–227 (2012).
[Crossref]

J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt. 50(34), H87–H115 (2011).
[Crossref] [PubMed]

Y.-T. Lim, J.-H. Park, K.-C. Kwon, and N. Kim, “Resolution-enhanced integral imaging microscopy that uses lens array shifting,” Opt. Express 17(21), 19253–19263 (2009).
[Crossref]

J.-H. Park, J. Kim, Y. Kim, and B. Lee, “Resolution-enhanced three-dimension/two-dimension convertible display based on integral imaging,” Opt. Express 13(6), 1875–1884 (2005).
[Crossref] [PubMed]

J.-H. Park, Y. Kim, and B. Lee, “Elemental image generation based on integral imaging with enhanced resolution,” Information Optics and Photonics Technology, Photonics Asia, Proc. SPIE5642, Beijing, China, 184–196, Nov. (2004).

Park, J.-S.

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45(11), 117004 (2006).
[Crossref]

D.-C. Hwang, J.-S. Park, S.-C. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3-D reconstructed images in integral imaging using intermediate-view reconstruction technique,” Appl. Opt. 45(19), 4631–4637 (2006).
[Crossref] [PubMed]

Park, M.-K.

S.-C. Park, M.-K. Park, and M.-G. Kang, “Super-resolution image reconstruction: A technical overview,” IEEE Signal Process. Mag.21–36May, (2003).
[Crossref]

Park, S.-C.

S.-C. Park, M.-K. Park, and M.-G. Kang, “Super-resolution image reconstruction: A technical overview,” IEEE Signal Process. Mag.21–36May, (2003).
[Crossref]

Piao, Y.

M. Zhang, Y. Piao, and E.-S. Kim, “Occlusion-removed scheme using depth-reversed method in computational integral imaging,” Appl. Opt. 49(14), 2571–2580 (2010).
[Crossref]

Y. Wang and Y. Piao, “Super-Resolution Processing of Computational Reconstructed Images,” Proc. Signal Processing (ICSP), 2010 IEEE 10th International Conference1033–1035 (2010).

Pitsianis, N.

Prather, D.

Saavedra, G.

Schulz, T.

Schulz, T. J.

Scribner, D. A.

Shankar, M.

Shin, D.

Shin, D.-H.

D.-H. Shin, B. Lee, and J.-J. Lee, “Occlusion removal method of partially occluded 3D object using sub-image block matching in computational integral imaging,” Opt. Express 16, 16294–16304 (2008).
[Crossref] [PubMed]

D.-C. Hwang, J.-S. Park, S.-C. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3-D reconstructed images in integral imaging using intermediate-view reconstruction technique,” Appl. Opt. 45(19), 4631–4637 (2006).
[Crossref] [PubMed]

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45(11), 117004 (2006).
[Crossref]

D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. 44(11), 8016–8018 (2005).
[Crossref]

Shogenji, R.

Stern, A.

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
[Crossref]

A. Stern and B. Javidi, “Three-dimensional image sensing and reconstruction with time-division multiplexed computational integral imaging,” Appl. Opt. 42, 7036–7042 (2003).
[Crossref] [PubMed]

Tanida, J.

Te Kolste, R.

Van Loan, C.F.

G. H. Golub and C.F. Van Loan, Matrix Computations (Johns Hopkins University Press, 1991).

Wang, Y.

Y. Wang and Y. Piao, “Super-Resolution Processing of Computational Reconstructed Images,” Proc. Signal Processing (ICSP), 2010 IEEE 10th International Conference1033–1035 (2010).

Willett, R.

Yoo, H.

Zhang, M.

Appl. Opt. (10)

J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt. 50(34), H87–H115 (2011).
[Crossref] [PubMed]

M. Zhang, Y. Piao, and E.-S. Kim, “Occlusion-removed scheme using depth-reversed method in computational integral imaging,” Appl. Opt. 49(14), 2571–2580 (2010).
[Crossref]

M. Martinez-Corral, B. Javidi, R. Martinez-Cuenca, and G. Saavedra, “Integral imaging with improved depth of field by use of amplitude-modulated microlens arrays,” Appl. Opt. 43(31), 5806–5813 (2004).
[Crossref] [PubMed]

L. Erdmann and K. J. Gabriel, “High-resolution digital integral photography by use of a scanning microlens array,” Appl. Opt. 40(31), 5592–5599 (2001).
[Crossref]

D.-C. Hwang, J.-S. Park, S.-C. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3-D reconstructed images in integral imaging using intermediate-view reconstruction technique,” Appl. Opt. 45(19), 4631–4637 (2006).
[Crossref] [PubMed]

A. Stern and B. Javidi, “Three-dimensional image sensing and reconstruction with time-division multiplexed computational integral imaging,” Appl. Opt. 42, 7036–7042 (2003).
[Crossref] [PubMed]

K. Nitta, R. Shogenji, S. Miyatake, and J. Tanida, “Image reconstruction for thin observation module by bound optics by using the iterative backprojection method,” Appl. Opt. 45, 2893–2900 (2006).
[Crossref] [PubMed]

K. Choi and T. J. Schulz, “Signal-processing approaches for image-resolution restoration for TOMBO imagery,” Appl. Opt. 47, B104–B116 (2008).
[Crossref] [PubMed]

M. Shankar, R. Willett, N. Pitsianis, T. Schulz, R. Gibbons, R. Te Kolste, J. Carriere, C. Chen, D. Prather, and D. Brady, “Thin infrared imaging systems through multichannel sampling,” Appl. Opt. 47, B1–B10 (2008).
[Crossref] [PubMed]

A. V. Kanaev, D. A. Scribner, J. R. Ackerman, and E. F. Fleet, “Analysis and application of multiframe superresolution processing for conventional imaging systems and lenslet arrays,” Appl. Opt. 46, 4320–4328 (2007).
[Crossref] [PubMed]

IEEE Signal Process. Mag. (1)

S.-C. Park, M.-K. Park, and M.-G. Kang, “Super-resolution image reconstruction: A technical overview,” IEEE Signal Process. Mag.21–36May, (2003).
[Crossref]

J. Display Technol. (1)

J. Soc. Inf. Display (1)

M.A. Alam, G. Baasantseren, M.-U. Erdenebat, N. Kim, and J.-H. Park, “Resolution enhancement of integral imaging three-dimensional display using directional elemental image projection,” J. Soc. Inf. Display 20(4), 221–227 (2012).
[Crossref]

Jpn. J. Appl. Phys. (1)

D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. 44(11), 8016–8018 (2005).
[Crossref]

Math. Comp. (1)

D. Levin, “The approximation power of moving least-squares,” Math. Comp. 67(224), 1517–1531 (1998).
[Crossref]

Opt. Eng. (1)

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45(11), 117004 (2006).
[Crossref]

Opt. Express (8)

H. Navarro, J.C. Barreiro, G. Saavedra, M. Martinez-Corral, and B. Javidi, “High-resolution far-field integral-imaging camera by double snapshot,” Opt. Express 20(2), 890–895 (2012).
[Crossref] [PubMed]

D.-H. Shin, B. Lee, and J.-J. Lee, “Occlusion removal method of partially occluded 3D object using sub-image block matching in computational integral imaging,” Opt. Express 16, 16294–16304 (2008).
[Crossref] [PubMed]

S.-H. Hong and B. Javidi, “Improved resolution 3D object reconstruction using computational integral imaging with time multiplexing,” Opt. Express 12(19), 4579–4588 (2004).
[Crossref] [PubMed]

J.-Y. Jang, D. Shin, and E.-S. Kim, “Optical three-dimensional refocusing from elemental images based on a sifting property of the periodic δ-function array in integral-imaging,” Opt. Express 22(2), 1533–1550 (2014).
[Crossref] [PubMed]

S. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12(3), 483–491 (2004).
[Crossref] [PubMed]

H. Yoo, “Axially moving a lenslet array for high-resolution 3D images in computational integral imaging,” Opt. Express 21(7), 8873–8878 (2013).
[Crossref] [PubMed]

Y.-T. Lim, J.-H. Park, K.-C. Kwon, and N. Kim, “Resolution-enhanced integral imaging microscopy that uses lens array shifting,” Opt. Express 17(21), 19253–19263 (2009).
[Crossref]

J.-H. Park, J. Kim, Y. Kim, and B. Lee, “Resolution-enhanced three-dimension/two-dimension convertible display based on integral imaging,” Opt. Express 13(6), 1875–1884 (2005).
[Crossref] [PubMed]

Opt. Lett. (2)

Proc. IEEE (1)

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
[Crossref]

Other (3)

G. H. Golub and C.F. Van Loan, Matrix Computations (Johns Hopkins University Press, 1991).

J.-H. Park, Y. Kim, and B. Lee, “Elemental image generation based on integral imaging with enhanced resolution,” Information Optics and Photonics Technology, Photonics Asia, Proc. SPIE5642, Beijing, China, 184–196, Nov. (2004).

Y. Wang and Y. Piao, “Super-Resolution Processing of Computational Reconstructed Images,” Proc. Signal Processing (ICSP), 2010 IEEE 10th International Conference1033–1035 (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Computational integral imaging reconstruction at output planes with different distances.
Fig. 2
Fig. 2 Showing the property of the moving least square method in 1-D.
Fig. 3
Fig. 3 Showing the property of the moving least square method in 2-D.
Fig. 4
Fig. 4 MLS approximation using low resolution elemental image data (a) low resolution elemental image (b) embedding of low resolution images into high resolution grid (c) MLS approximation using (b) as data.
Fig. 5
Fig. 5 Overall diagram of the proposed system
Fig. 6
Fig. 6 Illustrating the embedding of LR-EI data into the high resolution grid.
Fig. 7
Fig. 7 Concept of the ED-MLS interpolation.
Fig. 8
Fig. 8 Illustrating the relationship between the ED-MLS approximation function and the local polynomial approximation functions.
Fig. 9
Fig. 9 Results on the ‘Ewha’ image. (a) bilinear (b) bicubic (c) proposed. First row : HR-EI, second row: reconstructed high resolution 3-D image.
Fig. 10
Fig. 10 Results on the ‘Cupcake’ image. (a) bilinear (b) bicubic (c) proposed. First row : HR-EI, second row: reconstructed high resolution 3-D image.
Fig. 11
Fig. 11 Results on the ‘Cup’ image. (a) bilinear (b) bicubic (c) proposed. First row : HR-EI, second row: reconstructed high resolution 3-D image, third row : enlarged image of partial region.
Fig. 12
Fig. 12 Reconstruction of multiple objects with different depths by (a) optical system (b) original photo shot (c) foreground object (z = 4 mm) (d) background object (z = 6 mm) (e) elemental image array. Third row : reconstructed with resolution enhancement by the proposed method - (f) left view (g) middle view (h) right view. Fourth row : reconstructed without resolution enhancement - (i) left view (j) middle view (k) right view. The red arrow indicates the parallax between (i) and (k). Fifth row : reconstructed result focusing on the background (l) without resolution enhancement (m) with resolution enhancement.
Fig. 13
Fig. 13 Viewpoint images obtained by the multi-pixel sub-image transform of multiple objects with different depths. (a) bilinear interpolated elemental image array. (b) superresolution enhanced elemental image array. (c) viewpoint sub-image array obtained from (b). (d)(e) enlarged images of partial regions (red box and blue box) in (c). (f) enlarged image of a partial region of the sub-image array obtained from the elemental image array in (a). (g) enlarged image of a partial region (red box) in (e).

Tables (1)

Tables Icon

Table 1 Comparison of the PSNR (peak signal-to-noise ratio) and the SSIM (structural similarity index measure) values between the bilinear, bicubic, and the proposed method

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

argmin p x j ( ) Π m { i = 1 S n = 1 N i p x j ( x n ) f i ( x n ) 2 2 θ i ( x j , x n ) } , for all x j ( j = 1 , 2 , N i ) .
θ ( x j , x n ) = e ( x j x n ) T M ( x j x n ) / σ
p x j ( ) : = = 1 m c p .
( i = 1 S n = 1 N i p x j ( x n ) f i ( x n ) 2 2 θ i ( x j , x n ) ) c = 0 ,
L f ( x j ) = p x j ( x j ) , x j 𝒩 .
c = { c : = 1 , , m } .
f i = { f ( x n ) : x n 𝒩 } .
E i : = ( p x j ( x n ) : x n 𝒩 , j = 1 , , N i ) for i = 1 , 2 , , S .
D θ , i ( k , k ) : = θ i ( x k , x ) , k = 1 , , N i .
0 = i = 1 S ( cE i T f i ) D θ , i E i .
c = ( i = 1 S f i D θ , i E i ) ( i = 1 S E i T D θ , i E i ) 1 .

Metrics