Abstract

We report the design and construction of a highly integrated two-dimensional (2D) aperiodic nonlinear photonic crystal (NPC) for working in a diode-pumped, dual-wavelength (1064 and 1342 nm) Nd:YVO4 laser to demonstrate a compact, high-peak-power intracavity sum-frequency generator (ISFG) radiating at orange 593.5 nm. The 2D aperiodic NPC was built in quasi-phase-matched LiNbO3 whose crystal domain was structured based on the aperiodic optical superlattice technique to best achieve its simultaneous performance of a dual-wavelength electro-optic Bragg Q-switch and a SFG in the Nd:YVO4 laser. When the NPC device was driven with a 350-V Q-switching voltage and a 1-kHz switching rate, we measured pulse energy of ~4.3 μJ (or peak power of ~531 W) at orange 593.5 nm from the constructed ISFG with 5.28-W diode power.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Narrow-line, cw orange light generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings

Y. L. Chen, W. W. Chen, C. E. Du, W. K. Chang, J. L. Wang, T. Y. Chung, and Y. H. Chen
Opt. Express 17(25) 22578-22585 (2009)

Two-dimensional PPLN for simultaneous laser Q-switching and optical parametric oscillation in a Nd:YVO4 laser

W. K. Chang, Y. H. Chen, H. H. Chang, J. W. Chang, C. Y. Chen, Y. Y. Lin, Y. C. Huang, and S. T. Lin
Opt. Express 19(24) 23643-23651 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. Findeisen, H. J. Eichler, P. Peuser, A. A. Kaminskii, and J. Hulliger, “Diode-pumped Ba(NO3)2 and NaBrO3 Raman lasers,” Appl. Phys. B 70(2), 159–162 (2000).
    [Crossref]
  2. R. W. Farley and P. D. Dao, “Development of an intracavity-summed multiple-wavelength Nd:YAG laser for a rugged, solid-state sodium lidar system,” Appl. Opt. 34(21), 4269–4273 (1995).
    [Crossref] [PubMed]
  3. C. G. Bethea, “Megawatt power at 1.318 μ in Nd3+:YAG and simultaneous oscillation at both 1.06 and 1.318 μ,” IEEE J. Quantum Electron. QE-9(2), 254 (1973).
    [Crossref]
  4. Y. F. Chen and S. W. Tsai, “Diode-pumped Q-switched Nd:YVO4 yellow laser with intracavity sum-frequency mixing,” Opt. Lett. 27(6), 397–399 (2002).
    [Crossref] [PubMed]
  5. A. Yariv and P. Yeh, Optical Waves in Crystal (Wiley, 1984), chaps. 8–10.
  6. W. K. Chang, Y. H. Chen, and J. W. Chang, “Pulsed orange generation optimized in a diode-pumped Nd:YVO4 laser using monolithic dual PPLN electro-optic Q switches,” Opt. Lett. 35(16), 2687–2689 (2010).
    [Crossref] [PubMed]
  7. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
    [Crossref]
  8. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12(11), 2102–2116 (1995).
    [Crossref]
  9. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998).
    [Crossref]
  10. L. Chen, X. Chen, Y. Chen, and Y. Xia, “Multiple quasi-phase-matching in two-dimensional domain-inverted aperiodic optical superlattice,” Phys. Lett. A 349(6), 484–487 (2006).
    [Crossref]
  11. M. de Sterke, S. M. Saltiel, and Y. S. Kivshar, “Efficient collinear fourth-harmonic generation by two-channel multistep cascading in a single two-dimensional nonlinear photonic crystal,” Opt. Lett. 26(8), 539–541 (2001).
    [Crossref] [PubMed]
  12. A. Chowdhury, S. C. Hagness, and L. McCaughan, “Simultaneous optical wavelength interchange with a two-dimensional second-order nonlinear photonic crystal,” Opt. Lett. 25(11), 832–834 (2000).
    [Crossref] [PubMed]
  13. Y. Y. Lin, S. T. Lin, G. W. Chang, A. C. Chiang, Y. C. Huang, and Y. H. Chen, “Electro-optic periodically poled lithium niobate Bragg modulator as a laser Q-switch,” Opt. Lett. 32(5), 545–547 (2007).
    [Crossref] [PubMed]
  14. B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75(15), 2175–2177 (1999).
    [Crossref]
  15. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).
    [Crossref] [PubMed]
  16. R. Lifshitz, A. Arie, and A. Bahabad, “Photonic Quasicrystals for Nonlinear Optical Frequency Conversion,” Phys. Rev. Lett. 95(13), 133901 (2005).
    [Crossref] [PubMed]
  17. A. Bahabad, A. Ganany-Padowicz, and A. Arie, “Engineering two-dimensional nonlinear photonic quasi-crystals,” Opt. Lett. 33(12), 1386–1388 (2008).
    [Crossref] [PubMed]
  18. H. Ishizuki, I. Shoji, and T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett. 82(23), 4062–4064 (2003).
    [Crossref]

2010 (1)

2008 (1)

2007 (1)

2006 (1)

L. Chen, X. Chen, Y. Chen, and Y. Xia, “Multiple quasi-phase-matching in two-dimensional domain-inverted aperiodic optical superlattice,” Phys. Lett. A 349(6), 484–487 (2006).
[Crossref]

2005 (1)

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic Quasicrystals for Nonlinear Optical Frequency Conversion,” Phys. Rev. Lett. 95(13), 133901 (2005).
[Crossref] [PubMed]

2003 (1)

H. Ishizuki, I. Shoji, and T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett. 82(23), 4062–4064 (2003).
[Crossref]

2002 (1)

2001 (1)

2000 (2)

A. Chowdhury, S. C. Hagness, and L. McCaughan, “Simultaneous optical wavelength interchange with a two-dimensional second-order nonlinear photonic crystal,” Opt. Lett. 25(11), 832–834 (2000).
[Crossref] [PubMed]

J. Findeisen, H. J. Eichler, P. Peuser, A. A. Kaminskii, and J. Hulliger, “Diode-pumped Ba(NO3)2 and NaBrO3 Raman lasers,” Appl. Phys. B 70(2), 159–162 (2000).
[Crossref]

1999 (1)

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75(15), 2175–2177 (1999).
[Crossref]

1998 (1)

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998).
[Crossref]

1995 (2)

1983 (1)

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).
[Crossref] [PubMed]

1973 (1)

C. G. Bethea, “Megawatt power at 1.318 μ in Nd3+:YAG and simultaneous oscillation at both 1.06 and 1.318 μ,” IEEE J. Quantum Electron. QE-9(2), 254 (1973).
[Crossref]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Arie, A.

A. Bahabad, A. Ganany-Padowicz, and A. Arie, “Engineering two-dimensional nonlinear photonic quasi-crystals,” Opt. Lett. 33(12), 1386–1388 (2008).
[Crossref] [PubMed]

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic Quasicrystals for Nonlinear Optical Frequency Conversion,” Phys. Rev. Lett. 95(13), 133901 (2005).
[Crossref] [PubMed]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Bahabad, A.

A. Bahabad, A. Ganany-Padowicz, and A. Arie, “Engineering two-dimensional nonlinear photonic quasi-crystals,” Opt. Lett. 33(12), 1386–1388 (2008).
[Crossref] [PubMed]

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic Quasicrystals for Nonlinear Optical Frequency Conversion,” Phys. Rev. Lett. 95(13), 133901 (2005).
[Crossref] [PubMed]

Berger, V.

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998).
[Crossref]

Bethea, C. G.

C. G. Bethea, “Megawatt power at 1.318 μ in Nd3+:YAG and simultaneous oscillation at both 1.06 and 1.318 μ,” IEEE J. Quantum Electron. QE-9(2), 254 (1973).
[Crossref]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Bosenberg, W. R.

Byer, R. L.

Chang, G. W.

Chang, J. W.

Chang, W. K.

Chen, L.

L. Chen, X. Chen, Y. Chen, and Y. Xia, “Multiple quasi-phase-matching in two-dimensional domain-inverted aperiodic optical superlattice,” Phys. Lett. A 349(6), 484–487 (2006).
[Crossref]

Chen, X.

L. Chen, X. Chen, Y. Chen, and Y. Xia, “Multiple quasi-phase-matching in two-dimensional domain-inverted aperiodic optical superlattice,” Phys. Lett. A 349(6), 484–487 (2006).
[Crossref]

Chen, Y.

L. Chen, X. Chen, Y. Chen, and Y. Xia, “Multiple quasi-phase-matching in two-dimensional domain-inverted aperiodic optical superlattice,” Phys. Lett. A 349(6), 484–487 (2006).
[Crossref]

Chen, Y. F.

Chen, Y. H.

Chiang, A. C.

Chowdhury, A.

Dao, P. D.

de Sterke, M.

Dong, B. Z.

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75(15), 2175–2177 (1999).
[Crossref]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Eckardt, R. C.

Eichler, H. J.

J. Findeisen, H. J. Eichler, P. Peuser, A. A. Kaminskii, and J. Hulliger, “Diode-pumped Ba(NO3)2 and NaBrO3 Raman lasers,” Appl. Phys. B 70(2), 159–162 (2000).
[Crossref]

Farley, R. W.

Fejer, M. M.

Findeisen, J.

J. Findeisen, H. J. Eichler, P. Peuser, A. A. Kaminskii, and J. Hulliger, “Diode-pumped Ba(NO3)2 and NaBrO3 Raman lasers,” Appl. Phys. B 70(2), 159–162 (2000).
[Crossref]

Ganany-Padowicz, A.

Gelatt, C. D.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).
[Crossref] [PubMed]

Gu, B. Y.

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75(15), 2175–2177 (1999).
[Crossref]

Hagness, S. C.

Huang, Y. C.

Hulliger, J.

J. Findeisen, H. J. Eichler, P. Peuser, A. A. Kaminskii, and J. Hulliger, “Diode-pumped Ba(NO3)2 and NaBrO3 Raman lasers,” Appl. Phys. B 70(2), 159–162 (2000).
[Crossref]

Ishizuki, H.

H. Ishizuki, I. Shoji, and T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett. 82(23), 4062–4064 (2003).
[Crossref]

Kaminskii, A. A.

J. Findeisen, H. J. Eichler, P. Peuser, A. A. Kaminskii, and J. Hulliger, “Diode-pumped Ba(NO3)2 and NaBrO3 Raman lasers,” Appl. Phys. B 70(2), 159–162 (2000).
[Crossref]

Kirkpatrick, S.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).
[Crossref] [PubMed]

Kivshar, Y. S.

Lifshitz, R.

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic Quasicrystals for Nonlinear Optical Frequency Conversion,” Phys. Rev. Lett. 95(13), 133901 (2005).
[Crossref] [PubMed]

Lin, S. T.

Lin, Y. Y.

McCaughan, L.

Myers, L. E.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Peuser, P.

J. Findeisen, H. J. Eichler, P. Peuser, A. A. Kaminskii, and J. Hulliger, “Diode-pumped Ba(NO3)2 and NaBrO3 Raman lasers,” Appl. Phys. B 70(2), 159–162 (2000).
[Crossref]

Pierce, J. W.

Saltiel, S. M.

Shoji, I.

H. Ishizuki, I. Shoji, and T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett. 82(23), 4062–4064 (2003).
[Crossref]

Taira, T.

H. Ishizuki, I. Shoji, and T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett. 82(23), 4062–4064 (2003).
[Crossref]

Tsai, S. W.

Vecchi, M. P.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).
[Crossref] [PubMed]

Xia, Y.

L. Chen, X. Chen, Y. Chen, and Y. Xia, “Multiple quasi-phase-matching in two-dimensional domain-inverted aperiodic optical superlattice,” Phys. Lett. A 349(6), 484–487 (2006).
[Crossref]

Yang, G. Z.

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75(15), 2175–2177 (1999).
[Crossref]

Zhang, Y.

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75(15), 2175–2177 (1999).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

J. Findeisen, H. J. Eichler, P. Peuser, A. A. Kaminskii, and J. Hulliger, “Diode-pumped Ba(NO3)2 and NaBrO3 Raman lasers,” Appl. Phys. B 70(2), 159–162 (2000).
[Crossref]

Appl. Phys. Lett. (2)

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75(15), 2175–2177 (1999).
[Crossref]

H. Ishizuki, I. Shoji, and T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett. 82(23), 4062–4064 (2003).
[Crossref]

IEEE J. Quantum Electron. (1)

C. G. Bethea, “Megawatt power at 1.318 μ in Nd3+:YAG and simultaneous oscillation at both 1.06 and 1.318 μ,” IEEE J. Quantum Electron. QE-9(2), 254 (1973).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Lett. (6)

Phys. Lett. A (1)

L. Chen, X. Chen, Y. Chen, and Y. Xia, “Multiple quasi-phase-matching in two-dimensional domain-inverted aperiodic optical superlattice,” Phys. Lett. A 349(6), 484–487 (2006).
[Crossref]

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Phys. Rev. Lett. (2)

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998).
[Crossref]

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic Quasicrystals for Nonlinear Optical Frequency Conversion,” Phys. Rev. Lett. 95(13), 133901 (2005).
[Crossref] [PubMed]

Science (1)

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).
[Crossref] [PubMed]

Other (1)

A. Yariv and P. Yeh, Optical Waves in Crystal (Wiley, 1984), chaps. 8–10.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Arrangement of the reciprocal vectors in the crystal momentum space made for quasi-phase-matching the designated Bragg diffraction and sum frequency generation of the 1064 and 1342-nm waves incident along the crystallographic x axis.
Fig. 2
Fig. 2 (a) Schematic domain structure of a 2D aperiodic NPC configured for the illustration of the AOS technique. (b) Illustration of the design of the domain structure width which is a function of the incident laser beam size Dλi, the device length L, and the Bragg angle θB. (c) Presentation of the calculated APPLN domain structure (in part) in a 2D matrix barcode form. The black and white areas represent the negative and positive crystal domains, respectively.
Fig. 3
Fig. 3 2D Fourier spectrum of the calculated NPC domain structure, where three predominant spatial frequencies at (fxKx/2π, fyKy/2π)~(0.0006, 0.0495), ~(0.00048, 0.039), ~(0.1053, 0) μm−1 are resolved.
Fig. 4
Fig. 4 Measured zeroth-order transmittances of the 1064 and 1342-nm lasers traversing the 2D aperiodic NPC as a function of the applied voltage.
Fig. 5
Fig. 5 Schematic arrangement of the pulsed 593.5-nm ISFG system built in a dual-wavelength Nd:YVO4 laser using the fabricated 2D aperiodic NPC as simultaneously the Q-switch and SFG of the two laser lines.
Fig. 6
Fig. 6 (a) Measured output peak power (solid circles) and pulse width (triangles) of the 593.5-nm ISFG as a function of the diode pump power. (b) Measured traces of the two (overlapped) infrared laser pulses (depleted, black line) and the 593.5-nm SFG pulse (orange line) from the system pumped at 5.28 W.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η B = sin 2 ( κ L ) = sin 2 ( 2 π | Δ n ( E z ) | G m λ 0 cos θ B L ) ,
G m ( K ) = 1 A | A s ( x , y ) e K r d x d y | = 1 N x N y | sin c ( a K x 2 ) sin c ( b K y 2 ) p q s ( p , q ) e i [ ( 2 p + 1 ) a K x 2 + ( 2 q + 1 ) b K y 2 ] | ,
O F = w 1 [ η B 0 η B ( G B 1 ) | l w , λ 1 η B ( G B 2 ) | l w , λ 2 ] + w 2 { max [ η B ( G B 1 ) | l w , λ 1 , η B ( G B 2 ) | l w , λ 2 ] min [ η B ( G B 1 ) | l w , λ 1 , η B ( G B 2 ) | l w , λ 2 ] } + w 3 [ η S F G 0 η S F G ( G S F G ) ] ,

Metrics