Abstract

A nanometric and high sensitive refractive index sensor based on the metal-insulator-metal plasmonic Bragg grating is proposed. The wavelength encoded sensing characteristics of the refractive index sensor were investigated by analyzing its transmission spectrum. The numerical results show that a good linear relationship between the Bragg wavelength and the refractive index of the sensing material can be obtained, which is in accordance with the analytical results very well. A high refractive index sensitivity of 1488nm/RIU around Bragg resonance wavelength of 1550nm was obtained. Besides, the simulation results show that the sensitivity is depended on the Bragg resonance wavelength and the longer the Bragg resonance wavelength, the higher sensitivity can be obtained. Furthermore, the figure of merit of the refractive index sensor can be greatly increased by introducing a nano-cavity in the proposed plasmonic Bragg grating structure. This work pave the way for high sensitive nanometric refractive index sensor design and application.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Numerical analysis of a near-infrared plasmonic refractive index sensor with high figure of merit based on a fillet cavity

Lei Chen, Yumin Liu, Zhongyuan Yu, Dong Wu, Rui Ma, Yang Zhang, and Han Ye
Opt. Express 24(9) 9975-9983 (2016)

High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating

Junghyun Park, Hwi Kim, and Byoungho Lee
Opt. Express 16(1) 413-425 (2008)

References

  • View by:
  • |
  • |
  • |

  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref] [PubMed]
  2. S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14(7), 2932–2937 (2006).
    [Crossref] [PubMed]
  3. B. F. Yun, G. H. Hu, and Y. P. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide,” J. Phys. D Appl. Phys. 43(38), 385102 (2010).
    [Crossref]
  4. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33(23), 2874–2876 (2008).
    [Crossref] [PubMed]
  5. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16(21), 16314–16325 (2008).
    [Crossref] [PubMed]
  6. Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17(9), 7533–7549 (2009).
    [Crossref] [PubMed]
  7. B. F. Yun, G. H. Hu, and Y. P. Cui, “A nanometric plasmonic waveguide filter based on Fabry-Perot resonator,” Opt. Commun. 284(1), 485–489 (2011).
    [Crossref]
  8. J. Zhang, L. K. Cai, W. L. Bai, and G. F. Song, “Flat Surface Plasmon Polariton Bands in Bragg Grating Waveguide for Slow Light,” J. Lightwave Technol. 28(14), 2030–2036 (2010).
    [Crossref]
  9. Y. F. Liu, Y. Liu, and J. Kim, “Characteristics of plasmonic Bragg reflectors with insulator width modulated in sawtooth profiles,” Opt. Express 18(11), 11589–11598 (2010).
    [Crossref] [PubMed]
  10. A. Hossieni and Y. Massoud, “A low-loss metal-insulator-metal plasmonic bragg reflector,” Opt. Express 14(23), 11318–11323 (2006).
    [Crossref] [PubMed]
  11. J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Y. Wang, B. S. Zou, and S. C. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express 16(7), 4888–4894 (2008).
    [Crossref] [PubMed]
  12. A. Hosseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors,” Opt. Express 16(3), 1475–1480 (2008).
    [Crossref] [PubMed]
  13. C. Wu, G. Song, L. Yu, and J. H. Xiao, “Tunable narrow band filter based on a surface plasmon polaritons Bragg grating with a metal-insulator-metal waveguide,” J. Mod. Opt. 60(15), 1217–1222 (2013).
    [Crossref]
  14. D. C. Zografopoulos and R. Beccherelli, “Liquid-crystal-tunable metal-insulator-metal plasmonic waveguides and Bragg resonators,” J. Opt. 15(5), 055009 (2013).
    [Crossref]
  15. Y. J. Chang and C. Y. Chen, “Ultracompact, narrowband three-dimensional plasmonic waveguide Bragg grating in metal/multi-insulator/metal configuration,” Appl. Opt. 52(4), 889–896 (2013).
    [Crossref] [PubMed]
  16. J. Xiao, J. S. Liu, Z. Zheng, Y. S. Bian, G. J. Wang, and S. N. Li, “Transmission performance of a low-loss metal-insulator-semiconductor plasmonic phase-shift Bragg grating,” Phys. Status Solidi A 209(8), 1552–1556 (2012).
    [Crossref]
  17. Y. J. Chang, “Design and analysis of metal/multi-insulator/metal waveguide plasmonic Bragg grating,” Opt. Express 18(12), 13258–13270 (2010).
    [Crossref] [PubMed]
  18. Y. J. Chang and G. Y. Lo, “A Narrowband Metal-Multi-Insulator-Metal Waveguide Plasmonic Bragg Grating,” IEEE Photon. Technol. Lett. 22(9), 634–636 (2010).
    [Crossref]
  19. Y. K. Gong, X. M. Liu, and L. R. Wang, “High-channel-count plasmonic filter with the metal-insulator-metal Fibonacci-sequence gratings,” Opt. Lett. 35(3), 285–287 (2010).
    [Crossref] [PubMed]
  20. Y. K. Gong, L. R. Wang, X. H. Hu, X. H. Li, and X. M. Liu, “Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17(16), 13727–13736 (2009).
    [Crossref] [PubMed]
  21. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16(1), 413–425 (2008).
    [Crossref] [PubMed]
  22. Y. X. Xiang, X. Z. Zhang, W. Cai, L. Wang, C. F. Ying, and J. J. Xu, “Optical bistability based on Bragg grating resonators in metal-insulator-metal plasmonic waveguides,” AIP. Adv 3, 12106 (2013).
  23. N. Chen, B. F. Yun, and Y. P. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88(13), 133902 (2006).
    [Crossref]
  24. A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
    [Crossref]
  25. T. Wu, Y. Liu, Z. Yu, Y. Peng, C. Shu, and H. Ye, “The sensing characteristics of plasmonic waveguide with a ring resonator,” Opt. Express 22(7), 7669–7677 (2014).
    [Crossref] [PubMed]
  26. T. Wu, Y. M. Liu, Z. Y. Yu, Y. W. Peng, C. G. Shu, and H. F. He, “The sensing characteristics of plasmonic waveguide with a single defect,” Opt. Commun. 323, 44–48 (2014).
    [Crossref]
  27. M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B 101(1-2), 263–271 (2010).
    [Crossref]
  28. D. C. Zografopoulos, E. E. Kriezis, B. Bellini, and R. Beccherelli, “Tunable one-dimensional photonic crystal slabs based on preferential etching of silicon-on-insulator,” Opt. Express 15(4), 1832–1844 (2007).
    [Crossref] [PubMed]
  29. A. C. Tasolamprou, B. Bellini, D. C. Zografopoulos, E. E. Kriezis, and R. Beccherelli, “Tunable optical properties of silicon-on-insulator photonic crystal slab structures,” J. Eur. Opt. Soc-Rapid 4, 09017 (2009).
  30. I. M. White and X. D. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]
  31. G. Gilardi and R. Beccherelli, “Integrated optics nano-opto-fluidic sensor based on whispering gallery modes for picoliter volume refractometry,” J. Phys. D Appl. Phys. 46(10), 105104 (2013).
    [Crossref]

2014 (2)

T. Wu, Y. Liu, Z. Yu, Y. Peng, C. Shu, and H. Ye, “The sensing characteristics of plasmonic waveguide with a ring resonator,” Opt. Express 22(7), 7669–7677 (2014).
[Crossref] [PubMed]

T. Wu, Y. M. Liu, Z. Y. Yu, Y. W. Peng, C. G. Shu, and H. F. He, “The sensing characteristics of plasmonic waveguide with a single defect,” Opt. Commun. 323, 44–48 (2014).
[Crossref]

2013 (5)

Y. X. Xiang, X. Z. Zhang, W. Cai, L. Wang, C. F. Ying, and J. J. Xu, “Optical bistability based on Bragg grating resonators in metal-insulator-metal plasmonic waveguides,” AIP. Adv 3, 12106 (2013).

G. Gilardi and R. Beccherelli, “Integrated optics nano-opto-fluidic sensor based on whispering gallery modes for picoliter volume refractometry,” J. Phys. D Appl. Phys. 46(10), 105104 (2013).
[Crossref]

C. Wu, G. Song, L. Yu, and J. H. Xiao, “Tunable narrow band filter based on a surface plasmon polaritons Bragg grating with a metal-insulator-metal waveguide,” J. Mod. Opt. 60(15), 1217–1222 (2013).
[Crossref]

D. C. Zografopoulos and R. Beccherelli, “Liquid-crystal-tunable metal-insulator-metal plasmonic waveguides and Bragg resonators,” J. Opt. 15(5), 055009 (2013).
[Crossref]

Y. J. Chang and C. Y. Chen, “Ultracompact, narrowband three-dimensional plasmonic waveguide Bragg grating in metal/multi-insulator/metal configuration,” Appl. Opt. 52(4), 889–896 (2013).
[Crossref] [PubMed]

2012 (1)

J. Xiao, J. S. Liu, Z. Zheng, Y. S. Bian, G. J. Wang, and S. N. Li, “Transmission performance of a low-loss metal-insulator-semiconductor plasmonic phase-shift Bragg grating,” Phys. Status Solidi A 209(8), 1552–1556 (2012).
[Crossref]

2011 (1)

B. F. Yun, G. H. Hu, and Y. P. Cui, “A nanometric plasmonic waveguide filter based on Fabry-Perot resonator,” Opt. Commun. 284(1), 485–489 (2011).
[Crossref]

2010 (7)

J. Zhang, L. K. Cai, W. L. Bai, and G. F. Song, “Flat Surface Plasmon Polariton Bands in Bragg Grating Waveguide for Slow Light,” J. Lightwave Technol. 28(14), 2030–2036 (2010).
[Crossref]

Y. F. Liu, Y. Liu, and J. Kim, “Characteristics of plasmonic Bragg reflectors with insulator width modulated in sawtooth profiles,” Opt. Express 18(11), 11589–11598 (2010).
[Crossref] [PubMed]

B. F. Yun, G. H. Hu, and Y. P. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide,” J. Phys. D Appl. Phys. 43(38), 385102 (2010).
[Crossref]

Y. J. Chang, “Design and analysis of metal/multi-insulator/metal waveguide plasmonic Bragg grating,” Opt. Express 18(12), 13258–13270 (2010).
[Crossref] [PubMed]

Y. J. Chang and G. Y. Lo, “A Narrowband Metal-Multi-Insulator-Metal Waveguide Plasmonic Bragg Grating,” IEEE Photon. Technol. Lett. 22(9), 634–636 (2010).
[Crossref]

Y. K. Gong, X. M. Liu, and L. R. Wang, “High-channel-count plasmonic filter with the metal-insulator-metal Fibonacci-sequence gratings,” Opt. Lett. 35(3), 285–287 (2010).
[Crossref] [PubMed]

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B 101(1-2), 263–271 (2010).
[Crossref]

2009 (3)

2008 (6)

2007 (1)

2006 (4)

N. Chen, B. F. Yun, and Y. P. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88(13), 133902 (2006).
[Crossref]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14(7), 2932–2937 (2006).
[Crossref] [PubMed]

A. Hossieni and Y. Massoud, “A low-loss metal-insulator-metal plasmonic bragg reflector,” Opt. Express 14(23), 11318–11323 (2006).
[Crossref] [PubMed]

2005 (1)

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

Adibi, A.

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B 101(1-2), 263–271 (2010).
[Crossref]

Bai, W. L.

Beccherelli, R.

G. Gilardi and R. Beccherelli, “Integrated optics nano-opto-fluidic sensor based on whispering gallery modes for picoliter volume refractometry,” J. Phys. D Appl. Phys. 46(10), 105104 (2013).
[Crossref]

D. C. Zografopoulos and R. Beccherelli, “Liquid-crystal-tunable metal-insulator-metal plasmonic waveguides and Bragg resonators,” J. Opt. 15(5), 055009 (2013).
[Crossref]

A. C. Tasolamprou, B. Bellini, D. C. Zografopoulos, E. E. Kriezis, and R. Beccherelli, “Tunable optical properties of silicon-on-insulator photonic crystal slab structures,” J. Eur. Opt. Soc-Rapid 4, 09017 (2009).

D. C. Zografopoulos, E. E. Kriezis, B. Bellini, and R. Beccherelli, “Tunable one-dimensional photonic crystal slabs based on preferential etching of silicon-on-insulator,” Opt. Express 15(4), 1832–1844 (2007).
[Crossref] [PubMed]

Bellini, B.

A. C. Tasolamprou, B. Bellini, D. C. Zografopoulos, E. E. Kriezis, and R. Beccherelli, “Tunable optical properties of silicon-on-insulator photonic crystal slab structures,” J. Eur. Opt. Soc-Rapid 4, 09017 (2009).

D. C. Zografopoulos, E. E. Kriezis, B. Bellini, and R. Beccherelli, “Tunable one-dimensional photonic crystal slabs based on preferential etching of silicon-on-insulator,” Opt. Express 15(4), 1832–1844 (2007).
[Crossref] [PubMed]

Bian, Y. S.

J. Xiao, J. S. Liu, Z. Zheng, Y. S. Bian, G. J. Wang, and S. N. Li, “Transmission performance of a low-loss metal-insulator-semiconductor plasmonic phase-shift Bragg grating,” Phys. Status Solidi A 209(8), 1552–1556 (2012).
[Crossref]

Cai, L. K.

Cai, W.

Y. X. Xiang, X. Z. Zhang, W. Cai, L. Wang, C. F. Ying, and J. J. Xu, “Optical bistability based on Bragg grating resonators in metal-insulator-metal plasmonic waveguides,” AIP. Adv 3, 12106 (2013).

Chamanzar, M.

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B 101(1-2), 263–271 (2010).
[Crossref]

Chang, Y. J.

Chen, C. Y.

Chen, N.

N. Chen, B. F. Yun, and Y. P. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88(13), 133902 (2006).
[Crossref]

Chryssis, A. N.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

Cui, Y. P.

B. F. Yun, G. H. Hu, and Y. P. Cui, “A nanometric plasmonic waveguide filter based on Fabry-Perot resonator,” Opt. Commun. 284(1), 485–489 (2011).
[Crossref]

B. F. Yun, G. H. Hu, and Y. P. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide,” J. Phys. D Appl. Phys. 43(38), 385102 (2010).
[Crossref]

N. Chen, B. F. Yun, and Y. P. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88(13), 133902 (2006).
[Crossref]

Dagenais, M.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

Fan, X. D.

Fukui, M.

Gilardi, G.

G. Gilardi and R. Beccherelli, “Integrated optics nano-opto-fluidic sensor based on whispering gallery modes for picoliter volume refractometry,” J. Phys. D Appl. Phys. 46(10), 105104 (2013).
[Crossref]

Gong, Y. K.

Haraguchi, M.

He, H. F.

T. Wu, Y. M. Liu, Z. Y. Yu, Y. W. Peng, C. G. Shu, and H. F. He, “The sensing characteristics of plasmonic waveguide with a single defect,” Opt. Commun. 323, 44–48 (2014).
[Crossref]

He, M. D.

Hosseini, A.

Hossieni, A.

Hu, G. H.

B. F. Yun, G. H. Hu, and Y. P. Cui, “A nanometric plasmonic waveguide filter based on Fabry-Perot resonator,” Opt. Commun. 284(1), 485–489 (2011).
[Crossref]

B. F. Yun, G. H. Hu, and Y. P. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide,” J. Phys. D Appl. Phys. 43(38), 385102 (2010).
[Crossref]

Hu, X. H.

Huang, W. Q.

Huang, X. G.

Jin, X. P.

Kim, H.

Kim, J.

Kriezis, E. E.

A. C. Tasolamprou, B. Bellini, D. C. Zografopoulos, E. E. Kriezis, and R. Beccherelli, “Tunable optical properties of silicon-on-insulator photonic crystal slab structures,” J. Eur. Opt. Soc-Rapid 4, 09017 (2009).

D. C. Zografopoulos, E. E. Kriezis, B. Bellini, and R. Beccherelli, “Tunable one-dimensional photonic crystal slabs based on preferential etching of silicon-on-insulator,” Opt. Express 15(4), 1832–1844 (2007).
[Crossref] [PubMed]

Lee, B.

Lee, S. B.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

Lee, S. M.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

Li, S. N.

J. Xiao, J. S. Liu, Z. Zheng, Y. S. Bian, G. J. Wang, and S. N. Li, “Transmission performance of a low-loss metal-insulator-semiconductor plasmonic phase-shift Bragg grating,” Phys. Status Solidi A 209(8), 1552–1556 (2012).
[Crossref]

Li, X. H.

Lin, X. S.

Liu, J. Q.

Liu, J. S.

J. Xiao, J. S. Liu, Z. Zheng, Y. S. Bian, G. J. Wang, and S. N. Li, “Transmission performance of a low-loss metal-insulator-semiconductor plasmonic phase-shift Bragg grating,” Phys. Status Solidi A 209(8), 1552–1556 (2012).
[Crossref]

Liu, L.

Liu, X. M.

Liu, Y.

Liu, Y. F.

Liu, Y. M.

T. Wu, Y. M. Liu, Z. Y. Yu, Y. W. Peng, C. G. Shu, and H. F. He, “The sensing characteristics of plasmonic waveguide with a single defect,” Opt. Commun. 323, 44–48 (2014).
[Crossref]

Lo, G. Y.

Y. J. Chang and G. Y. Lo, “A Narrowband Metal-Multi-Insulator-Metal Waveguide Plasmonic Bragg Grating,” IEEE Photon. Technol. Lett. 22(9), 634–636 (2010).
[Crossref]

Massoud, Y.

Matsuzaki, Y.

Momeni, B.

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B 101(1-2), 263–271 (2010).
[Crossref]

Nakagaki, M.

Nejati, H.

Okamoto, T.

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Park, J.

Peng, Y.

Peng, Y. W.

T. Wu, Y. M. Liu, Z. Y. Yu, Y. W. Peng, C. G. Shu, and H. F. He, “The sensing characteristics of plasmonic waveguide with a single defect,” Opt. Commun. 323, 44–48 (2014).
[Crossref]

Qiu, M.

Saini, S. S.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

Shu, C.

Shu, C. G.

T. Wu, Y. M. Liu, Z. Y. Yu, Y. W. Peng, C. G. Shu, and H. F. He, “The sensing characteristics of plasmonic waveguide with a single defect,” Opt. Commun. 323, 44–48 (2014).
[Crossref]

Soltani, M.

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B 101(1-2), 263–271 (2010).
[Crossref]

Song, G.

C. Wu, G. Song, L. Yu, and J. H. Xiao, “Tunable narrow band filter based on a surface plasmon polaritons Bragg grating with a metal-insulator-metal waveguide,” J. Mod. Opt. 60(15), 1217–1222 (2013).
[Crossref]

Song, G. F.

Tao, J.

Tasolamprou, A. C.

A. C. Tasolamprou, B. Bellini, D. C. Zografopoulos, E. E. Kriezis, and R. Beccherelli, “Tunable optical properties of silicon-on-insulator photonic crystal slab structures,” J. Eur. Opt. Soc-Rapid 4, 09017 (2009).

Wang, D. Y.

Wang, G. J.

J. Xiao, J. S. Liu, Z. Zheng, Y. S. Bian, G. J. Wang, and S. N. Li, “Transmission performance of a low-loss metal-insulator-semiconductor plasmonic phase-shift Bragg grating,” Phys. Status Solidi A 209(8), 1552–1556 (2012).
[Crossref]

Wang, L.

Y. X. Xiang, X. Z. Zhang, W. Cai, L. Wang, C. F. Ying, and J. J. Xu, “Optical bistability based on Bragg grating resonators in metal-insulator-metal plasmonic waveguides,” AIP. Adv 3, 12106 (2013).

Wang, L. L.

Wang, L. R.

Wen, S. C.

White, I. M.

Wu, C.

C. Wu, G. Song, L. Yu, and J. H. Xiao, “Tunable narrow band filter based on a surface plasmon polaritons Bragg grating with a metal-insulator-metal waveguide,” J. Mod. Opt. 60(15), 1217–1222 (2013).
[Crossref]

Wu, T.

T. Wu, Y. M. Liu, Z. Y. Yu, Y. W. Peng, C. G. Shu, and H. F. He, “The sensing characteristics of plasmonic waveguide with a single defect,” Opt. Commun. 323, 44–48 (2014).
[Crossref]

T. Wu, Y. Liu, Z. Yu, Y. Peng, C. Shu, and H. Ye, “The sensing characteristics of plasmonic waveguide with a ring resonator,” Opt. Express 22(7), 7669–7677 (2014).
[Crossref] [PubMed]

Xiang, Y. X.

Y. X. Xiang, X. Z. Zhang, W. Cai, L. Wang, C. F. Ying, and J. J. Xu, “Optical bistability based on Bragg grating resonators in metal-insulator-metal plasmonic waveguides,” AIP. Adv 3, 12106 (2013).

Xiao, J.

J. Xiao, J. S. Liu, Z. Zheng, Y. S. Bian, G. J. Wang, and S. N. Li, “Transmission performance of a low-loss metal-insulator-semiconductor plasmonic phase-shift Bragg grating,” Phys. Status Solidi A 209(8), 1552–1556 (2012).
[Crossref]

Xiao, J. H.

C. Wu, G. Song, L. Yu, and J. H. Xiao, “Tunable narrow band filter based on a surface plasmon polaritons Bragg grating with a metal-insulator-metal waveguide,” J. Mod. Opt. 60(15), 1217–1222 (2013).
[Crossref]

Xiao, S. S.

Xu, J. J.

Y. X. Xiang, X. Z. Zhang, W. Cai, L. Wang, C. F. Ying, and J. J. Xu, “Optical bistability based on Bragg grating resonators in metal-insulator-metal plasmonic waveguides,” AIP. Adv 3, 12106 (2013).

Ye, H.

Yegnanarayanan, S.

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B 101(1-2), 263–271 (2010).
[Crossref]

Ying, C. F.

Y. X. Xiang, X. Z. Zhang, W. Cai, L. Wang, C. F. Ying, and J. J. Xu, “Optical bistability based on Bragg grating resonators in metal-insulator-metal plasmonic waveguides,” AIP. Adv 3, 12106 (2013).

Yu, L.

C. Wu, G. Song, L. Yu, and J. H. Xiao, “Tunable narrow band filter based on a surface plasmon polaritons Bragg grating with a metal-insulator-metal waveguide,” J. Mod. Opt. 60(15), 1217–1222 (2013).
[Crossref]

Yu, Z.

Yu, Z. Y.

T. Wu, Y. M. Liu, Z. Y. Yu, Y. W. Peng, C. G. Shu, and H. F. He, “The sensing characteristics of plasmonic waveguide with a single defect,” Opt. Commun. 323, 44–48 (2014).
[Crossref]

Yun, B. F.

B. F. Yun, G. H. Hu, and Y. P. Cui, “A nanometric plasmonic waveguide filter based on Fabry-Perot resonator,” Opt. Commun. 284(1), 485–489 (2011).
[Crossref]

B. F. Yun, G. H. Hu, and Y. P. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide,” J. Phys. D Appl. Phys. 43(38), 385102 (2010).
[Crossref]

N. Chen, B. F. Yun, and Y. P. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88(13), 133902 (2006).
[Crossref]

Zhang, J.

Zhang, Q.

Zhang, X. Z.

Y. X. Xiang, X. Z. Zhang, W. Cai, L. Wang, C. F. Ying, and J. J. Xu, “Optical bistability based on Bragg grating resonators in metal-insulator-metal plasmonic waveguides,” AIP. Adv 3, 12106 (2013).

Zheng, Z.

J. Xiao, J. S. Liu, Z. Zheng, Y. S. Bian, G. J. Wang, and S. N. Li, “Transmission performance of a low-loss metal-insulator-semiconductor plasmonic phase-shift Bragg grating,” Phys. Status Solidi A 209(8), 1552–1556 (2012).
[Crossref]

Zografopoulos, D. C.

D. C. Zografopoulos and R. Beccherelli, “Liquid-crystal-tunable metal-insulator-metal plasmonic waveguides and Bragg resonators,” J. Opt. 15(5), 055009 (2013).
[Crossref]

A. C. Tasolamprou, B. Bellini, D. C. Zografopoulos, E. E. Kriezis, and R. Beccherelli, “Tunable optical properties of silicon-on-insulator photonic crystal slab structures,” J. Eur. Opt. Soc-Rapid 4, 09017 (2009).

D. C. Zografopoulos, E. E. Kriezis, B. Bellini, and R. Beccherelli, “Tunable one-dimensional photonic crystal slabs based on preferential etching of silicon-on-insulator,” Opt. Express 15(4), 1832–1844 (2007).
[Crossref] [PubMed]

Zou, B. S.

AIP. Adv (1)

Y. X. Xiang, X. Z. Zhang, W. Cai, L. Wang, C. F. Ying, and J. J. Xu, “Optical bistability based on Bragg grating resonators in metal-insulator-metal plasmonic waveguides,” AIP. Adv 3, 12106 (2013).

Appl. Opt. (1)

Appl. Phys. B (1)

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B 101(1-2), 263–271 (2010).
[Crossref]

Appl. Phys. Lett. (1)

N. Chen, B. F. Yun, and Y. P. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88(13), 133902 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (2)

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

Y. J. Chang and G. Y. Lo, “A Narrowband Metal-Multi-Insulator-Metal Waveguide Plasmonic Bragg Grating,” IEEE Photon. Technol. Lett. 22(9), 634–636 (2010).
[Crossref]

J. Eur. Opt. Soc-Rapid (1)

A. C. Tasolamprou, B. Bellini, D. C. Zografopoulos, E. E. Kriezis, and R. Beccherelli, “Tunable optical properties of silicon-on-insulator photonic crystal slab structures,” J. Eur. Opt. Soc-Rapid 4, 09017 (2009).

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

C. Wu, G. Song, L. Yu, and J. H. Xiao, “Tunable narrow band filter based on a surface plasmon polaritons Bragg grating with a metal-insulator-metal waveguide,” J. Mod. Opt. 60(15), 1217–1222 (2013).
[Crossref]

J. Opt. (1)

D. C. Zografopoulos and R. Beccherelli, “Liquid-crystal-tunable metal-insulator-metal plasmonic waveguides and Bragg resonators,” J. Opt. 15(5), 055009 (2013).
[Crossref]

J. Phys. D Appl. Phys. (2)

B. F. Yun, G. H. Hu, and Y. P. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide,” J. Phys. D Appl. Phys. 43(38), 385102 (2010).
[Crossref]

G. Gilardi and R. Beccherelli, “Integrated optics nano-opto-fluidic sensor based on whispering gallery modes for picoliter volume refractometry,” J. Phys. D Appl. Phys. 46(10), 105104 (2013).
[Crossref]

Opt. Commun. (2)

B. F. Yun, G. H. Hu, and Y. P. Cui, “A nanometric plasmonic waveguide filter based on Fabry-Perot resonator,” Opt. Commun. 284(1), 485–489 (2011).
[Crossref]

T. Wu, Y. M. Liu, Z. Y. Yu, Y. W. Peng, C. G. Shu, and H. F. He, “The sensing characteristics of plasmonic waveguide with a single defect,” Opt. Commun. 323, 44–48 (2014).
[Crossref]

Opt. Express (13)

S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14(7), 2932–2937 (2006).
[Crossref] [PubMed]

A. Hossieni and Y. Massoud, “A low-loss metal-insulator-metal plasmonic bragg reflector,” Opt. Express 14(23), 11318–11323 (2006).
[Crossref] [PubMed]

D. C. Zografopoulos, E. E. Kriezis, B. Bellini, and R. Beccherelli, “Tunable one-dimensional photonic crystal slabs based on preferential etching of silicon-on-insulator,” Opt. Express 15(4), 1832–1844 (2007).
[Crossref] [PubMed]

J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16(1), 413–425 (2008).
[Crossref] [PubMed]

I. M. White and X. D. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

A. Hosseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors,” Opt. Express 16(3), 1475–1480 (2008).
[Crossref] [PubMed]

J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Y. Wang, B. S. Zou, and S. C. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express 16(7), 4888–4894 (2008).
[Crossref] [PubMed]

Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16(21), 16314–16325 (2008).
[Crossref] [PubMed]

Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17(9), 7533–7549 (2009).
[Crossref] [PubMed]

Y. K. Gong, L. R. Wang, X. H. Hu, X. H. Li, and X. M. Liu, “Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17(16), 13727–13736 (2009).
[Crossref] [PubMed]

T. Wu, Y. Liu, Z. Yu, Y. Peng, C. Shu, and H. Ye, “The sensing characteristics of plasmonic waveguide with a ring resonator,” Opt. Express 22(7), 7669–7677 (2014).
[Crossref] [PubMed]

Y. F. Liu, Y. Liu, and J. Kim, “Characteristics of plasmonic Bragg reflectors with insulator width modulated in sawtooth profiles,” Opt. Express 18(11), 11589–11598 (2010).
[Crossref] [PubMed]

Y. J. Chang, “Design and analysis of metal/multi-insulator/metal waveguide plasmonic Bragg grating,” Opt. Express 18(12), 13258–13270 (2010).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Status Solidi A (1)

J. Xiao, J. S. Liu, Z. Zheng, Y. S. Bian, G. J. Wang, and S. N. Li, “Transmission performance of a low-loss metal-insulator-semiconductor plasmonic phase-shift Bragg grating,” Phys. Status Solidi A 209(8), 1552–1556 (2012).
[Crossref]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The structure of the MIM plasmonic Bragg grating.
Fig. 2
Fig. 2 (a) The transmission spectra of the MIM Bragg grating with different period numbers (w1 = 100nm,w2 = 80nm,nc = 1,d1 = d2 = 202nm). (b) The transmission spectra of the MIM Bragg grating with different duty cycles of width modulation(w1 = 100nm,w2 = 80nm, nc = 1, N = 12).
Fig. 3
Fig. 3 (a, c) The transmission spectra of MIM Bragg grating with different refractive index nc. (b, d) The Bragg resonance wavelength versus the refractive index (nc) of the material under sensing (The MIM grating parameters are: w1 = 100nm,w2 = 80nm,d1 = d2 = 202nm,N = 10).
Fig. 4
Fig. 4 (a) The schematic of the three dimensional MIM Bragg grating. (b) The Bragg resonance wavelength versus the refractive index (nc) of the material under sensing (The 3D MIM grating parameters are: w1 = 100nm,w2 = 80nm, h = 100 nm, d1 = d2 = 202nm, N = 10).
Fig. 5
Fig. 5 (a) The Bragg resonance wavelengths versus the refractive index (nc) of three different MIM Bragg gratings with same Bragg wavelength. (b) The Bragg resonance wavelengths versus the refractive index (nc) of three MIM Bragg gratings with different grating periods (w1 = 60nm,w2 = 50nm,N = 10).
Fig. 6
Fig. 6 The structure of the MIM plasmonic Bragg grating with nano-cavity.
Fig. 7
Fig. 7 (a) The transmission spectra of the MIM Bragg grating and the MIM Bragg grating with a nano-cavity in the center (w1 = 100,w2 = 80,d1 = d2 = 202, Lc = 2d1 = 404, N = 10). (b) The peak resonance wavelengths versus the refractive index (nc) of three MIM Bragg gratings with nano-cavities and different grating periods(w1 = 60nm,w2 = 50nm, Lc = 2d1 = 2d2, N = 10).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε i n k z 2 + ε m k z 1 coth ( i k z 1 2 w ) = 0
k z 1 2 = ε i n k 0 2 β 2 , k z 2 2 = ε m k 0 2 β 2
ε m ( ω ) = ε ω p 2 / ω ( ω + i γ )
d 1 × Re a l ( n e f f 1 ) + d 2 × Re a l ( n e f f 2 ) = λ B / 2

Metrics