Abstract

We use polarization-resolved two-photon microscopy to investigate second harmonic generation (SHG) from individual assemblies of site-controlled nano-pyramidal recess templates covered with silver films. We demonstrate the effect of the surface plasmon polaritons (SPPs) at fundamental and second-harmonic frequencies on the effective second order susceptibility tensor as a function of pyramid arrangement and inter-pyramid distance. These results open new perspectives for the application of SHG microscopy as a sensitive probe of coherently excited SPPs, as well as for the design of new plasmonic nanostructure assemblies with tailored nonlinear optical properties.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multipolar analysis of second-harmonic radiation from gold nanoparticles

Sami Kujala, Brian K. Canfield, Martti Kauranen, Yuri Svirko, and Jari Turunen
Opt. Express 16(22) 17196-17208 (2008)

Multipolar tensor analysis of second-order nonlinear optical response of surface and bulk of glass

Francisco J. Rodríguez, Fu Xiang Wang, Brian K. Canfield, Stefano Cattaneo, and Martti Kauranen
Opt. Express 15(14) 8695-8701 (2007)

Multipolar analysis of the second harmonic generated by dielectric particles

Miguel A. G. Mandujano, Eugenio R. Méndez, Claudio I. Valencia, and Bernardo S. Mendoza
Opt. Express 27(3) 3337-3353 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. K. Li, M. I. Stockman, and D. J. Bergman, “Enhanced second harmonic generation in a self-similar chain of metal nanospheres,” Phys. Rev. B 72(15), 153401 (2005).
    [Crossref]
  3. J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett. 12(3), 1697–1701 (2012).
    [Crossref] [PubMed]
  4. R. J. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, “Correlating second harmonic optical responses of single ag nanoparticles with morphology,” J. Am. Chem. Soc. 127(36), 12482–12483 (2005).
    [Crossref] [PubMed]
  5. G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
    [Crossref] [PubMed]
  6. J. Olesiak-Banska, M. Gordel, K. Matczyszyn, V. Shynkar, J. Zyss, and M. Samoc, “Gold nanorods as multifunctional probes in a liquid crystalline DNA matrix,” Nanoscale 5(22), 10975–10981 (2013).
    [Crossref] [PubMed]
  7. K. Thyagarajan, S. Rivier, A. Lovera, and O. J. F. Martin, “Enhanced second-harmonic generation from double resonant plasmonic antennae,” Opt. Express 20(12), 12860–12865 (2012).
    [Crossref] [PubMed]
  8. J. Berthelot, G. Bachelier, M. Song, P. Rai, G. Colas des Francs, A. Dereux, and A. Bouhelier, “Silencing and enhancement of second-harmonic generation in optical gap antennas,” Opt. Express 20(10), 10498–10508 (2012).
    [PubMed]
  9. K. Thyagarajan, J. Butet, and O. J. F. Martin, “Augmenting second harmonic generation using fano resonances in plasmonic systems,” Nano Lett. 13(4), 1847–1851 (2013).
    [PubMed]
  10. Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
    [Crossref] [PubMed]
  11. O. A. Aktsipetrov, I. M. Baranova, E. D. Mishina, and A. V. Petukhov, “Lightning rod effect in surface-enhanced second-harmonic generation,” JETP Lett. 40(6), 1012–1015 (1984).
  12. M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced Second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004).
    [Crossref] [PubMed]
  13. J. Butet, K. Thyagarajan, and O. J. F. Martin, “Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation,” Nano Lett. 13(4), 1787–1792 (2013).
    [PubMed]
  14. I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, and P.-F. Brevet, “Multipolar contributions of the second harmonic generation from silver and gold nanoparticles,” J. Phys. Chem. C 111(26), 9044–9048 (2007).
    [Crossref]
  15. G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B 82(23), 235403 (2010).
    [Crossref]
  16. S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole Interference in the Second-Harmonic Optical Radiation from Gold Nanoparticles,” Phys. Rev. Lett. 98(16), 167403 (2007).
    [Crossref] [PubMed]
  17. R. Czaplicki, M. Zdanowicz, K. Koskinen, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Dipole limit in second-harmonic generation from arrays of gold nanoparticles,” Opt. Express 19(27), 26866–26871 (2011).
    [Crossref] [PubMed]
  18. V. K. Valev, “Characterization of Nanostructured plasmonic surfaces with second harmonic generation,” Langmuir 28(44), 15454–15471 (2012).
    [Crossref] [PubMed]
  19. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
    [Crossref] [PubMed]
  20. A. Slablab, L. Le Xuan, M. Zielinski, Y. de Wilde, V. Jacques, D. Chauvat, and J.-F. Roch, “Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres,” Opt. Express 20(1), 220–227 (2012).
    [Crossref] [PubMed]
  21. C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
    [Crossref]
  22. T.-D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
    [Crossref] [PubMed]
  23. F. Eftekhari and R. Gordon, “Enhanced Second harmonic generation from noncentrosymmetric nanohole arrays in a gold film,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1552–1558 (2008).
    [Crossref]
  24. P. Schön, N. Bonod, E. Devaux, J. Wenger, H. Rigneault, T. W. Ebbesen, and S. Brasselet, “Enhanced second-harmonic generation from individual metallic nanoapertures,” Opt. Lett. 35(23), 4063–4065 (2010).
    [Crossref] [PubMed]
  25. A. Salomon, M. Zielinski, R. Kolkowski, J. Zyss, and Y. Prior, “Size and shape resonances in second harmonic generation from silver nanocavities,” J. Phys. Chem. C 117(43), 22377–22382 (2013).
    [Crossref]
  26. A. Salomon, Y. Prior, M. Fedoruk, J. Feldmann, R. Kolkowski, and J. Zyss, “Plasmonic Coupling between Metallic Nanocavities,” J. Opt. 16(11), 114012 (2014).
    [Crossref]
  27. S. Brasselet, “Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging,” Adv. Opt. Photon. 3(3), 205–271 (2011).
    [Crossref]
  28. J. Zyss, “Octupolar organic systems in quadratic nonlinear optics: molecules and materials,” Nonlinear Opt. 1(1), 3–18 (1991).
  29. J. Zyss, “Molecular engineering implications of rotational invariance in quadratic nonlinear optics: From dipolar to octupolar molecules and materials,” J. Chem. Phys. 98(9), 6583–6599 (1993).
    [Crossref]
  30. S. Brasselet and J. Zyss, “Multipolar molecules and multipolar fields: probing and controlling the tensorial nature of nonlinear molecular media,” J. Opt. Soc. Am. B 15(1), 257–288 (1998).
    [Crossref]
  31. M. Felici, P. Gallo, A. Mohan, B. Dwir, A. Rudra, and E. Kapon, “Site-controlled InGaAs quantum dots with tunable emission energy,” Small 5(8), 938–943 (2009).
    [Crossref] [PubMed]
  32. S. Nerkararyan, Kh. Nerkararyan, N. Janunts, and T. Pertsch, “Generation of Hankel-type surface plasmon polaritons in the vicinity of a metallic nanohole,” Phys. Rev. B 82(24), 245405 (2010).
    [Crossref]
  33. Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3(12), 884–889 (2007).
    [Crossref]
  34. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  35. N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta. Phys. Pol. A 116(4), 585–587 (2009).
  36. Q. Zhu, J. D. Ganiere, Z. B. He, K. F. Karlsson, M. Byszewski, E. Pelucchi, A. Rudra, and E. Kapon, “Pyramidal GaAs/AlzGa1−zAs quantum wire/dot systems with controlled heterostructure potential,” Phys. Rev. B 82(16), 165315 (2010).
    [Crossref]

2014 (1)

A. Salomon, Y. Prior, M. Fedoruk, J. Feldmann, R. Kolkowski, and J. Zyss, “Plasmonic Coupling between Metallic Nanocavities,” J. Opt. 16(11), 114012 (2014).
[Crossref]

2013 (4)

A. Salomon, M. Zielinski, R. Kolkowski, J. Zyss, and Y. Prior, “Size and shape resonances in second harmonic generation from silver nanocavities,” J. Phys. Chem. C 117(43), 22377–22382 (2013).
[Crossref]

J. Olesiak-Banska, M. Gordel, K. Matczyszyn, V. Shynkar, J. Zyss, and M. Samoc, “Gold nanorods as multifunctional probes in a liquid crystalline DNA matrix,” Nanoscale 5(22), 10975–10981 (2013).
[Crossref] [PubMed]

K. Thyagarajan, J. Butet, and O. J. F. Martin, “Augmenting second harmonic generation using fano resonances in plasmonic systems,” Nano Lett. 13(4), 1847–1851 (2013).
[PubMed]

J. Butet, K. Thyagarajan, and O. J. F. Martin, “Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation,” Nano Lett. 13(4), 1787–1792 (2013).
[PubMed]

2012 (6)

V. K. Valev, “Characterization of Nanostructured plasmonic surfaces with second harmonic generation,” Langmuir 28(44), 15454–15471 (2012).
[Crossref] [PubMed]

K. Thyagarajan, S. Rivier, A. Lovera, and O. J. F. Martin, “Enhanced second-harmonic generation from double resonant plasmonic antennae,” Opt. Express 20(12), 12860–12865 (2012).
[Crossref] [PubMed]

J. Berthelot, G. Bachelier, M. Song, P. Rai, G. Colas des Francs, A. Dereux, and A. Bouhelier, “Silencing and enhancement of second-harmonic generation in optical gap antennas,” Opt. Express 20(10), 10498–10508 (2012).
[PubMed]

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett. 12(3), 1697–1701 (2012).
[Crossref] [PubMed]

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

A. Slablab, L. Le Xuan, M. Zielinski, Y. de Wilde, V. Jacques, D. Chauvat, and J.-F. Roch, “Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres,” Opt. Express 20(1), 220–227 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (4)

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B 82(23), 235403 (2010).
[Crossref]

P. Schön, N. Bonod, E. Devaux, J. Wenger, H. Rigneault, T. W. Ebbesen, and S. Brasselet, “Enhanced second-harmonic generation from individual metallic nanoapertures,” Opt. Lett. 35(23), 4063–4065 (2010).
[Crossref] [PubMed]

S. Nerkararyan, Kh. Nerkararyan, N. Janunts, and T. Pertsch, “Generation of Hankel-type surface plasmon polaritons in the vicinity of a metallic nanohole,” Phys. Rev. B 82(24), 245405 (2010).
[Crossref]

Q. Zhu, J. D. Ganiere, Z. B. He, K. F. Karlsson, M. Byszewski, E. Pelucchi, A. Rudra, and E. Kapon, “Pyramidal GaAs/AlzGa1−zAs quantum wire/dot systems with controlled heterostructure potential,” Phys. Rev. B 82(16), 165315 (2010).
[Crossref]

2009 (2)

N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta. Phys. Pol. A 116(4), 585–587 (2009).

M. Felici, P. Gallo, A. Mohan, B. Dwir, A. Rudra, and E. Kapon, “Site-controlled InGaAs quantum dots with tunable emission energy,” Small 5(8), 938–943 (2009).
[Crossref] [PubMed]

2008 (1)

F. Eftekhari and R. Gordon, “Enhanced Second harmonic generation from noncentrosymmetric nanohole arrays in a gold film,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1552–1558 (2008).
[Crossref]

2007 (6)

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

T.-D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
[Crossref] [PubMed]

Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3(12), 884–889 (2007).
[Crossref]

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole Interference in the Second-Harmonic Optical Radiation from Gold Nanoparticles,” Phys. Rev. Lett. 98(16), 167403 (2007).
[Crossref] [PubMed]

I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, and P.-F. Brevet, “Multipolar contributions of the second harmonic generation from silver and gold nanoparticles,” J. Phys. Chem. C 111(26), 9044–9048 (2007).
[Crossref]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

2005 (2)

K. Li, M. I. Stockman, and D. J. Bergman, “Enhanced second harmonic generation in a self-similar chain of metal nanospheres,” Phys. Rev. B 72(15), 153401 (2005).
[Crossref]

R. J. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, “Correlating second harmonic optical responses of single ag nanoparticles with morphology,” J. Am. Chem. Soc. 127(36), 12482–12483 (2005).
[Crossref] [PubMed]

2004 (1)

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced Second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004).
[Crossref] [PubMed]

1998 (1)

1993 (1)

J. Zyss, “Molecular engineering implications of rotational invariance in quadratic nonlinear optics: From dipolar to octupolar molecules and materials,” J. Chem. Phys. 98(9), 6583–6599 (1993).
[Crossref]

1991 (1)

J. Zyss, “Octupolar organic systems in quadratic nonlinear optics: molecules and materials,” Nonlinear Opt. 1(1), 3–18 (1991).

1984 (1)

O. A. Aktsipetrov, I. M. Baranova, E. D. Mishina, and A. V. Petukhov, “Lightning rod effect in surface-enhanced second-harmonic generation,” JETP Lett. 40(6), 1012–1015 (1984).

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Adam, P.-M.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

Aktsipetrov, O. A.

O. A. Aktsipetrov, I. M. Baranova, E. D. Mishina, and A. V. Petukhov, “Lightning rod effect in surface-enhanced second-harmonic generation,” JETP Lett. 40(6), 1012–1015 (1984).

Alaverdyan, Y.

Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3(12), 884–889 (2007).
[Crossref]

Anceau, C.

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced Second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004).
[Crossref] [PubMed]

Ayala-Orozco, C.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[Crossref] [PubMed]

Bachelier, G.

J. Berthelot, G. Bachelier, M. Song, P. Rai, G. Colas des Francs, A. Dereux, and A. Bouhelier, “Silencing and enhancement of second-harmonic generation in optical gap antennas,” Opt. Express 20(10), 10498–10508 (2012).
[PubMed]

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B 82(23), 235403 (2010).
[Crossref]

I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, and P.-F. Brevet, “Multipolar contributions of the second harmonic generation from silver and gold nanoparticles,” J. Phys. Chem. C 111(26), 9044–9048 (2007).
[Crossref]

Bachelot, R.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

Bai, B.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

Baranova, I. M.

O. A. Aktsipetrov, I. M. Baranova, E. D. Mishina, and A. V. Petukhov, “Lightning rod effect in surface-enhanced second-harmonic generation,” JETP Lett. 40(6), 1012–1015 (1984).

Bautista, G.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

Benichou, E.

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett. 12(3), 1697–1701 (2012).
[Crossref] [PubMed]

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B 82(23), 235403 (2010).
[Crossref]

I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, and P.-F. Brevet, “Multipolar contributions of the second harmonic generation from silver and gold nanoparticles,” J. Phys. Chem. C 111(26), 9044–9048 (2007).
[Crossref]

Bergman, D. J.

K. Li, M. I. Stockman, and D. J. Bergman, “Enhanced second harmonic generation in a self-similar chain of metal nanospheres,” Phys. Rev. B 72(15), 153401 (2005).
[Crossref]

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced Second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004).
[Crossref] [PubMed]

Berthelot, J.

Billot, L.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

Bonod, N.

Bouhelier, A.

Brasselet, S.

Brevet, P.-F.

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett. 12(3), 1697–1701 (2012).
[Crossref] [PubMed]

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B 82(23), 235403 (2010).
[Crossref]

I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, and P.-F. Brevet, “Multipolar contributions of the second harmonic generation from silver and gold nanoparticles,” J. Phys. Chem. C 111(26), 9044–9048 (2007).
[Crossref]

Butet, J.

J. Butet, K. Thyagarajan, and O. J. F. Martin, “Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation,” Nano Lett. 13(4), 1787–1792 (2013).
[PubMed]

K. Thyagarajan, J. Butet, and O. J. F. Martin, “Augmenting second harmonic generation using fano resonances in plasmonic systems,” Nano Lett. 13(4), 1847–1851 (2013).
[PubMed]

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett. 12(3), 1697–1701 (2012).
[Crossref] [PubMed]

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B 82(23), 235403 (2010).
[Crossref]

Byszewski, M.

Q. Zhu, J. D. Ganiere, Z. B. He, K. F. Karlsson, M. Byszewski, E. Pelucchi, A. Rudra, and E. Kapon, “Pyramidal GaAs/AlzGa1−zAs quantum wire/dot systems with controlled heterostructure potential,” Phys. Rev. B 82(16), 165315 (2010).
[Crossref]

Canfield, B. K.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole Interference in the Second-Harmonic Optical Radiation from Gold Nanoparticles,” Phys. Rev. Lett. 98(16), 167403 (2007).
[Crossref] [PubMed]

Chauvat, D.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Colas des Francs, G.

Czaplicki, R.

de Wilde, Y.

Dereux, A.

Devaux, E.

Dorkenoo, K. D.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

Dragnea, B.

T.-D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
[Crossref] [PubMed]

DuFort, C. C.

T.-D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
[Crossref] [PubMed]

Dwir, B.

M. Felici, P. Gallo, A. Mohan, B. Dwir, A. Rudra, and E. Kapon, “Site-controlled InGaAs quantum dots with tunable emission energy,” Small 5(8), 938–943 (2009).
[Crossref] [PubMed]

Ebbesen, T. W.

Eftekhari, F.

F. Eftekhari and R. Gordon, “Enhanced Second harmonic generation from noncentrosymmetric nanohole arrays in a gold film,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1552–1558 (2008).
[Crossref]

Eurenius, L.

Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3(12), 884–889 (2007).
[Crossref]

Fedoruk, M.

A. Salomon, Y. Prior, M. Fedoruk, J. Feldmann, R. Kolkowski, and J. Zyss, “Plasmonic Coupling between Metallic Nanocavities,” J. Opt. 16(11), 114012 (2014).
[Crossref]

Feldmann, J.

A. Salomon, Y. Prior, M. Fedoruk, J. Feldmann, R. Kolkowski, and J. Zyss, “Plasmonic Coupling between Metallic Nanocavities,” J. Opt. 16(11), 114012 (2014).
[Crossref]

Felici, M.

M. Felici, P. Gallo, A. Mohan, B. Dwir, A. Rudra, and E. Kapon, “Site-controlled InGaAs quantum dots with tunable emission energy,” Small 5(8), 938–943 (2009).
[Crossref] [PubMed]

Fort, A.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

Gallo, P.

M. Felici, P. Gallo, A. Mohan, B. Dwir, A. Rudra, and E. Kapon, “Site-controlled InGaAs quantum dots with tunable emission energy,” Small 5(8), 938–943 (2009).
[Crossref] [PubMed]

Ganiere, J. D.

Q. Zhu, J. D. Ganiere, Z. B. He, K. F. Karlsson, M. Byszewski, E. Pelucchi, A. Rudra, and E. Kapon, “Pyramidal GaAs/AlzGa1−zAs quantum wire/dot systems with controlled heterostructure potential,” Phys. Rev. B 82(16), 165315 (2010).
[Crossref]

Gindre, D.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

Gordel, M.

J. Olesiak-Banska, M. Gordel, K. Matczyszyn, V. Shynkar, J. Zyss, and M. Samoc, “Gold nanorods as multifunctional probes in a liquid crystalline DNA matrix,” Nanoscale 5(22), 10975–10981 (2013).
[Crossref] [PubMed]

Gordon, R.

F. Eftekhari and R. Gordon, “Enhanced Second harmonic generation from noncentrosymmetric nanohole arrays in a gold film,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1552–1558 (2008).
[Crossref]

Grady, N. K.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[Crossref] [PubMed]

Grand, J.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

Halas, N. J.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[Crossref] [PubMed]

He, Z. B.

Q. Zhu, J. D. Ganiere, Z. B. He, K. F. Karlsson, M. Byszewski, E. Pelucchi, A. Rudra, and E. Kapon, “Pyramidal GaAs/AlzGa1−zAs quantum wire/dot systems with controlled heterostructure potential,” Phys. Rev. B 82(16), 165315 (2010).
[Crossref]

Hubert, C.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

Husu, H.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

Huttunen, M. J.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

Jacques, V.

Janunts, N.

S. Nerkararyan, Kh. Nerkararyan, N. Janunts, and T. Pertsch, “Generation of Hankel-type surface plasmon polaritons in the vicinity of a metallic nanohole,” Phys. Rev. B 82(24), 245405 (2010).
[Crossref]

Jin, R. J.

R. J. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, “Correlating second harmonic optical responses of single ag nanoparticles with morphology,” J. Am. Chem. Soc. 127(36), 12482–12483 (2005).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jonin, C.

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett. 12(3), 1697–1701 (2012).
[Crossref] [PubMed]

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B 82(23), 235403 (2010).
[Crossref]

I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, and P.-F. Brevet, “Multipolar contributions of the second harmonic generation from silver and gold nanoparticles,” J. Phys. Chem. C 111(26), 9044–9048 (2007).
[Crossref]

Jureller, J. E.

R. J. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, “Correlating second harmonic optical responses of single ag nanoparticles with morphology,” J. Am. Chem. Soc. 127(36), 12482–12483 (2005).
[Crossref] [PubMed]

Käll, M.

Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3(12), 884–889 (2007).
[Crossref]

Kapon, E.

Q. Zhu, J. D. Ganiere, Z. B. He, K. F. Karlsson, M. Byszewski, E. Pelucchi, A. Rudra, and E. Kapon, “Pyramidal GaAs/AlzGa1−zAs quantum wire/dot systems with controlled heterostructure potential,” Phys. Rev. B 82(16), 165315 (2010).
[Crossref]

M. Felici, P. Gallo, A. Mohan, B. Dwir, A. Rudra, and E. Kapon, “Site-controlled InGaAs quantum dots with tunable emission energy,” Small 5(8), 938–943 (2009).
[Crossref] [PubMed]

Karlsson, K. F.

Q. Zhu, J. D. Ganiere, Z. B. He, K. F. Karlsson, M. Byszewski, E. Pelucchi, A. Rudra, and E. Kapon, “Pyramidal GaAs/AlzGa1−zAs quantum wire/dot systems with controlled heterostructure potential,” Phys. Rev. B 82(16), 165315 (2010).
[Crossref]

Kasarova, S.

N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta. Phys. Pol. A 116(4), 585–587 (2009).

Kauranen, M.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

R. Czaplicki, M. Zdanowicz, K. Koskinen, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Dipole limit in second-harmonic generation from arrays of gold nanoparticles,” Opt. Express 19(27), 26866–26871 (2011).
[Crossref] [PubMed]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole Interference in the Second-Harmonic Optical Radiation from Gold Nanoparticles,” Phys. Rev. Lett. 98(16), 167403 (2007).
[Crossref] [PubMed]

Kim, H. Y.

R. J. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, “Correlating second harmonic optical responses of single ag nanoparticles with morphology,” J. Am. Chem. Soc. 127(36), 12482–12483 (2005).
[Crossref] [PubMed]

Kolkowski, R.

A. Salomon, Y. Prior, M. Fedoruk, J. Feldmann, R. Kolkowski, and J. Zyss, “Plasmonic Coupling between Metallic Nanocavities,” J. Opt. 16(11), 114012 (2014).
[Crossref]

A. Salomon, M. Zielinski, R. Kolkowski, J. Zyss, and Y. Prior, “Size and shape resonances in second harmonic generation from silver nanocavities,” J. Phys. Chem. C 117(43), 22377–22382 (2013).
[Crossref]

Kontio, J. M.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

Koskinen, K.

Kuittinen, M.

R. Czaplicki, M. Zdanowicz, K. Koskinen, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Dipole limit in second-harmonic generation from arrays of gold nanoparticles,” Opt. Express 19(27), 26866–26871 (2011).
[Crossref] [PubMed]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

Kujala, S.

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole Interference in the Second-Harmonic Optical Radiation from Gold Nanoparticles,” Phys. Rev. Lett. 98(16), 167403 (2007).
[Crossref] [PubMed]

Lascoux, N.

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett. 12(3), 1697–1701 (2012).
[Crossref] [PubMed]

Laukkanen, J.

R. Czaplicki, M. Zdanowicz, K. Koskinen, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Dipole limit in second-harmonic generation from arrays of gold nanoparticles,” Opt. Express 19(27), 26866–26871 (2011).
[Crossref] [PubMed]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

Le Xuan, L.

Li, K.

K. Li, M. I. Stockman, and D. J. Bergman, “Enhanced second harmonic generation in a self-similar chain of metal nanospheres,” Phys. Rev. B 72(15), 153401 (2005).
[Crossref]

Lovera, A.

Mäkitalo, J.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

Martin, O. J. F.

J. Butet, K. Thyagarajan, and O. J. F. Martin, “Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation,” Nano Lett. 13(4), 1787–1792 (2013).
[PubMed]

K. Thyagarajan, J. Butet, and O. J. F. Martin, “Augmenting second harmonic generation using fano resonances in plasmonic systems,” Nano Lett. 13(4), 1847–1851 (2013).
[PubMed]

K. Thyagarajan, S. Rivier, A. Lovera, and O. J. F. Martin, “Enhanced second-harmonic generation from double resonant plasmonic antennae,” Opt. Express 20(12), 12860–12865 (2012).
[Crossref] [PubMed]

Matczyszyn, K.

J. Olesiak-Banska, M. Gordel, K. Matczyszyn, V. Shynkar, J. Zyss, and M. Samoc, “Gold nanorods as multifunctional probes in a liquid crystalline DNA matrix,” Nanoscale 5(22), 10975–10981 (2013).
[Crossref] [PubMed]

Mishina, E. D.

O. A. Aktsipetrov, I. M. Baranova, E. D. Mishina, and A. V. Petukhov, “Lightning rod effect in surface-enhanced second-harmonic generation,” JETP Lett. 40(6), 1012–1015 (1984).

Mohan, A.

M. Felici, P. Gallo, A. Mohan, B. Dwir, A. Rudra, and E. Kapon, “Site-controlled InGaAs quantum dots with tunable emission energy,” Small 5(8), 938–943 (2009).
[Crossref] [PubMed]

Nerkararyan, Kh.

S. Nerkararyan, Kh. Nerkararyan, N. Janunts, and T. Pertsch, “Generation of Hankel-type surface plasmon polaritons in the vicinity of a metallic nanohole,” Phys. Rev. B 82(24), 245405 (2010).
[Crossref]

Nerkararyan, S.

S. Nerkararyan, Kh. Nerkararyan, N. Janunts, and T. Pertsch, “Generation of Hankel-type surface plasmon polaritons in the vicinity of a metallic nanohole,” Phys. Rev. B 82(24), 245405 (2010).
[Crossref]

Nikolov, I.

N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta. Phys. Pol. A 116(4), 585–587 (2009).

Olesiak-Banska, J.

J. Olesiak-Banska, M. Gordel, K. Matczyszyn, V. Shynkar, J. Zyss, and M. Samoc, “Gold nanorods as multifunctional probes in a liquid crystalline DNA matrix,” Nanoscale 5(22), 10975–10981 (2013).
[Crossref] [PubMed]

Olsson, E.

Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3(12), 884–889 (2007).
[Crossref]

Onuta, T.-D.

T.-D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
[Crossref] [PubMed]

Pelucchi, E.

Q. Zhu, J. D. Ganiere, Z. B. He, K. F. Karlsson, M. Byszewski, E. Pelucchi, A. Rudra, and E. Kapon, “Pyramidal GaAs/AlzGa1−zAs quantum wire/dot systems with controlled heterostructure potential,” Phys. Rev. B 82(16), 165315 (2010).
[Crossref]

Pertsch, T.

S. Nerkararyan, Kh. Nerkararyan, N. Janunts, and T. Pertsch, “Generation of Hankel-type surface plasmon polaritons in the vicinity of a metallic nanohole,” Phys. Rev. B 82(24), 245405 (2010).
[Crossref]

Petukhov, A. V.

O. A. Aktsipetrov, I. M. Baranova, E. D. Mishina, and A. V. Petukhov, “Lightning rod effect in surface-enhanced second-harmonic generation,” JETP Lett. 40(6), 1012–1015 (1984).

Prior, Y.

A. Salomon, Y. Prior, M. Fedoruk, J. Feldmann, R. Kolkowski, and J. Zyss, “Plasmonic Coupling between Metallic Nanocavities,” J. Opt. 16(11), 114012 (2014).
[Crossref]

A. Salomon, M. Zielinski, R. Kolkowski, J. Zyss, and Y. Prior, “Size and shape resonances in second harmonic generation from silver nanocavities,” J. Phys. Chem. C 117(43), 22377–22382 (2013).
[Crossref]

Rai, P.

Rigneault, H.

Rivier, S.

Roch, J.-F.

Royer, P.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

Rudra, A.

Q. Zhu, J. D. Ganiere, Z. B. He, K. F. Karlsson, M. Byszewski, E. Pelucchi, A. Rudra, and E. Kapon, “Pyramidal GaAs/AlzGa1−zAs quantum wire/dot systems with controlled heterostructure potential,” Phys. Rev. B 82(16), 165315 (2010).
[Crossref]

M. Felici, P. Gallo, A. Mohan, B. Dwir, A. Rudra, and E. Kapon, “Site-controlled InGaAs quantum dots with tunable emission energy,” Small 5(8), 938–943 (2009).
[Crossref] [PubMed]

Russier-Antoine, I.

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett. 12(3), 1697–1701 (2012).
[Crossref] [PubMed]

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B 82(23), 235403 (2010).
[Crossref]

I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, and P.-F. Brevet, “Multipolar contributions of the second harmonic generation from silver and gold nanoparticles,” J. Phys. Chem. C 111(26), 9044–9048 (2007).
[Crossref]

Salomon, A.

A. Salomon, Y. Prior, M. Fedoruk, J. Feldmann, R. Kolkowski, and J. Zyss, “Plasmonic Coupling between Metallic Nanocavities,” J. Opt. 16(11), 114012 (2014).
[Crossref]

A. Salomon, M. Zielinski, R. Kolkowski, J. Zyss, and Y. Prior, “Size and shape resonances in second harmonic generation from silver nanocavities,” J. Phys. Chem. C 117(43), 22377–22382 (2013).
[Crossref]

Samoc, M.

J. Olesiak-Banska, M. Gordel, K. Matczyszyn, V. Shynkar, J. Zyss, and M. Samoc, “Gold nanorods as multifunctional probes in a liquid crystalline DNA matrix,” Nanoscale 5(22), 10975–10981 (2013).
[Crossref] [PubMed]

Schaich, W. L.

T.-D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
[Crossref] [PubMed]

Scherer, N. F.

R. J. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, “Correlating second harmonic optical responses of single ag nanoparticles with morphology,” J. Am. Chem. Soc. 127(36), 12482–12483 (2005).
[Crossref] [PubMed]

Schön, P.

Sepúlveda, B.

Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3(12), 884–889 (2007).
[Crossref]

Shynkar, V.

J. Olesiak-Banska, M. Gordel, K. Matczyszyn, V. Shynkar, J. Zyss, and M. Samoc, “Gold nanorods as multifunctional probes in a liquid crystalline DNA matrix,” Nanoscale 5(22), 10975–10981 (2013).
[Crossref] [PubMed]

Simonen, J.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

Slablab, A.

Song, M.

Stockman, M. I.

K. Li, M. I. Stockman, and D. J. Bergman, “Enhanced second harmonic generation in a self-similar chain of metal nanospheres,” Phys. Rev. B 72(15), 153401 (2005).
[Crossref]

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced Second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004).
[Crossref] [PubMed]

Sultanova, N.

N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta. Phys. Pol. A 116(4), 585–587 (2009).

Svirko, Y.

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole Interference in the Second-Harmonic Optical Radiation from Gold Nanoparticles,” Phys. Rev. Lett. 98(16), 167403 (2007).
[Crossref] [PubMed]

Thyagarajan, K.

K. Thyagarajan, J. Butet, and O. J. F. Martin, “Augmenting second harmonic generation using fano resonances in plasmonic systems,” Nano Lett. 13(4), 1847–1851 (2013).
[PubMed]

J. Butet, K. Thyagarajan, and O. J. F. Martin, “Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation,” Nano Lett. 13(4), 1787–1792 (2013).
[PubMed]

K. Thyagarajan, S. Rivier, A. Lovera, and O. J. F. Martin, “Enhanced second-harmonic generation from double resonant plasmonic antennae,” Opt. Express 20(12), 12860–12865 (2012).
[Crossref] [PubMed]

Turunen, J.

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole Interference in the Second-Harmonic Optical Radiation from Gold Nanoparticles,” Phys. Rev. Lett. 98(16), 167403 (2007).
[Crossref] [PubMed]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

Valev, V. K.

V. K. Valev, “Characterization of Nanostructured plasmonic surfaces with second harmonic generation,” Langmuir 28(44), 15454–15471 (2012).
[Crossref] [PubMed]

Waegele, M.

T.-D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
[Crossref] [PubMed]

Wenger, J.

Zdanowicz, M.

Zhang, Y.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[Crossref] [PubMed]

Zhu, Q.

Q. Zhu, J. D. Ganiere, Z. B. He, K. F. Karlsson, M. Byszewski, E. Pelucchi, A. Rudra, and E. Kapon, “Pyramidal GaAs/AlzGa1−zAs quantum wire/dot systems with controlled heterostructure potential,” Phys. Rev. B 82(16), 165315 (2010).
[Crossref]

Zielinski, M.

A. Salomon, M. Zielinski, R. Kolkowski, J. Zyss, and Y. Prior, “Size and shape resonances in second harmonic generation from silver nanocavities,” J. Phys. Chem. C 117(43), 22377–22382 (2013).
[Crossref]

A. Slablab, L. Le Xuan, M. Zielinski, Y. de Wilde, V. Jacques, D. Chauvat, and J.-F. Roch, “Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres,” Opt. Express 20(1), 220–227 (2012).
[Crossref] [PubMed]

Zyss, J.

A. Salomon, Y. Prior, M. Fedoruk, J. Feldmann, R. Kolkowski, and J. Zyss, “Plasmonic Coupling between Metallic Nanocavities,” J. Opt. 16(11), 114012 (2014).
[Crossref]

A. Salomon, M. Zielinski, R. Kolkowski, J. Zyss, and Y. Prior, “Size and shape resonances in second harmonic generation from silver nanocavities,” J. Phys. Chem. C 117(43), 22377–22382 (2013).
[Crossref]

J. Olesiak-Banska, M. Gordel, K. Matczyszyn, V. Shynkar, J. Zyss, and M. Samoc, “Gold nanorods as multifunctional probes in a liquid crystalline DNA matrix,” Nanoscale 5(22), 10975–10981 (2013).
[Crossref] [PubMed]

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced Second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004).
[Crossref] [PubMed]

S. Brasselet and J. Zyss, “Multipolar molecules and multipolar fields: probing and controlling the tensorial nature of nonlinear molecular media,” J. Opt. Soc. Am. B 15(1), 257–288 (1998).
[Crossref]

J. Zyss, “Molecular engineering implications of rotational invariance in quadratic nonlinear optics: From dipolar to octupolar molecules and materials,” J. Chem. Phys. 98(9), 6583–6599 (1993).
[Crossref]

J. Zyss, “Octupolar organic systems in quadratic nonlinear optics: molecules and materials,” Nonlinear Opt. 1(1), 3–18 (1991).

Acta. Phys. Pol. A (1)

N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta. Phys. Pol. A 116(4), 585–587 (2009).

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (1)

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Eftekhari and R. Gordon, “Enhanced Second harmonic generation from noncentrosymmetric nanohole arrays in a gold film,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1552–1558 (2008).
[Crossref]

J. Am. Chem. Soc. (1)

R. J. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, “Correlating second harmonic optical responses of single ag nanoparticles with morphology,” J. Am. Chem. Soc. 127(36), 12482–12483 (2005).
[Crossref] [PubMed]

J. Chem. Phys. (1)

J. Zyss, “Molecular engineering implications of rotational invariance in quadratic nonlinear optics: From dipolar to octupolar molecules and materials,” J. Chem. Phys. 98(9), 6583–6599 (1993).
[Crossref]

J. Opt. (1)

A. Salomon, Y. Prior, M. Fedoruk, J. Feldmann, R. Kolkowski, and J. Zyss, “Plasmonic Coupling between Metallic Nanocavities,” J. Opt. 16(11), 114012 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (2)

A. Salomon, M. Zielinski, R. Kolkowski, J. Zyss, and Y. Prior, “Size and shape resonances in second harmonic generation from silver nanocavities,” J. Phys. Chem. C 117(43), 22377–22382 (2013).
[Crossref]

I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, and P.-F. Brevet, “Multipolar contributions of the second harmonic generation from silver and gold nanoparticles,” J. Phys. Chem. C 111(26), 9044–9048 (2007).
[Crossref]

JETP Lett. (1)

O. A. Aktsipetrov, I. M. Baranova, E. D. Mishina, and A. V. Petukhov, “Lightning rod effect in surface-enhanced second-harmonic generation,” JETP Lett. 40(6), 1012–1015 (1984).

Langmuir (1)

V. K. Valev, “Characterization of Nanostructured plasmonic surfaces with second harmonic generation,” Langmuir 28(44), 15454–15471 (2012).
[Crossref] [PubMed]

Nano Lett. (7)

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett. 12(3), 1697–1701 (2012).
[Crossref] [PubMed]

J. Butet, K. Thyagarajan, and O. J. F. Martin, “Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation,” Nano Lett. 13(4), 1787–1792 (2013).
[PubMed]

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

K. Thyagarajan, J. Butet, and O. J. F. Martin, “Augmenting second harmonic generation using fano resonances in plasmonic systems,” Nano Lett. 13(4), 1847–1851 (2013).
[PubMed]

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[Crossref] [PubMed]

T.-D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
[Crossref] [PubMed]

Nanoscale (1)

J. Olesiak-Banska, M. Gordel, K. Matczyszyn, V. Shynkar, J. Zyss, and M. Samoc, “Gold nanorods as multifunctional probes in a liquid crystalline DNA matrix,” Nanoscale 5(22), 10975–10981 (2013).
[Crossref] [PubMed]

Nat. Phys. (1)

Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3(12), 884–889 (2007).
[Crossref]

Nonlinear Opt. (1)

J. Zyss, “Octupolar organic systems in quadratic nonlinear optics: molecules and materials,” Nonlinear Opt. 1(1), 3–18 (1991).

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (5)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Q. Zhu, J. D. Ganiere, Z. B. He, K. F. Karlsson, M. Byszewski, E. Pelucchi, A. Rudra, and E. Kapon, “Pyramidal GaAs/AlzGa1−zAs quantum wire/dot systems with controlled heterostructure potential,” Phys. Rev. B 82(16), 165315 (2010).
[Crossref]

S. Nerkararyan, Kh. Nerkararyan, N. Janunts, and T. Pertsch, “Generation of Hankel-type surface plasmon polaritons in the vicinity of a metallic nanohole,” Phys. Rev. B 82(24), 245405 (2010).
[Crossref]

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B 82(23), 235403 (2010).
[Crossref]

K. Li, M. I. Stockman, and D. J. Bergman, “Enhanced second harmonic generation in a self-similar chain of metal nanospheres,” Phys. Rev. B 72(15), 153401 (2005).
[Crossref]

Phys. Rev. Lett. (2)

S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole Interference in the Second-Harmonic Optical Radiation from Gold Nanoparticles,” Phys. Rev. Lett. 98(16), 167403 (2007).
[Crossref] [PubMed]

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced Second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004).
[Crossref] [PubMed]

Small (1)

M. Felici, P. Gallo, A. Mohan, B. Dwir, A. Rudra, and E. Kapon, “Site-controlled InGaAs quantum dots with tunable emission energy,” Small 5(8), 938–943 (2009).
[Crossref] [PubMed]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 SEM images of the investigated nanostructures: (a-b) single inverted pyramid before (a) and after (b) Ag deposition, (c) side view of the pyramid in cross-section showing GaAs substrate and silver film on top, (d-h) arrangements of pyramids studied in this work: (d) horizontal pair, (e) horizontal triplet, (f) vertical pair, (g) vertical triplet, (h) triangular arrangement. Scale bar in the lower right corner of each image indicates 100 nm. Incident polarization angle α is indicated in (d) together with the axes of the laboratory frame (x and y).
Fig. 2
Fig. 2 SHG polarization response: x-polarized signal in red, y-polarized in blue, measured from various objects on a (111)-GaAs substrate: (a) bare GaAs wafer showing a signature of three-fold rotational symmetry along an axis perpendicular to the (111)B plane; (b) flat silver surface constituting the “isotropic” background; (c-d) individual pyramid: (c) raw data and (d) after subtraction of background signal shown in (b). (e) Diffraction-limited image (scan 4 x 4 µm) of a single pyramid obtained by detecting the y-polarized SHG signal (indicated by a white arrow marked with E) under x-polarized excitation (marked with Eω). (f) Spectrum of the total signal emitted by the pyramid proving that the SHG peak at 475 nm is the only nonlinear emission measured in the experiment. The angle of incident polarization α is indicated in (b) and in (e), in the latter together with the axes (x and y).
Fig. 3
Fig. 3 (a) Diffraction-limited image of a horizontal arrangement of two pyramids distanced by 200 nm, obtained by detecting y-polarized SHG signal (E) under x-polarized excitation (Eω). (b) Surface plots of SHG images such as in (a), showing the variation of the y-polarized SHG intensity excited by a x-polarized fundamental light in a series of horizontal pairs of pyramids with distances increasing from 50 to 450 nm. (c) Full SHG polarization analysis of horizontal pairs, in the same sequence as in (b).
Fig. 4
Fig. 4 Experimental values of the ratio xxy/yyy for horizontal pairs (a) and horizontal triplets (b), and experimental values of yyy/xxy for vertical pairs (c) and vertical triplets (d) as a function of the distance between pyramids (D), superimposed with theoretical curves representing the influence of SPP-mediated coupling at fundamental (solid lines) and second-harmonic frequency (dashed lines). Insets show the corresponding pyramid arrangements. Diffraction limited SHG images of the nanostructures for all investigated distances are shown beneath each plot (IySHG(α = 0) for horizontal arrangements and IySHG(α = π/2) for vertical arrangements).
Fig. 5
Fig. 5 (a) Theoretical SHG polarization response assuming coupling at fundamental frequency in a horizontal triplet of D = 300 nm, a = 0.35, and (b) corresponding experimental data; (c) theoretical response for coupling at fundamental frequency in a vertical triplet of D = 250 nm, a = 0.35, and (d) corresponding experimental data; (e) theoretical response for coupling at second-harmonic frequency in a vertical triplet of D = 90 nm, a = 0.8, and (f) experimental data corresponding to a vertical triplet of D = 150 nm.
Fig. 6
Fig. 6 (a) Polarization response of triangular assembly of pyramids with edge-to-edge distance D = 200 nm, (b) distance dependence of normalized IySHG(α = 0) superimposed with a theoretical curve (solid line) assuming coupling at fundamental frequency with a = 0.55; inset shows an SEM image with indicated distance D, (c) IySHG(α = 0) scanning two-photon microscopy image of the entire investigated pattern and (d) corresponding SEM image.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

χ xxy (2) = χ xyx (2) = χ yxx (2) = χ yyy (2)
E z (r,ϕ,z)=| E loc | c 1 H 1 (1,2) (r k SPP )cos(ϕβ) e iωt
E loc = L (ω) E inc ξ ε 0 i,j ζ i b ij | E j loc | c 1 H 1 (1,2) ( r i k SPP )cos( ϕ i β j ) e iωt
I x SHG | χ xxx (2) E x loc E x loc + χ xyy (2) E y loc E y loc +2 χ xxy (2) E x loc E y loc | 2
I y SHG | χ xxy (2) E x loc E x loc + χ yyy (2) E y loc E y loc +2 χ xyy (2) E x loc E y loc | 2
I x SHG | χ xxx (2),eff cos 2 α+ χ xyy (2),eff sin 2 α+ χ xxy (2),eff sin2α | 2
I y SHG | χ xxy (2),eff cos 2 α+ χ yyy (2),eff sin 2 α+ χ xyy (2),eff sin2α | 2
I x SHG |ηsin2α | 2
I y SHG | η 2 cos 2 α sin 2 α | 2
I x SHG | χ xxy (2),eff sin2α | 2
I y SHG | χ xxy (2),eff cos 2 α sin 2 α | 2
χ yyy (2) =ρ χ xxy (2)

Metrics