Abstract

A new scheme for wavefront correction in the extreme ultraviolet wavelength range is presented. The central feature of the scheme is the successful growth of crystalline piezoelectric thin films with the desired orientation on an amorphous glass substrate. The piezoelectric films show a high piezoelectric coefficient of 250 pm/V. Using wavefront calculations we show that the grown films would enable high-quality wavefront correction, based on a stroke of 25 nm, with voltages that are well below the electrical breakdown limit of the piezoelectric film.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanoscale piezoelectric surface modulation for adaptive extreme ultraviolet and soft x-ray optics

Mohammadreza Nematollahi, Philip Lucke, Muharrem Bayraktar, Andrey Yakshin, Guus Rijnders, and Fred Bijkerk
Opt. Lett. 44(20) 5104-5107 (2019)

Numerical analysis of wavefront aberration correction using multielectrode electrowetting-based devices

Mo Zohrabi, Robert H. Cormack, Connor Mccullough, Omkar D. Supekar, Emily A. Gibson, Victor M. Bright, and Juliet T. Gopinath
Opt. Express 25(25) 31451-31461 (2017)

Adaptive optics with a magnetic deformable mirror: applications in the human eye

Enrique J. Fernández, Laurent Vabre, Boris Hermann, Angelika Unterhuber, Boris Považay, and Wolfgang Drexler
Opt. Express 14(20) 8900-8917 (2006)

References

  • View by:
  • |
  • |
  • |

  1. D. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge University, 2007).
  2. V. Bakshi, EUV Lithography (SPIE, 2008).
  3. A. K. Ray-Chaudhuri, S. E. Gianoulakis, P. A. Spence, M. P. Kanouff, and C. D. Moen, “Impact of thermal and structural effects on EUV lithographic performance,” Proc. SPIE 3331, 124–132 (1998).
    [Crossref]
  4. Y. Li, K. Ota, and K. Murakami, “Thermal and structural deformation and its impact on optical performance of projection optics for extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 21(1), 127–129 (2003).
    [Crossref]
  5. K. Liu, Y. Li, F. Zhang, and M. Fan, “Transient thermal and structural deformation and its impact on optical performance of projection optics for extreme ultraviolet lithography,” Jpn. J. Appl. Phys. 46(10A), 6568–6572 (2007).
    [Crossref]
  6. G. Yang and Y. Li, “Analysis and control of thermal and structural deformation of projection optics for 22 nm EUV lithography,” Proc. SPIE 8322, 83222V (2012).
    [Crossref]
  7. R. Saathof, “Adaptive optics to counteract thermal aberrations,” PhD thesis. Delft, The Netherlands: Technische Universiteit Delft (2013).
  8. Boston Micromachines Corporation,” http://www.bostonmicromachines.com
  9. Iris AO Inc.” http://www.irisao.com
  10. ALPAO SAS,” http://www.alpao.com
  11. Flexible Optical B.V. (Okotech),” http://www.okotech.com
  12. CILAS Corporate,” http://www.cilas.com
  13. AOA Xinetics,” http://www.northropgrumman.com/BusinessVentures/AOAXinetics
  14. Microgate Engineering,” http://www.microgate.it
  15. R. Hamelinck, R. Ellenbroek, N. Rosielle, M. Steinbuch, M. Verhaegen, and N. Doelman, “Validation of a new adaptive deformable mirror concept,” Proc. SPIE 7015, 70150Q (2008).
    [Crossref]
  16. R. Hamelinck, “Adaptive deformable mirror: based on electromagnetic actuators,” PhD thesis. Eindhoven, The Netherlands: Technische Universiteit Eindhoven (2010).
  17. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University, 1998).
  18. F. Roddier, Adaptive Optics in Astronomy (Cambridge University, 1999).
  19. J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design and Applications (John Wiley & Sons, 2006).
  20. R. K. Tyson, Principles of Adaptive Optics, Third Edition (Taylor & Francis, 2011).
  21. S. K. Ravensbergen, P. C. J. N. Rosielle, and M. Steinbuch, “Deformable mirrors with thermo-mechanical actuators for extreme ultraviolet lithography: design, realization and validation,” Precis. Eng. 37(2), 353–363 (2013).
    [Crossref]
  22. P. Doel, C. Atkins, S. Thompson, D. Brooks, J. Yao, C. Feldman, R. Willingale, T. Button, D. Zhang, and A. James, “Large thin adaptive x-ray mirrors,” Proc. SPIE 6705, 67050M (2007).
    [Crossref]
  23. P. B. Reid, S. S. Murray, S. Trolier-McKinstry, M. Freeman, M. Juda, W. Podgorski, B. Ramsey, and D. Schwartz, “Development of adjustable grazing incidence optics for generation-X,” Proc. SPIE 7011, 70110V (2008).
    [Crossref]
  24. W. N. Davis, P. B. Reid, and D. A. Schwartz, “Finite element analyses of thin film active grazing incidence x-ray optics,” Proc. SPIE 7803, 78030P (2010).
    [Crossref]
  25. D. Zhang, D. Rodriguez-Sanmartin, T. W. Button, C. Atkins, D. Brooks, P. Doel, C. Dunare, C. Feldman, A. James, A. Michette, W. Parkes, S. Pfauntsch, S. Sahraei, T. Stevenson, H. Wang, and R. Willingale, “Development of piezoelectric actuators for active x-ray optics,” J. Electroceram. 27(1), 1–6 (2011).
    [Crossref]
  26. V. Cotroneo, W. N. Davis, V. Marquez, P. B. Reid, D. A. Schwartz, R. L. Johnson-Wilke, S. E. Trolier-McKinstry, and R. H. T. Wilke, “Adjustable grazing incidence x-ray optics based on thin PZT films,” Proc. SPIE 8503, 850309 (2012).
    [Crossref]
  27. R. H. T. Wilke, R. L. Johnson-Wilke, V. Cotroneo, W. N. Davis, P. B. Reid, D. A. Schwartz, and S. E. Trolier-McKinstry, “Sputter deposition of PZT piezoelectric films on thin glass substrates for adjustable x-ray optics,” Appl. Opt. 52(14), 3412–3419 (2013).
    [Crossref] [PubMed]
  28. H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6(2), 122–125 (2010).
    [Crossref]
  29. S. Matsuyama, T. Kimura, H. Nakamori, S. Imai, Y. Sano, Y. Kohmura, K. Tamasaku, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Development of piezoelectric deformable mirror for hard x-ray nanofocusing,” Proc. SPIE 8503, 850303 (2012).
    [Crossref]
  30. M. Bayraktar, A. Chopra, F. Bijkerk, and G. Rijnders, “Nanosheet controlled epitaxial growth of PbZr0.52Ti0.48O3 thin films on glass substrates,” Appl. Phys. Lett. 105(13), 132904 (2014).
    [Crossref]
  31. P. Verardi, M. Dinescu, F. Craciun, R. Dinu, and M. F. Ciobanu, “Growth of oriented Pb(ZrxTi1-x)O3 thin films on glass substrates by pulsed laser deposition,” Appl. Phys., A Mater. Sci. Process. 69(7Suppl.), S837–S839 (1999).
    [Crossref]
  32. K. K. Uprety, L. E. Ocola, and O. Auciello, “Growth and characterization of transparent Pb(Zr,Ti)O3 capacitor on glass substrate,” J. Appl. Phys. 102(8), 084107 (2007).
    [Crossref]
  33. Y. H. Yu, M. O. Lai, and L. Lu, “Highly (100) oriented Pb(Zr0.52Ti0.48)O3/LaNiO3 films grown on amorphous substrates by pulsed laser deposition,” Appl. Phys., A Mater. Sci. Process. 88(2), 365–370 (2007).
    [Crossref]
  34. K. Kikuta, K. Noda, S. Okumura, T. Yamaguchi, and S. Hirano, “Orientation control of perovskite thin films on glass substrates by the application of a seed layer prepared from oxide nanosheets,” J. Sol-Gel Sci. Techn. 42, 381–387 (2007).
  35. J. Y. Son and Y.-H. Shin, “Highly c-oriented PbZr0.48Ti0.52O3 thin films on glass substrates,” Electrochem. Solid-State Lett. 12(5), G20 (2009).
    [Crossref]
  36. R. H. T. Wilke, S. Trolier-McKinstry, P. B. Reid, and D. A. Schwartz, “PZT piezoelectric films on glass for Gen-X imaging,” Proc. SPIE 7803, 78030O (2010).
    [Crossref]
  37. D. H. Kim, Y. K. Kim, S. Hong, Y. Kim, and S. Baik, “Nanoscale bit formation in highly (111)-oriented ferroelectric thin films deposited on glass substrates for high-density storage media,” Nanotechnology 22(24), 245705 (2011).
    [Crossref] [PubMed]
  38. K. Lefki and G. J. M. Dormans, “Measurement of piezoelectric coefficients of ferroelectric thin films,” J. Appl. Phys. 76(3), 1764–1767 (1994).
    [Crossref]
  39. F. Xu, F. Chu, and S. Trolier-McKinstry, “Longitudinal piezoelectric coefficient measurement for bulk ceramics and thin films using pneumatic pressure rig,” J. Appl. Phys. 86(1), 588–594 (1999).
    [Crossref]
  40. A. Barzegar, D. Damjanovic, N. Ledermann, and P. Muralt, “Piezoelectric response of thin films determined by charge integration technique: substrate bending effects,” J. Appl. Phys. 93(8), 4756–4760 (2003).
    [Crossref]
  41. P. Gerber, A. Roelofs, C. Kügeler, U. Böttger, R. Waser, and K. Prume, “Effects of the top-electrode size on the piezoelectric properties (d33 and S) of lead zirconate titanate thin films,” J. Appl. Phys. 96(5), 2800–2804 (2004).
    [Crossref]
  42. L. Chen, J.-H. Li, J. Slutsker, J. Ouyang, and A. L. Roytburd, “Contribution of substrate to converse piezoelectric response of constrained thin films,” J. Mater. Res. 19(10), 2853–2858 (2004).
    [Crossref]
  43. V. Nagarajan, “Scaling of the piezoelectric response in ferroelectric nanostructures: an effective clamping stress model,” Appl. Phys. Lett. 87(24), 242905 (2005).
    [Crossref]
  44. Z. Wang, G. K. Lau, W. Zhu, and C. Chao, “Influence of test capacitor features on piezoelectric and dielectric measurement of ferroelectric films,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 15–22 (2006).
    [Crossref] [PubMed]
  45. K. Prume, P. Muralt, F. Calame, T. Schmitz-Kempen, and S. Tiedke, “Piezoelectric thin films: evaluation of electrical and electromechanical characteristics for MEMS devices,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(1), 8–14 (2007).
    [Crossref] [PubMed]
  46. Z. Wang and J. Miao, “Critical electrode size in measurement of d33 coefficient of films via spatial distribution of piezoelectric displacement,” J. Phys. D Appl. Phys. 41(3), 035306 (2008).
    [Crossref]
  47. N. Zalachas, B. Laskewitz, M. Kamlah, K. Prume, Y. Lapusta, and S. Tiedke, “Effective piezoelectric coefficients of ferroelectric thin films on elastic substrates,” J. Intell. Mater. Syst. Struct. 20(6), 683–695 (2009).
    [Crossref]
  48. G. J. T. Leighton and Z. Huang, “Accurate measurement of the piezoelectric coefficient of thin films by eliminating the substrate bending effect using spatial scanning laser vibrometry,” Smart Mater. Struct. 19(6), 065011 (2010).
    [Crossref]
  49. X. Yan, W. Ren, H. Xin, P. Shi, X. Chen, and X. Wu, “Influence of substrate deformation on piezoelectric displacement measurement of piezoelectric film,” Ceram. Int. 39, S583–S586 (2013).
    [Crossref]
  50. S. Sivaramakrishnan, P. Mardilovich, A. Mason, A. Roelofs, T. Schmitz-Kempen, and S. Tiedke, “Electrode size dependence of piezoelectric response of lead zirconate titanate thin films measured by double beam laser interferometry,” Appl. Phys. Lett. 103(13), 132904 (2013).
    [Crossref]
  51. Zemax® 13 Optical Design Program User’s Manual, April 4, (2013).
  52. M. Nijland, S. Kumar, R. Lubbers, D. H. A. Blank, G. Rijnders, G. Koster, and J. E. ten Elshof, “Local control over nucleation of epitaxial thin films by seed layers of inorganic nanosheets,” ACS Appl. Mater. Interfaces 6(4), 2777–2785 (2014).
    [Crossref] [PubMed]
  53. M.-S. Chen, T.-B. Wu, and J.-M. Wu, “Effect of textured LaNiO3 electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O3 thin films,” Appl. Phys. Lett. 68(10), 1430–1432 (1996).
    [Crossref]
  54. D. M. Kim, C. B. Eom, V. Nagarajan, J. Ouyang, R. Ramesh, V. Vaithyanathan, and D. G. Schlom, “Thickness dependence of structural and piezoelectric properties of epitaxial Pb(Zr0.52Ti0.48)O3 films on Si and SrTiO3 substrates,” Appl. Phys. Lett. 88(14), 142904 (2006).
    [Crossref]
  55. E. Louis, A. E. Yakshin, T. Tsarfati, and F. Bijkerk, “Nanometer interface and materials control for multilayer EUV-optical applications,” Prog. Surf. Sci. 86(11-12), 255–294 (2011).
    [Crossref]
  56. Comsol Multiphysics, ®, www.comsol.com
  57. Polytec MSA-400 Micro System Analyzer User Manual, (2005).
  58. Z. Q. Zhuang, M. J. Haun, S. J. Jang, and L. E. Cross, “Composition and temperature dependence of the dielectric, piezoelectric and elastic properties of pure PZT ceramics,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36(4), 413–416 (1989).
    [Crossref] [PubMed]

2014 (2)

M. Bayraktar, A. Chopra, F. Bijkerk, and G. Rijnders, “Nanosheet controlled epitaxial growth of PbZr0.52Ti0.48O3 thin films on glass substrates,” Appl. Phys. Lett. 105(13), 132904 (2014).
[Crossref]

M. Nijland, S. Kumar, R. Lubbers, D. H. A. Blank, G. Rijnders, G. Koster, and J. E. ten Elshof, “Local control over nucleation of epitaxial thin films by seed layers of inorganic nanosheets,” ACS Appl. Mater. Interfaces 6(4), 2777–2785 (2014).
[Crossref] [PubMed]

2013 (4)

X. Yan, W. Ren, H. Xin, P. Shi, X. Chen, and X. Wu, “Influence of substrate deformation on piezoelectric displacement measurement of piezoelectric film,” Ceram. Int. 39, S583–S586 (2013).
[Crossref]

S. Sivaramakrishnan, P. Mardilovich, A. Mason, A. Roelofs, T. Schmitz-Kempen, and S. Tiedke, “Electrode size dependence of piezoelectric response of lead zirconate titanate thin films measured by double beam laser interferometry,” Appl. Phys. Lett. 103(13), 132904 (2013).
[Crossref]

R. H. T. Wilke, R. L. Johnson-Wilke, V. Cotroneo, W. N. Davis, P. B. Reid, D. A. Schwartz, and S. E. Trolier-McKinstry, “Sputter deposition of PZT piezoelectric films on thin glass substrates for adjustable x-ray optics,” Appl. Opt. 52(14), 3412–3419 (2013).
[Crossref] [PubMed]

S. K. Ravensbergen, P. C. J. N. Rosielle, and M. Steinbuch, “Deformable mirrors with thermo-mechanical actuators for extreme ultraviolet lithography: design, realization and validation,” Precis. Eng. 37(2), 353–363 (2013).
[Crossref]

2012 (3)

G. Yang and Y. Li, “Analysis and control of thermal and structural deformation of projection optics for 22 nm EUV lithography,” Proc. SPIE 8322, 83222V (2012).
[Crossref]

V. Cotroneo, W. N. Davis, V. Marquez, P. B. Reid, D. A. Schwartz, R. L. Johnson-Wilke, S. E. Trolier-McKinstry, and R. H. T. Wilke, “Adjustable grazing incidence x-ray optics based on thin PZT films,” Proc. SPIE 8503, 850309 (2012).
[Crossref]

S. Matsuyama, T. Kimura, H. Nakamori, S. Imai, Y. Sano, Y. Kohmura, K. Tamasaku, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Development of piezoelectric deformable mirror for hard x-ray nanofocusing,” Proc. SPIE 8503, 850303 (2012).
[Crossref]

2011 (3)

D. Zhang, D. Rodriguez-Sanmartin, T. W. Button, C. Atkins, D. Brooks, P. Doel, C. Dunare, C. Feldman, A. James, A. Michette, W. Parkes, S. Pfauntsch, S. Sahraei, T. Stevenson, H. Wang, and R. Willingale, “Development of piezoelectric actuators for active x-ray optics,” J. Electroceram. 27(1), 1–6 (2011).
[Crossref]

D. H. Kim, Y. K. Kim, S. Hong, Y. Kim, and S. Baik, “Nanoscale bit formation in highly (111)-oriented ferroelectric thin films deposited on glass substrates for high-density storage media,” Nanotechnology 22(24), 245705 (2011).
[Crossref] [PubMed]

E. Louis, A. E. Yakshin, T. Tsarfati, and F. Bijkerk, “Nanometer interface and materials control for multilayer EUV-optical applications,” Prog. Surf. Sci. 86(11-12), 255–294 (2011).
[Crossref]

2010 (4)

R. H. T. Wilke, S. Trolier-McKinstry, P. B. Reid, and D. A. Schwartz, “PZT piezoelectric films on glass for Gen-X imaging,” Proc. SPIE 7803, 78030O (2010).
[Crossref]

G. J. T. Leighton and Z. Huang, “Accurate measurement of the piezoelectric coefficient of thin films by eliminating the substrate bending effect using spatial scanning laser vibrometry,” Smart Mater. Struct. 19(6), 065011 (2010).
[Crossref]

W. N. Davis, P. B. Reid, and D. A. Schwartz, “Finite element analyses of thin film active grazing incidence x-ray optics,” Proc. SPIE 7803, 78030P (2010).
[Crossref]

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6(2), 122–125 (2010).
[Crossref]

2009 (2)

N. Zalachas, B. Laskewitz, M. Kamlah, K. Prume, Y. Lapusta, and S. Tiedke, “Effective piezoelectric coefficients of ferroelectric thin films on elastic substrates,” J. Intell. Mater. Syst. Struct. 20(6), 683–695 (2009).
[Crossref]

J. Y. Son and Y.-H. Shin, “Highly c-oriented PbZr0.48Ti0.52O3 thin films on glass substrates,” Electrochem. Solid-State Lett. 12(5), G20 (2009).
[Crossref]

2008 (3)

Z. Wang and J. Miao, “Critical electrode size in measurement of d33 coefficient of films via spatial distribution of piezoelectric displacement,” J. Phys. D Appl. Phys. 41(3), 035306 (2008).
[Crossref]

R. Hamelinck, R. Ellenbroek, N. Rosielle, M. Steinbuch, M. Verhaegen, and N. Doelman, “Validation of a new adaptive deformable mirror concept,” Proc. SPIE 7015, 70150Q (2008).
[Crossref]

P. B. Reid, S. S. Murray, S. Trolier-McKinstry, M. Freeman, M. Juda, W. Podgorski, B. Ramsey, and D. Schwartz, “Development of adjustable grazing incidence optics for generation-X,” Proc. SPIE 7011, 70110V (2008).
[Crossref]

2007 (6)

K. Liu, Y. Li, F. Zhang, and M. Fan, “Transient thermal and structural deformation and its impact on optical performance of projection optics for extreme ultraviolet lithography,” Jpn. J. Appl. Phys. 46(10A), 6568–6572 (2007).
[Crossref]

P. Doel, C. Atkins, S. Thompson, D. Brooks, J. Yao, C. Feldman, R. Willingale, T. Button, D. Zhang, and A. James, “Large thin adaptive x-ray mirrors,” Proc. SPIE 6705, 67050M (2007).
[Crossref]

K. Prume, P. Muralt, F. Calame, T. Schmitz-Kempen, and S. Tiedke, “Piezoelectric thin films: evaluation of electrical and electromechanical characteristics for MEMS devices,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(1), 8–14 (2007).
[Crossref] [PubMed]

K. K. Uprety, L. E. Ocola, and O. Auciello, “Growth and characterization of transparent Pb(Zr,Ti)O3 capacitor on glass substrate,” J. Appl. Phys. 102(8), 084107 (2007).
[Crossref]

Y. H. Yu, M. O. Lai, and L. Lu, “Highly (100) oriented Pb(Zr0.52Ti0.48)O3/LaNiO3 films grown on amorphous substrates by pulsed laser deposition,” Appl. Phys., A Mater. Sci. Process. 88(2), 365–370 (2007).
[Crossref]

K. Kikuta, K. Noda, S. Okumura, T. Yamaguchi, and S. Hirano, “Orientation control of perovskite thin films on glass substrates by the application of a seed layer prepared from oxide nanosheets,” J. Sol-Gel Sci. Techn. 42, 381–387 (2007).

2006 (2)

Z. Wang, G. K. Lau, W. Zhu, and C. Chao, “Influence of test capacitor features on piezoelectric and dielectric measurement of ferroelectric films,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 15–22 (2006).
[Crossref] [PubMed]

D. M. Kim, C. B. Eom, V. Nagarajan, J. Ouyang, R. Ramesh, V. Vaithyanathan, and D. G. Schlom, “Thickness dependence of structural and piezoelectric properties of epitaxial Pb(Zr0.52Ti0.48)O3 films on Si and SrTiO3 substrates,” Appl. Phys. Lett. 88(14), 142904 (2006).
[Crossref]

2005 (1)

V. Nagarajan, “Scaling of the piezoelectric response in ferroelectric nanostructures: an effective clamping stress model,” Appl. Phys. Lett. 87(24), 242905 (2005).
[Crossref]

2004 (2)

P. Gerber, A. Roelofs, C. Kügeler, U. Böttger, R. Waser, and K. Prume, “Effects of the top-electrode size on the piezoelectric properties (d33 and S) of lead zirconate titanate thin films,” J. Appl. Phys. 96(5), 2800–2804 (2004).
[Crossref]

L. Chen, J.-H. Li, J. Slutsker, J. Ouyang, and A. L. Roytburd, “Contribution of substrate to converse piezoelectric response of constrained thin films,” J. Mater. Res. 19(10), 2853–2858 (2004).
[Crossref]

2003 (2)

A. Barzegar, D. Damjanovic, N. Ledermann, and P. Muralt, “Piezoelectric response of thin films determined by charge integration technique: substrate bending effects,” J. Appl. Phys. 93(8), 4756–4760 (2003).
[Crossref]

Y. Li, K. Ota, and K. Murakami, “Thermal and structural deformation and its impact on optical performance of projection optics for extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 21(1), 127–129 (2003).
[Crossref]

1999 (2)

P. Verardi, M. Dinescu, F. Craciun, R. Dinu, and M. F. Ciobanu, “Growth of oriented Pb(ZrxTi1-x)O3 thin films on glass substrates by pulsed laser deposition,” Appl. Phys., A Mater. Sci. Process. 69(7Suppl.), S837–S839 (1999).
[Crossref]

F. Xu, F. Chu, and S. Trolier-McKinstry, “Longitudinal piezoelectric coefficient measurement for bulk ceramics and thin films using pneumatic pressure rig,” J. Appl. Phys. 86(1), 588–594 (1999).
[Crossref]

1998 (1)

A. K. Ray-Chaudhuri, S. E. Gianoulakis, P. A. Spence, M. P. Kanouff, and C. D. Moen, “Impact of thermal and structural effects on EUV lithographic performance,” Proc. SPIE 3331, 124–132 (1998).
[Crossref]

1996 (1)

M.-S. Chen, T.-B. Wu, and J.-M. Wu, “Effect of textured LaNiO3 electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O3 thin films,” Appl. Phys. Lett. 68(10), 1430–1432 (1996).
[Crossref]

1994 (1)

K. Lefki and G. J. M. Dormans, “Measurement of piezoelectric coefficients of ferroelectric thin films,” J. Appl. Phys. 76(3), 1764–1767 (1994).
[Crossref]

1989 (1)

Z. Q. Zhuang, M. J. Haun, S. J. Jang, and L. E. Cross, “Composition and temperature dependence of the dielectric, piezoelectric and elastic properties of pure PZT ceramics,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36(4), 413–416 (1989).
[Crossref] [PubMed]

Atkins, C.

D. Zhang, D. Rodriguez-Sanmartin, T. W. Button, C. Atkins, D. Brooks, P. Doel, C. Dunare, C. Feldman, A. James, A. Michette, W. Parkes, S. Pfauntsch, S. Sahraei, T. Stevenson, H. Wang, and R. Willingale, “Development of piezoelectric actuators for active x-ray optics,” J. Electroceram. 27(1), 1–6 (2011).
[Crossref]

P. Doel, C. Atkins, S. Thompson, D. Brooks, J. Yao, C. Feldman, R. Willingale, T. Button, D. Zhang, and A. James, “Large thin adaptive x-ray mirrors,” Proc. SPIE 6705, 67050M (2007).
[Crossref]

Auciello, O.

K. K. Uprety, L. E. Ocola, and O. Auciello, “Growth and characterization of transparent Pb(Zr,Ti)O3 capacitor on glass substrate,” J. Appl. Phys. 102(8), 084107 (2007).
[Crossref]

Baik, S.

D. H. Kim, Y. K. Kim, S. Hong, Y. Kim, and S. Baik, “Nanoscale bit formation in highly (111)-oriented ferroelectric thin films deposited on glass substrates for high-density storage media,” Nanotechnology 22(24), 245705 (2011).
[Crossref] [PubMed]

Barzegar, A.

A. Barzegar, D. Damjanovic, N. Ledermann, and P. Muralt, “Piezoelectric response of thin films determined by charge integration technique: substrate bending effects,” J. Appl. Phys. 93(8), 4756–4760 (2003).
[Crossref]

Bayraktar, M.

M. Bayraktar, A. Chopra, F. Bijkerk, and G. Rijnders, “Nanosheet controlled epitaxial growth of PbZr0.52Ti0.48O3 thin films on glass substrates,” Appl. Phys. Lett. 105(13), 132904 (2014).
[Crossref]

Bijkerk, F.

M. Bayraktar, A. Chopra, F. Bijkerk, and G. Rijnders, “Nanosheet controlled epitaxial growth of PbZr0.52Ti0.48O3 thin films on glass substrates,” Appl. Phys. Lett. 105(13), 132904 (2014).
[Crossref]

E. Louis, A. E. Yakshin, T. Tsarfati, and F. Bijkerk, “Nanometer interface and materials control for multilayer EUV-optical applications,” Prog. Surf. Sci. 86(11-12), 255–294 (2011).
[Crossref]

Blank, D. H. A.

M. Nijland, S. Kumar, R. Lubbers, D. H. A. Blank, G. Rijnders, G. Koster, and J. E. ten Elshof, “Local control over nucleation of epitaxial thin films by seed layers of inorganic nanosheets,” ACS Appl. Mater. Interfaces 6(4), 2777–2785 (2014).
[Crossref] [PubMed]

Böttger, U.

P. Gerber, A. Roelofs, C. Kügeler, U. Böttger, R. Waser, and K. Prume, “Effects of the top-electrode size on the piezoelectric properties (d33 and S) of lead zirconate titanate thin films,” J. Appl. Phys. 96(5), 2800–2804 (2004).
[Crossref]

Brooks, D.

D. Zhang, D. Rodriguez-Sanmartin, T. W. Button, C. Atkins, D. Brooks, P. Doel, C. Dunare, C. Feldman, A. James, A. Michette, W. Parkes, S. Pfauntsch, S. Sahraei, T. Stevenson, H. Wang, and R. Willingale, “Development of piezoelectric actuators for active x-ray optics,” J. Electroceram. 27(1), 1–6 (2011).
[Crossref]

P. Doel, C. Atkins, S. Thompson, D. Brooks, J. Yao, C. Feldman, R. Willingale, T. Button, D. Zhang, and A. James, “Large thin adaptive x-ray mirrors,” Proc. SPIE 6705, 67050M (2007).
[Crossref]

Button, T.

P. Doel, C. Atkins, S. Thompson, D. Brooks, J. Yao, C. Feldman, R. Willingale, T. Button, D. Zhang, and A. James, “Large thin adaptive x-ray mirrors,” Proc. SPIE 6705, 67050M (2007).
[Crossref]

Button, T. W.

D. Zhang, D. Rodriguez-Sanmartin, T. W. Button, C. Atkins, D. Brooks, P. Doel, C. Dunare, C. Feldman, A. James, A. Michette, W. Parkes, S. Pfauntsch, S. Sahraei, T. Stevenson, H. Wang, and R. Willingale, “Development of piezoelectric actuators for active x-ray optics,” J. Electroceram. 27(1), 1–6 (2011).
[Crossref]

Calame, F.

K. Prume, P. Muralt, F. Calame, T. Schmitz-Kempen, and S. Tiedke, “Piezoelectric thin films: evaluation of electrical and electromechanical characteristics for MEMS devices,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(1), 8–14 (2007).
[Crossref] [PubMed]

Chao, C.

Z. Wang, G. K. Lau, W. Zhu, and C. Chao, “Influence of test capacitor features on piezoelectric and dielectric measurement of ferroelectric films,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 15–22 (2006).
[Crossref] [PubMed]

Chen, L.

L. Chen, J.-H. Li, J. Slutsker, J. Ouyang, and A. L. Roytburd, “Contribution of substrate to converse piezoelectric response of constrained thin films,” J. Mater. Res. 19(10), 2853–2858 (2004).
[Crossref]

Chen, M.-S.

M.-S. Chen, T.-B. Wu, and J.-M. Wu, “Effect of textured LaNiO3 electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O3 thin films,” Appl. Phys. Lett. 68(10), 1430–1432 (1996).
[Crossref]

Chen, X.

X. Yan, W. Ren, H. Xin, P. Shi, X. Chen, and X. Wu, “Influence of substrate deformation on piezoelectric displacement measurement of piezoelectric film,” Ceram. Int. 39, S583–S586 (2013).
[Crossref]

Chopra, A.

M. Bayraktar, A. Chopra, F. Bijkerk, and G. Rijnders, “Nanosheet controlled epitaxial growth of PbZr0.52Ti0.48O3 thin films on glass substrates,” Appl. Phys. Lett. 105(13), 132904 (2014).
[Crossref]

Chu, F.

F. Xu, F. Chu, and S. Trolier-McKinstry, “Longitudinal piezoelectric coefficient measurement for bulk ceramics and thin films using pneumatic pressure rig,” J. Appl. Phys. 86(1), 588–594 (1999).
[Crossref]

Ciobanu, M. F.

P. Verardi, M. Dinescu, F. Craciun, R. Dinu, and M. F. Ciobanu, “Growth of oriented Pb(ZrxTi1-x)O3 thin films on glass substrates by pulsed laser deposition,” Appl. Phys., A Mater. Sci. Process. 69(7Suppl.), S837–S839 (1999).
[Crossref]

Cotroneo, V.

R. H. T. Wilke, R. L. Johnson-Wilke, V. Cotroneo, W. N. Davis, P. B. Reid, D. A. Schwartz, and S. E. Trolier-McKinstry, “Sputter deposition of PZT piezoelectric films on thin glass substrates for adjustable x-ray optics,” Appl. Opt. 52(14), 3412–3419 (2013).
[Crossref] [PubMed]

V. Cotroneo, W. N. Davis, V. Marquez, P. B. Reid, D. A. Schwartz, R. L. Johnson-Wilke, S. E. Trolier-McKinstry, and R. H. T. Wilke, “Adjustable grazing incidence x-ray optics based on thin PZT films,” Proc. SPIE 8503, 850309 (2012).
[Crossref]

Craciun, F.

P. Verardi, M. Dinescu, F. Craciun, R. Dinu, and M. F. Ciobanu, “Growth of oriented Pb(ZrxTi1-x)O3 thin films on glass substrates by pulsed laser deposition,” Appl. Phys., A Mater. Sci. Process. 69(7Suppl.), S837–S839 (1999).
[Crossref]

Cross, L. E.

Z. Q. Zhuang, M. J. Haun, S. J. Jang, and L. E. Cross, “Composition and temperature dependence of the dielectric, piezoelectric and elastic properties of pure PZT ceramics,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36(4), 413–416 (1989).
[Crossref] [PubMed]

Damjanovic, D.

A. Barzegar, D. Damjanovic, N. Ledermann, and P. Muralt, “Piezoelectric response of thin films determined by charge integration technique: substrate bending effects,” J. Appl. Phys. 93(8), 4756–4760 (2003).
[Crossref]

Davis, W. N.

R. H. T. Wilke, R. L. Johnson-Wilke, V. Cotroneo, W. N. Davis, P. B. Reid, D. A. Schwartz, and S. E. Trolier-McKinstry, “Sputter deposition of PZT piezoelectric films on thin glass substrates for adjustable x-ray optics,” Appl. Opt. 52(14), 3412–3419 (2013).
[Crossref] [PubMed]

V. Cotroneo, W. N. Davis, V. Marquez, P. B. Reid, D. A. Schwartz, R. L. Johnson-Wilke, S. E. Trolier-McKinstry, and R. H. T. Wilke, “Adjustable grazing incidence x-ray optics based on thin PZT films,” Proc. SPIE 8503, 850309 (2012).
[Crossref]

W. N. Davis, P. B. Reid, and D. A. Schwartz, “Finite element analyses of thin film active grazing incidence x-ray optics,” Proc. SPIE 7803, 78030P (2010).
[Crossref]

Dinescu, M.

P. Verardi, M. Dinescu, F. Craciun, R. Dinu, and M. F. Ciobanu, “Growth of oriented Pb(ZrxTi1-x)O3 thin films on glass substrates by pulsed laser deposition,” Appl. Phys., A Mater. Sci. Process. 69(7Suppl.), S837–S839 (1999).
[Crossref]

Dinu, R.

P. Verardi, M. Dinescu, F. Craciun, R. Dinu, and M. F. Ciobanu, “Growth of oriented Pb(ZrxTi1-x)O3 thin films on glass substrates by pulsed laser deposition,” Appl. Phys., A Mater. Sci. Process. 69(7Suppl.), S837–S839 (1999).
[Crossref]

Doel, P.

D. Zhang, D. Rodriguez-Sanmartin, T. W. Button, C. Atkins, D. Brooks, P. Doel, C. Dunare, C. Feldman, A. James, A. Michette, W. Parkes, S. Pfauntsch, S. Sahraei, T. Stevenson, H. Wang, and R. Willingale, “Development of piezoelectric actuators for active x-ray optics,” J. Electroceram. 27(1), 1–6 (2011).
[Crossref]

P. Doel, C. Atkins, S. Thompson, D. Brooks, J. Yao, C. Feldman, R. Willingale, T. Button, D. Zhang, and A. James, “Large thin adaptive x-ray mirrors,” Proc. SPIE 6705, 67050M (2007).
[Crossref]

Doelman, N.

R. Hamelinck, R. Ellenbroek, N. Rosielle, M. Steinbuch, M. Verhaegen, and N. Doelman, “Validation of a new adaptive deformable mirror concept,” Proc. SPIE 7015, 70150Q (2008).
[Crossref]

Dormans, G. J. M.

K. Lefki and G. J. M. Dormans, “Measurement of piezoelectric coefficients of ferroelectric thin films,” J. Appl. Phys. 76(3), 1764–1767 (1994).
[Crossref]

Dunare, C.

D. Zhang, D. Rodriguez-Sanmartin, T. W. Button, C. Atkins, D. Brooks, P. Doel, C. Dunare, C. Feldman, A. James, A. Michette, W. Parkes, S. Pfauntsch, S. Sahraei, T. Stevenson, H. Wang, and R. Willingale, “Development of piezoelectric actuators for active x-ray optics,” J. Electroceram. 27(1), 1–6 (2011).
[Crossref]

Ellenbroek, R.

R. Hamelinck, R. Ellenbroek, N. Rosielle, M. Steinbuch, M. Verhaegen, and N. Doelman, “Validation of a new adaptive deformable mirror concept,” Proc. SPIE 7015, 70150Q (2008).
[Crossref]

Eom, C. B.

D. M. Kim, C. B. Eom, V. Nagarajan, J. Ouyang, R. Ramesh, V. Vaithyanathan, and D. G. Schlom, “Thickness dependence of structural and piezoelectric properties of epitaxial Pb(Zr0.52Ti0.48)O3 films on Si and SrTiO3 substrates,” Appl. Phys. Lett. 88(14), 142904 (2006).
[Crossref]

Fan, M.

K. Liu, Y. Li, F. Zhang, and M. Fan, “Transient thermal and structural deformation and its impact on optical performance of projection optics for extreme ultraviolet lithography,” Jpn. J. Appl. Phys. 46(10A), 6568–6572 (2007).
[Crossref]

Feldman, C.

D. Zhang, D. Rodriguez-Sanmartin, T. W. Button, C. Atkins, D. Brooks, P. Doel, C. Dunare, C. Feldman, A. James, A. Michette, W. Parkes, S. Pfauntsch, S. Sahraei, T. Stevenson, H. Wang, and R. Willingale, “Development of piezoelectric actuators for active x-ray optics,” J. Electroceram. 27(1), 1–6 (2011).
[Crossref]

P. Doel, C. Atkins, S. Thompson, D. Brooks, J. Yao, C. Feldman, R. Willingale, T. Button, D. Zhang, and A. James, “Large thin adaptive x-ray mirrors,” Proc. SPIE 6705, 67050M (2007).
[Crossref]

Freeman, M.

P. B. Reid, S. S. Murray, S. Trolier-McKinstry, M. Freeman, M. Juda, W. Podgorski, B. Ramsey, and D. Schwartz, “Development of adjustable grazing incidence optics for generation-X,” Proc. SPIE 7011, 70110V (2008).
[Crossref]

Gerber, P.

P. Gerber, A. Roelofs, C. Kügeler, U. Böttger, R. Waser, and K. Prume, “Effects of the top-electrode size on the piezoelectric properties (d33 and S) of lead zirconate titanate thin films,” J. Appl. Phys. 96(5), 2800–2804 (2004).
[Crossref]

Gianoulakis, S. E.

A. K. Ray-Chaudhuri, S. E. Gianoulakis, P. A. Spence, M. P. Kanouff, and C. D. Moen, “Impact of thermal and structural effects on EUV lithographic performance,” Proc. SPIE 3331, 124–132 (1998).
[Crossref]

Hamelinck, R.

R. Hamelinck, R. Ellenbroek, N. Rosielle, M. Steinbuch, M. Verhaegen, and N. Doelman, “Validation of a new adaptive deformable mirror concept,” Proc. SPIE 7015, 70150Q (2008).
[Crossref]

Handa, S.

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6(2), 122–125 (2010).
[Crossref]

Haun, M. J.

Z. Q. Zhuang, M. J. Haun, S. J. Jang, and L. E. Cross, “Composition and temperature dependence of the dielectric, piezoelectric and elastic properties of pure PZT ceramics,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36(4), 413–416 (1989).
[Crossref] [PubMed]

Hirano, S.

K. Kikuta, K. Noda, S. Okumura, T. Yamaguchi, and S. Hirano, “Orientation control of perovskite thin films on glass substrates by the application of a seed layer prepared from oxide nanosheets,” J. Sol-Gel Sci. Techn. 42, 381–387 (2007).

Hong, S.

D. H. Kim, Y. K. Kim, S. Hong, Y. Kim, and S. Baik, “Nanoscale bit formation in highly (111)-oriented ferroelectric thin films deposited on glass substrates for high-density storage media,” Nanotechnology 22(24), 245705 (2011).
[Crossref] [PubMed]

Huang, Z.

G. J. T. Leighton and Z. Huang, “Accurate measurement of the piezoelectric coefficient of thin films by eliminating the substrate bending effect using spatial scanning laser vibrometry,” Smart Mater. Struct. 19(6), 065011 (2010).
[Crossref]

Imai, S.

S. Matsuyama, T. Kimura, H. Nakamori, S. Imai, Y. Sano, Y. Kohmura, K. Tamasaku, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Development of piezoelectric deformable mirror for hard x-ray nanofocusing,” Proc. SPIE 8503, 850303 (2012).
[Crossref]

Inagaki, K.

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6(2), 122–125 (2010).
[Crossref]

Ishikawa, T.

S. Matsuyama, T. Kimura, H. Nakamori, S. Imai, Y. Sano, Y. Kohmura, K. Tamasaku, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Development of piezoelectric deformable mirror for hard x-ray nanofocusing,” Proc. SPIE 8503, 850303 (2012).
[Crossref]

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6(2), 122–125 (2010).
[Crossref]

James, A.

D. Zhang, D. Rodriguez-Sanmartin, T. W. Button, C. Atkins, D. Brooks, P. Doel, C. Dunare, C. Feldman, A. James, A. Michette, W. Parkes, S. Pfauntsch, S. Sahraei, T. Stevenson, H. Wang, and R. Willingale, “Development of piezoelectric actuators for active x-ray optics,” J. Electroceram. 27(1), 1–6 (2011).
[Crossref]

P. Doel, C. Atkins, S. Thompson, D. Brooks, J. Yao, C. Feldman, R. Willingale, T. Button, D. Zhang, and A. James, “Large thin adaptive x-ray mirrors,” Proc. SPIE 6705, 67050M (2007).
[Crossref]

Jang, S. J.

Z. Q. Zhuang, M. J. Haun, S. J. Jang, and L. E. Cross, “Composition and temperature dependence of the dielectric, piezoelectric and elastic properties of pure PZT ceramics,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36(4), 413–416 (1989).
[Crossref] [PubMed]

Johnson-Wilke, R. L.

R. H. T. Wilke, R. L. Johnson-Wilke, V. Cotroneo, W. N. Davis, P. B. Reid, D. A. Schwartz, and S. E. Trolier-McKinstry, “Sputter deposition of PZT piezoelectric films on thin glass substrates for adjustable x-ray optics,” Appl. Opt. 52(14), 3412–3419 (2013).
[Crossref] [PubMed]

V. Cotroneo, W. N. Davis, V. Marquez, P. B. Reid, D. A. Schwartz, R. L. Johnson-Wilke, S. E. Trolier-McKinstry, and R. H. T. Wilke, “Adjustable grazing incidence x-ray optics based on thin PZT films,” Proc. SPIE 8503, 850309 (2012).
[Crossref]

Juda, M.

P. B. Reid, S. S. Murray, S. Trolier-McKinstry, M. Freeman, M. Juda, W. Podgorski, B. Ramsey, and D. Schwartz, “Development of adjustable grazing incidence optics for generation-X,” Proc. SPIE 7011, 70110V (2008).
[Crossref]

Kamlah, M.

N. Zalachas, B. Laskewitz, M. Kamlah, K. Prume, Y. Lapusta, and S. Tiedke, “Effective piezoelectric coefficients of ferroelectric thin films on elastic substrates,” J. Intell. Mater. Syst. Struct. 20(6), 683–695 (2009).
[Crossref]

Kanouff, M. P.

A. K. Ray-Chaudhuri, S. E. Gianoulakis, P. A. Spence, M. P. Kanouff, and C. D. Moen, “Impact of thermal and structural effects on EUV lithographic performance,” Proc. SPIE 3331, 124–132 (1998).
[Crossref]

Kikuta, K.

K. Kikuta, K. Noda, S. Okumura, T. Yamaguchi, and S. Hirano, “Orientation control of perovskite thin films on glass substrates by the application of a seed layer prepared from oxide nanosheets,” J. Sol-Gel Sci. Techn. 42, 381–387 (2007).

Kim, D. H.

D. H. Kim, Y. K. Kim, S. Hong, Y. Kim, and S. Baik, “Nanoscale bit formation in highly (111)-oriented ferroelectric thin films deposited on glass substrates for high-density storage media,” Nanotechnology 22(24), 245705 (2011).
[Crossref] [PubMed]

Kim, D. M.

D. M. Kim, C. B. Eom, V. Nagarajan, J. Ouyang, R. Ramesh, V. Vaithyanathan, and D. G. Schlom, “Thickness dependence of structural and piezoelectric properties of epitaxial Pb(Zr0.52Ti0.48)O3 films on Si and SrTiO3 substrates,” Appl. Phys. Lett. 88(14), 142904 (2006).
[Crossref]

Kim, Y.

D. H. Kim, Y. K. Kim, S. Hong, Y. Kim, and S. Baik, “Nanoscale bit formation in highly (111)-oriented ferroelectric thin films deposited on glass substrates for high-density storage media,” Nanotechnology 22(24), 245705 (2011).
[Crossref] [PubMed]

Kim, Y. K.

D. H. Kim, Y. K. Kim, S. Hong, Y. Kim, and S. Baik, “Nanoscale bit formation in highly (111)-oriented ferroelectric thin films deposited on glass substrates for high-density storage media,” Nanotechnology 22(24), 245705 (2011).
[Crossref] [PubMed]

Kimura, T.

S. Matsuyama, T. Kimura, H. Nakamori, S. Imai, Y. Sano, Y. Kohmura, K. Tamasaku, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Development of piezoelectric deformable mirror for hard x-ray nanofocusing,” Proc. SPIE 8503, 850303 (2012).
[Crossref]

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6(2), 122–125 (2010).
[Crossref]

Kohmura, Y.

S. Matsuyama, T. Kimura, H. Nakamori, S. Imai, Y. Sano, Y. Kohmura, K. Tamasaku, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Development of piezoelectric deformable mirror for hard x-ray nanofocusing,” Proc. SPIE 8503, 850303 (2012).
[Crossref]

Koster, G.

M. Nijland, S. Kumar, R. Lubbers, D. H. A. Blank, G. Rijnders, G. Koster, and J. E. ten Elshof, “Local control over nucleation of epitaxial thin films by seed layers of inorganic nanosheets,” ACS Appl. Mater. Interfaces 6(4), 2777–2785 (2014).
[Crossref] [PubMed]

Kügeler, C.

P. Gerber, A. Roelofs, C. Kügeler, U. Böttger, R. Waser, and K. Prume, “Effects of the top-electrode size on the piezoelectric properties (d33 and S) of lead zirconate titanate thin films,” J. Appl. Phys. 96(5), 2800–2804 (2004).
[Crossref]

Kumar, S.

M. Nijland, S. Kumar, R. Lubbers, D. H. A. Blank, G. Rijnders, G. Koster, and J. E. ten Elshof, “Local control over nucleation of epitaxial thin films by seed layers of inorganic nanosheets,” ACS Appl. Mater. Interfaces 6(4), 2777–2785 (2014).
[Crossref] [PubMed]

Lai, M. O.

Y. H. Yu, M. O. Lai, and L. Lu, “Highly (100) oriented Pb(Zr0.52Ti0.48)O3/LaNiO3 films grown on amorphous substrates by pulsed laser deposition,” Appl. Phys., A Mater. Sci. Process. 88(2), 365–370 (2007).
[Crossref]

Lapusta, Y.

N. Zalachas, B. Laskewitz, M. Kamlah, K. Prume, Y. Lapusta, and S. Tiedke, “Effective piezoelectric coefficients of ferroelectric thin films on elastic substrates,” J. Intell. Mater. Syst. Struct. 20(6), 683–695 (2009).
[Crossref]

Laskewitz, B.

N. Zalachas, B. Laskewitz, M. Kamlah, K. Prume, Y. Lapusta, and S. Tiedke, “Effective piezoelectric coefficients of ferroelectric thin films on elastic substrates,” J. Intell. Mater. Syst. Struct. 20(6), 683–695 (2009).
[Crossref]

Lau, G. K.

Z. Wang, G. K. Lau, W. Zhu, and C. Chao, “Influence of test capacitor features on piezoelectric and dielectric measurement of ferroelectric films,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 15–22 (2006).
[Crossref] [PubMed]

Ledermann, N.

A. Barzegar, D. Damjanovic, N. Ledermann, and P. Muralt, “Piezoelectric response of thin films determined by charge integration technique: substrate bending effects,” J. Appl. Phys. 93(8), 4756–4760 (2003).
[Crossref]

Lefki, K.

K. Lefki and G. J. M. Dormans, “Measurement of piezoelectric coefficients of ferroelectric thin films,” J. Appl. Phys. 76(3), 1764–1767 (1994).
[Crossref]

Leighton, G. J. T.

G. J. T. Leighton and Z. Huang, “Accurate measurement of the piezoelectric coefficient of thin films by eliminating the substrate bending effect using spatial scanning laser vibrometry,” Smart Mater. Struct. 19(6), 065011 (2010).
[Crossref]

Li, J.-H.

L. Chen, J.-H. Li, J. Slutsker, J. Ouyang, and A. L. Roytburd, “Contribution of substrate to converse piezoelectric response of constrained thin films,” J. Mater. Res. 19(10), 2853–2858 (2004).
[Crossref]

Li, Y.

G. Yang and Y. Li, “Analysis and control of thermal and structural deformation of projection optics for 22 nm EUV lithography,” Proc. SPIE 8322, 83222V (2012).
[Crossref]

K. Liu, Y. Li, F. Zhang, and M. Fan, “Transient thermal and structural deformation and its impact on optical performance of projection optics for extreme ultraviolet lithography,” Jpn. J. Appl. Phys. 46(10A), 6568–6572 (2007).
[Crossref]

Y. Li, K. Ota, and K. Murakami, “Thermal and structural deformation and its impact on optical performance of projection optics for extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 21(1), 127–129 (2003).
[Crossref]

Liu, K.

K. Liu, Y. Li, F. Zhang, and M. Fan, “Transient thermal and structural deformation and its impact on optical performance of projection optics for extreme ultraviolet lithography,” Jpn. J. Appl. Phys. 46(10A), 6568–6572 (2007).
[Crossref]

Louis, E.

E. Louis, A. E. Yakshin, T. Tsarfati, and F. Bijkerk, “Nanometer interface and materials control for multilayer EUV-optical applications,” Prog. Surf. Sci. 86(11-12), 255–294 (2011).
[Crossref]

Lu, L.

Y. H. Yu, M. O. Lai, and L. Lu, “Highly (100) oriented Pb(Zr0.52Ti0.48)O3/LaNiO3 films grown on amorphous substrates by pulsed laser deposition,” Appl. Phys., A Mater. Sci. Process. 88(2), 365–370 (2007).
[Crossref]

Lubbers, R.

M. Nijland, S. Kumar, R. Lubbers, D. H. A. Blank, G. Rijnders, G. Koster, and J. E. ten Elshof, “Local control over nucleation of epitaxial thin films by seed layers of inorganic nanosheets,” ACS Appl. Mater. Interfaces 6(4), 2777–2785 (2014).
[Crossref] [PubMed]

Mardilovich, P.

S. Sivaramakrishnan, P. Mardilovich, A. Mason, A. Roelofs, T. Schmitz-Kempen, and S. Tiedke, “Electrode size dependence of piezoelectric response of lead zirconate titanate thin films measured by double beam laser interferometry,” Appl. Phys. Lett. 103(13), 132904 (2013).
[Crossref]

Marquez, V.

V. Cotroneo, W. N. Davis, V. Marquez, P. B. Reid, D. A. Schwartz, R. L. Johnson-Wilke, S. E. Trolier-McKinstry, and R. H. T. Wilke, “Adjustable grazing incidence x-ray optics based on thin PZT films,” Proc. SPIE 8503, 850309 (2012).
[Crossref]

Mason, A.

S. Sivaramakrishnan, P. Mardilovich, A. Mason, A. Roelofs, T. Schmitz-Kempen, and S. Tiedke, “Electrode size dependence of piezoelectric response of lead zirconate titanate thin films measured by double beam laser interferometry,” Appl. Phys. Lett. 103(13), 132904 (2013).
[Crossref]

Matsuyama, S.

S. Matsuyama, T. Kimura, H. Nakamori, S. Imai, Y. Sano, Y. Kohmura, K. Tamasaku, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Development of piezoelectric deformable mirror for hard x-ray nanofocusing,” Proc. SPIE 8503, 850303 (2012).
[Crossref]

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6(2), 122–125 (2010).
[Crossref]

Miao, J.

Z. Wang and J. Miao, “Critical electrode size in measurement of d33 coefficient of films via spatial distribution of piezoelectric displacement,” J. Phys. D Appl. Phys. 41(3), 035306 (2008).
[Crossref]

Michette, A.

D. Zhang, D. Rodriguez-Sanmartin, T. W. Button, C. Atkins, D. Brooks, P. Doel, C. Dunare, C. Feldman, A. James, A. Michette, W. Parkes, S. Pfauntsch, S. Sahraei, T. Stevenson, H. Wang, and R. Willingale, “Development of piezoelectric actuators for active x-ray optics,” J. Electroceram. 27(1), 1–6 (2011).
[Crossref]

Mimura, H.

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6(2), 122–125 (2010).
[Crossref]

Moen, C. D.

A. K. Ray-Chaudhuri, S. E. Gianoulakis, P. A. Spence, M. P. Kanouff, and C. D. Moen, “Impact of thermal and structural effects on EUV lithographic performance,” Proc. SPIE 3331, 124–132 (1998).
[Crossref]

Murakami, K.

Y. Li, K. Ota, and K. Murakami, “Thermal and structural deformation and its impact on optical performance of projection optics for extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 21(1), 127–129 (2003).
[Crossref]

Muralt, P.

K. Prume, P. Muralt, F. Calame, T. Schmitz-Kempen, and S. Tiedke, “Piezoelectric thin films: evaluation of electrical and electromechanical characteristics for MEMS devices,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(1), 8–14 (2007).
[Crossref] [PubMed]

A. Barzegar, D. Damjanovic, N. Ledermann, and P. Muralt, “Piezoelectric response of thin films determined by charge integration technique: substrate bending effects,” J. Appl. Phys. 93(8), 4756–4760 (2003).
[Crossref]

Murray, S. S.

P. B. Reid, S. S. Murray, S. Trolier-McKinstry, M. Freeman, M. Juda, W. Podgorski, B. Ramsey, and D. Schwartz, “Development of adjustable grazing incidence optics for generation-X,” Proc. SPIE 7011, 70110V (2008).
[Crossref]

Nagarajan, V.

D. M. Kim, C. B. Eom, V. Nagarajan, J. Ouyang, R. Ramesh, V. Vaithyanathan, and D. G. Schlom, “Thickness dependence of structural and piezoelectric properties of epitaxial Pb(Zr0.52Ti0.48)O3 films on Si and SrTiO3 substrates,” Appl. Phys. Lett. 88(14), 142904 (2006).
[Crossref]

V. Nagarajan, “Scaling of the piezoelectric response in ferroelectric nanostructures: an effective clamping stress model,” Appl. Phys. Lett. 87(24), 242905 (2005).
[Crossref]

Nakamori, H.

S. Matsuyama, T. Kimura, H. Nakamori, S. Imai, Y. Sano, Y. Kohmura, K. Tamasaku, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Development of piezoelectric deformable mirror for hard x-ray nanofocusing,” Proc. SPIE 8503, 850303 (2012).
[Crossref]

Nijland, M.

M. Nijland, S. Kumar, R. Lubbers, D. H. A. Blank, G. Rijnders, G. Koster, and J. E. ten Elshof, “Local control over nucleation of epitaxial thin films by seed layers of inorganic nanosheets,” ACS Appl. Mater. Interfaces 6(4), 2777–2785 (2014).
[Crossref] [PubMed]

Nishino, Y.

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6(2), 122–125 (2010).
[Crossref]

Noda, K.

K. Kikuta, K. Noda, S. Okumura, T. Yamaguchi, and S. Hirano, “Orientation control of perovskite thin films on glass substrates by the application of a seed layer prepared from oxide nanosheets,” J. Sol-Gel Sci. Techn. 42, 381–387 (2007).

Ocola, L. E.

K. K. Uprety, L. E. Ocola, and O. Auciello, “Growth and characterization of transparent Pb(Zr,Ti)O3 capacitor on glass substrate,” J. Appl. Phys. 102(8), 084107 (2007).
[Crossref]

Okumura, S.

K. Kikuta, K. Noda, S. Okumura, T. Yamaguchi, and S. Hirano, “Orientation control of perovskite thin films on glass substrates by the application of a seed layer prepared from oxide nanosheets,” J. Sol-Gel Sci. Techn. 42, 381–387 (2007).

Ota, K.

Y. Li, K. Ota, and K. Murakami, “Thermal and structural deformation and its impact on optical performance of projection optics for extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 21(1), 127–129 (2003).
[Crossref]

Ouyang, J.

D. M. Kim, C. B. Eom, V. Nagarajan, J. Ouyang, R. Ramesh, V. Vaithyanathan, and D. G. Schlom, “Thickness dependence of structural and piezoelectric properties of epitaxial Pb(Zr0.52Ti0.48)O3 films on Si and SrTiO3 substrates,” Appl. Phys. Lett. 88(14), 142904 (2006).
[Crossref]

L. Chen, J.-H. Li, J. Slutsker, J. Ouyang, and A. L. Roytburd, “Contribution of substrate to converse piezoelectric response of constrained thin films,” J. Mater. Res. 19(10), 2853–2858 (2004).
[Crossref]

Parkes, W.

D. Zhang, D. Rodriguez-Sanmartin, T. W. Button, C. Atkins, D. Brooks, P. Doel, C. Dunare, C. Feldman, A. James, A. Michette, W. Parkes, S. Pfauntsch, S. Sahraei, T. Stevenson, H. Wang, and R. Willingale, “Development of piezoelectric actuators for active x-ray optics,” J. Electroceram. 27(1), 1–6 (2011).
[Crossref]

Pfauntsch, S.

D. Zhang, D. Rodriguez-Sanmartin, T. W. Button, C. Atkins, D. Brooks, P. Doel, C. Dunare, C. Feldman, A. James, A. Michette, W. Parkes, S. Pfauntsch, S. Sahraei, T. Stevenson, H. Wang, and R. Willingale, “Development of piezoelectric actuators for active x-ray optics,” J. Electroceram. 27(1), 1–6 (2011).
[Crossref]

Podgorski, W.

P. B. Reid, S. S. Murray, S. Trolier-McKinstry, M. Freeman, M. Juda, W. Podgorski, B. Ramsey, and D. Schwartz, “Development of adjustable grazing incidence optics for generation-X,” Proc. SPIE 7011, 70110V (2008).
[Crossref]

Prume, K.

N. Zalachas, B. Laskewitz, M. Kamlah, K. Prume, Y. Lapusta, and S. Tiedke, “Effective piezoelectric coefficients of ferroelectric thin films on elastic substrates,” J. Intell. Mater. Syst. Struct. 20(6), 683–695 (2009).
[Crossref]

K. Prume, P. Muralt, F. Calame, T. Schmitz-Kempen, and S. Tiedke, “Piezoelectric thin films: evaluation of electrical and electromechanical characteristics for MEMS devices,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(1), 8–14 (2007).
[Crossref] [PubMed]

P. Gerber, A. Roelofs, C. Kügeler, U. Böttger, R. Waser, and K. Prume, “Effects of the top-electrode size on the piezoelectric properties (d33 and S) of lead zirconate titanate thin films,” J. Appl. Phys. 96(5), 2800–2804 (2004).
[Crossref]

Ramesh, R.

D. M. Kim, C. B. Eom, V. Nagarajan, J. Ouyang, R. Ramesh, V. Vaithyanathan, and D. G. Schlom, “Thickness dependence of structural and piezoelectric properties of epitaxial Pb(Zr0.52Ti0.48)O3 films on Si and SrTiO3 substrates,” Appl. Phys. Lett. 88(14), 142904 (2006).
[Crossref]

Ramsey, B.

P. B. Reid, S. S. Murray, S. Trolier-McKinstry, M. Freeman, M. Juda, W. Podgorski, B. Ramsey, and D. Schwartz, “Development of adjustable grazing incidence optics for generation-X,” Proc. SPIE 7011, 70110V (2008).
[Crossref]

Ravensbergen, S. K.

S. K. Ravensbergen, P. C. J. N. Rosielle, and M. Steinbuch, “Deformable mirrors with thermo-mechanical actuators for extreme ultraviolet lithography: design, realization and validation,” Precis. Eng. 37(2), 353–363 (2013).
[Crossref]

Ray-Chaudhuri, A. K.

A. K. Ray-Chaudhuri, S. E. Gianoulakis, P. A. Spence, M. P. Kanouff, and C. D. Moen, “Impact of thermal and structural effects on EUV lithographic performance,” Proc. SPIE 3331, 124–132 (1998).
[Crossref]

Reid, P. B.

R. H. T. Wilke, R. L. Johnson-Wilke, V. Cotroneo, W. N. Davis, P. B. Reid, D. A. Schwartz, and S. E. Trolier-McKinstry, “Sputter deposition of PZT piezoelectric films on thin glass substrates for adjustable x-ray optics,” Appl. Opt. 52(14), 3412–3419 (2013).
[Crossref] [PubMed]

V. Cotroneo, W. N. Davis, V. Marquez, P. B. Reid, D. A. Schwartz, R. L. Johnson-Wilke, S. E. Trolier-McKinstry, and R. H. T. Wilke, “Adjustable grazing incidence x-ray optics based on thin PZT films,” Proc. SPIE 8503, 850309 (2012).
[Crossref]

W. N. Davis, P. B. Reid, and D. A. Schwartz, “Finite element analyses of thin film active grazing incidence x-ray optics,” Proc. SPIE 7803, 78030P (2010).
[Crossref]

R. H. T. Wilke, S. Trolier-McKinstry, P. B. Reid, and D. A. Schwartz, “PZT piezoelectric films on glass for Gen-X imaging,” Proc. SPIE 7803, 78030O (2010).
[Crossref]

P. B. Reid, S. S. Murray, S. Trolier-McKinstry, M. Freeman, M. Juda, W. Podgorski, B. Ramsey, and D. Schwartz, “Development of adjustable grazing incidence optics for generation-X,” Proc. SPIE 7011, 70110V (2008).
[Crossref]

Ren, W.

X. Yan, W. Ren, H. Xin, P. Shi, X. Chen, and X. Wu, “Influence of substrate deformation on piezoelectric displacement measurement of piezoelectric film,” Ceram. Int. 39, S583–S586 (2013).
[Crossref]

Rijnders, G.

M. Nijland, S. Kumar, R. Lubbers, D. H. A. Blank, G. Rijnders, G. Koster, and J. E. ten Elshof, “Local control over nucleation of epitaxial thin films by seed layers of inorganic nanosheets,” ACS Appl. Mater. Interfaces 6(4), 2777–2785 (2014).
[Crossref] [PubMed]

M. Bayraktar, A. Chopra, F. Bijkerk, and G. Rijnders, “Nanosheet controlled epitaxial growth of PbZr0.52Ti0.48O3 thin films on glass substrates,” Appl. Phys. Lett. 105(13), 132904 (2014).
[Crossref]

Rodriguez-Sanmartin, D.

D. Zhang, D. Rodriguez-Sanmartin, T. W. Button, C. Atkins, D. Brooks, P. Doel, C. Dunare, C. Feldman, A. James, A. Michette, W. Parkes, S. Pfauntsch, S. Sahraei, T. Stevenson, H. Wang, and R. Willingale, “Development of piezoelectric actuators for active x-ray optics,” J. Electroceram. 27(1), 1–6 (2011).
[Crossref]

Roelofs, A.

S. Sivaramakrishnan, P. Mardilovich, A. Mason, A. Roelofs, T. Schmitz-Kempen, and S. Tiedke, “Electrode size dependence of piezoelectric response of lead zirconate titanate thin films measured by double beam laser interferometry,” Appl. Phys. Lett. 103(13), 132904 (2013).
[Crossref]

P. Gerber, A. Roelofs, C. Kügeler, U. Böttger, R. Waser, and K. Prume, “Effects of the top-electrode size on the piezoelectric properties (d33 and S) of lead zirconate titanate thin films,” J. Appl. Phys. 96(5), 2800–2804 (2004).
[Crossref]

Rosielle, N.

R. Hamelinck, R. Ellenbroek, N. Rosielle, M. Steinbuch, M. Verhaegen, and N. Doelman, “Validation of a new adaptive deformable mirror concept,” Proc. SPIE 7015, 70150Q (2008).
[Crossref]

Rosielle, P. C. J. N.

S. K. Ravensbergen, P. C. J. N. Rosielle, and M. Steinbuch, “Deformable mirrors with thermo-mechanical actuators for extreme ultraviolet lithography: design, realization and validation,” Precis. Eng. 37(2), 353–363 (2013).
[Crossref]

Roytburd, A. L.

L. Chen, J.-H. Li, J. Slutsker, J. Ouyang, and A. L. Roytburd, “Contribution of substrate to converse piezoelectric response of constrained thin films,” J. Mater. Res. 19(10), 2853–2858 (2004).
[Crossref]

Sahraei, S.

D. Zhang, D. Rodriguez-Sanmartin, T. W. Button, C. Atkins, D. Brooks, P. Doel, C. Dunare, C. Feldman, A. James, A. Michette, W. Parkes, S. Pfauntsch, S. Sahraei, T. Stevenson, H. Wang, and R. Willingale, “Development of piezoelectric actuators for active x-ray optics,” J. Electroceram. 27(1), 1–6 (2011).
[Crossref]

Sano, Y.

S. Matsuyama, T. Kimura, H. Nakamori, S. Imai, Y. Sano, Y. Kohmura, K. Tamasaku, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Development of piezoelectric deformable mirror for hard x-ray nanofocusing,” Proc. SPIE 8503, 850303 (2012).
[Crossref]

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6(2), 122–125 (2010).
[Crossref]

Schlom, D. G.

D. M. Kim, C. B. Eom, V. Nagarajan, J. Ouyang, R. Ramesh, V. Vaithyanathan, and D. G. Schlom, “Thickness dependence of structural and piezoelectric properties of epitaxial Pb(Zr0.52Ti0.48)O3 films on Si and SrTiO3 substrates,” Appl. Phys. Lett. 88(14), 142904 (2006).
[Crossref]

Schmitz-Kempen, T.

S. Sivaramakrishnan, P. Mardilovich, A. Mason, A. Roelofs, T. Schmitz-Kempen, and S. Tiedke, “Electrode size dependence of piezoelectric response of lead zirconate titanate thin films measured by double beam laser interferometry,” Appl. Phys. Lett. 103(13), 132904 (2013).
[Crossref]

K. Prume, P. Muralt, F. Calame, T. Schmitz-Kempen, and S. Tiedke, “Piezoelectric thin films: evaluation of electrical and electromechanical characteristics for MEMS devices,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(1), 8–14 (2007).
[Crossref] [PubMed]

Schwartz, D.

P. B. Reid, S. S. Murray, S. Trolier-McKinstry, M. Freeman, M. Juda, W. Podgorski, B. Ramsey, and D. Schwartz, “Development of adjustable grazing incidence optics for generation-X,” Proc. SPIE 7011, 70110V (2008).
[Crossref]

Schwartz, D. A.

R. H. T. Wilke, R. L. Johnson-Wilke, V. Cotroneo, W. N. Davis, P. B. Reid, D. A. Schwartz, and S. E. Trolier-McKinstry, “Sputter deposition of PZT piezoelectric films on thin glass substrates for adjustable x-ray optics,” Appl. Opt. 52(14), 3412–3419 (2013).
[Crossref] [PubMed]

V. Cotroneo, W. N. Davis, V. Marquez, P. B. Reid, D. A. Schwartz, R. L. Johnson-Wilke, S. E. Trolier-McKinstry, and R. H. T. Wilke, “Adjustable grazing incidence x-ray optics based on thin PZT films,” Proc. SPIE 8503, 850309 (2012).
[Crossref]

W. N. Davis, P. B. Reid, and D. A. Schwartz, “Finite element analyses of thin film active grazing incidence x-ray optics,” Proc. SPIE 7803, 78030P (2010).
[Crossref]

R. H. T. Wilke, S. Trolier-McKinstry, P. B. Reid, and D. A. Schwartz, “PZT piezoelectric films on glass for Gen-X imaging,” Proc. SPIE 7803, 78030O (2010).
[Crossref]

Shi, P.

X. Yan, W. Ren, H. Xin, P. Shi, X. Chen, and X. Wu, “Influence of substrate deformation on piezoelectric displacement measurement of piezoelectric film,” Ceram. Int. 39, S583–S586 (2013).
[Crossref]

Shin, Y.-H.

J. Y. Son and Y.-H. Shin, “Highly c-oriented PbZr0.48Ti0.52O3 thin films on glass substrates,” Electrochem. Solid-State Lett. 12(5), G20 (2009).
[Crossref]

Sivaramakrishnan, S.

S. Sivaramakrishnan, P. Mardilovich, A. Mason, A. Roelofs, T. Schmitz-Kempen, and S. Tiedke, “Electrode size dependence of piezoelectric response of lead zirconate titanate thin films measured by double beam laser interferometry,” Appl. Phys. Lett. 103(13), 132904 (2013).
[Crossref]

Slutsker, J.

L. Chen, J.-H. Li, J. Slutsker, J. Ouyang, and A. L. Roytburd, “Contribution of substrate to converse piezoelectric response of constrained thin films,” J. Mater. Res. 19(10), 2853–2858 (2004).
[Crossref]

Son, J. Y.

J. Y. Son and Y.-H. Shin, “Highly c-oriented PbZr0.48Ti0.52O3 thin films on glass substrates,” Electrochem. Solid-State Lett. 12(5), G20 (2009).
[Crossref]

Spence, P. A.

A. K. Ray-Chaudhuri, S. E. Gianoulakis, P. A. Spence, M. P. Kanouff, and C. D. Moen, “Impact of thermal and structural effects on EUV lithographic performance,” Proc. SPIE 3331, 124–132 (1998).
[Crossref]

Steinbuch, M.

S. K. Ravensbergen, P. C. J. N. Rosielle, and M. Steinbuch, “Deformable mirrors with thermo-mechanical actuators for extreme ultraviolet lithography: design, realization and validation,” Precis. Eng. 37(2), 353–363 (2013).
[Crossref]

R. Hamelinck, R. Ellenbroek, N. Rosielle, M. Steinbuch, M. Verhaegen, and N. Doelman, “Validation of a new adaptive deformable mirror concept,” Proc. SPIE 7015, 70150Q (2008).
[Crossref]

Stevenson, T.

D. Zhang, D. Rodriguez-Sanmartin, T. W. Button, C. Atkins, D. Brooks, P. Doel, C. Dunare, C. Feldman, A. James, A. Michette, W. Parkes, S. Pfauntsch, S. Sahraei, T. Stevenson, H. Wang, and R. Willingale, “Development of piezoelectric actuators for active x-ray optics,” J. Electroceram. 27(1), 1–6 (2011).
[Crossref]

Tamasaku, K.

S. Matsuyama, T. Kimura, H. Nakamori, S. Imai, Y. Sano, Y. Kohmura, K. Tamasaku, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Development of piezoelectric deformable mirror for hard x-ray nanofocusing,” Proc. SPIE 8503, 850303 (2012).
[Crossref]

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6(2), 122–125 (2010).
[Crossref]

ten Elshof, J. E.

M. Nijland, S. Kumar, R. Lubbers, D. H. A. Blank, G. Rijnders, G. Koster, and J. E. ten Elshof, “Local control over nucleation of epitaxial thin films by seed layers of inorganic nanosheets,” ACS Appl. Mater. Interfaces 6(4), 2777–2785 (2014).
[Crossref] [PubMed]

Thompson, S.

P. Doel, C. Atkins, S. Thompson, D. Brooks, J. Yao, C. Feldman, R. Willingale, T. Button, D. Zhang, and A. James, “Large thin adaptive x-ray mirrors,” Proc. SPIE 6705, 67050M (2007).
[Crossref]

Tiedke, S.

S. Sivaramakrishnan, P. Mardilovich, A. Mason, A. Roelofs, T. Schmitz-Kempen, and S. Tiedke, “Electrode size dependence of piezoelectric response of lead zirconate titanate thin films measured by double beam laser interferometry,” Appl. Phys. Lett. 103(13), 132904 (2013).
[Crossref]

N. Zalachas, B. Laskewitz, M. Kamlah, K. Prume, Y. Lapusta, and S. Tiedke, “Effective piezoelectric coefficients of ferroelectric thin films on elastic substrates,” J. Intell. Mater. Syst. Struct. 20(6), 683–695 (2009).
[Crossref]

K. Prume, P. Muralt, F. Calame, T. Schmitz-Kempen, and S. Tiedke, “Piezoelectric thin films: evaluation of electrical and electromechanical characteristics for MEMS devices,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(1), 8–14 (2007).
[Crossref] [PubMed]

Trolier-McKinstry, S.

R. H. T. Wilke, S. Trolier-McKinstry, P. B. Reid, and D. A. Schwartz, “PZT piezoelectric films on glass for Gen-X imaging,” Proc. SPIE 7803, 78030O (2010).
[Crossref]

P. B. Reid, S. S. Murray, S. Trolier-McKinstry, M. Freeman, M. Juda, W. Podgorski, B. Ramsey, and D. Schwartz, “Development of adjustable grazing incidence optics for generation-X,” Proc. SPIE 7011, 70110V (2008).
[Crossref]

F. Xu, F. Chu, and S. Trolier-McKinstry, “Longitudinal piezoelectric coefficient measurement for bulk ceramics and thin films using pneumatic pressure rig,” J. Appl. Phys. 86(1), 588–594 (1999).
[Crossref]

Trolier-McKinstry, S. E.

R. H. T. Wilke, R. L. Johnson-Wilke, V. Cotroneo, W. N. Davis, P. B. Reid, D. A. Schwartz, and S. E. Trolier-McKinstry, “Sputter deposition of PZT piezoelectric films on thin glass substrates for adjustable x-ray optics,” Appl. Opt. 52(14), 3412–3419 (2013).
[Crossref] [PubMed]

V. Cotroneo, W. N. Davis, V. Marquez, P. B. Reid, D. A. Schwartz, R. L. Johnson-Wilke, S. E. Trolier-McKinstry, and R. H. T. Wilke, “Adjustable grazing incidence x-ray optics based on thin PZT films,” Proc. SPIE 8503, 850309 (2012).
[Crossref]

Tsarfati, T.

E. Louis, A. E. Yakshin, T. Tsarfati, and F. Bijkerk, “Nanometer interface and materials control for multilayer EUV-optical applications,” Prog. Surf. Sci. 86(11-12), 255–294 (2011).
[Crossref]

Uprety, K. K.

K. K. Uprety, L. E. Ocola, and O. Auciello, “Growth and characterization of transparent Pb(Zr,Ti)O3 capacitor on glass substrate,” J. Appl. Phys. 102(8), 084107 (2007).
[Crossref]

Vaithyanathan, V.

D. M. Kim, C. B. Eom, V. Nagarajan, J. Ouyang, R. Ramesh, V. Vaithyanathan, and D. G. Schlom, “Thickness dependence of structural and piezoelectric properties of epitaxial Pb(Zr0.52Ti0.48)O3 films on Si and SrTiO3 substrates,” Appl. Phys. Lett. 88(14), 142904 (2006).
[Crossref]

Verardi, P.

P. Verardi, M. Dinescu, F. Craciun, R. Dinu, and M. F. Ciobanu, “Growth of oriented Pb(ZrxTi1-x)O3 thin films on glass substrates by pulsed laser deposition,” Appl. Phys., A Mater. Sci. Process. 69(7Suppl.), S837–S839 (1999).
[Crossref]

Verhaegen, M.

R. Hamelinck, R. Ellenbroek, N. Rosielle, M. Steinbuch, M. Verhaegen, and N. Doelman, “Validation of a new adaptive deformable mirror concept,” Proc. SPIE 7015, 70150Q (2008).
[Crossref]

Wang, H.

D. Zhang, D. Rodriguez-Sanmartin, T. W. Button, C. Atkins, D. Brooks, P. Doel, C. Dunare, C. Feldman, A. James, A. Michette, W. Parkes, S. Pfauntsch, S. Sahraei, T. Stevenson, H. Wang, and R. Willingale, “Development of piezoelectric actuators for active x-ray optics,” J. Electroceram. 27(1), 1–6 (2011).
[Crossref]

Wang, Z.

Z. Wang and J. Miao, “Critical electrode size in measurement of d33 coefficient of films via spatial distribution of piezoelectric displacement,” J. Phys. D Appl. Phys. 41(3), 035306 (2008).
[Crossref]

Z. Wang, G. K. Lau, W. Zhu, and C. Chao, “Influence of test capacitor features on piezoelectric and dielectric measurement of ferroelectric films,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 15–22 (2006).
[Crossref] [PubMed]

Waser, R.

P. Gerber, A. Roelofs, C. Kügeler, U. Böttger, R. Waser, and K. Prume, “Effects of the top-electrode size on the piezoelectric properties (d33 and S) of lead zirconate titanate thin films,” J. Appl. Phys. 96(5), 2800–2804 (2004).
[Crossref]

Wilke, R. H. T.

R. H. T. Wilke, R. L. Johnson-Wilke, V. Cotroneo, W. N. Davis, P. B. Reid, D. A. Schwartz, and S. E. Trolier-McKinstry, “Sputter deposition of PZT piezoelectric films on thin glass substrates for adjustable x-ray optics,” Appl. Opt. 52(14), 3412–3419 (2013).
[Crossref] [PubMed]

V. Cotroneo, W. N. Davis, V. Marquez, P. B. Reid, D. A. Schwartz, R. L. Johnson-Wilke, S. E. Trolier-McKinstry, and R. H. T. Wilke, “Adjustable grazing incidence x-ray optics based on thin PZT films,” Proc. SPIE 8503, 850309 (2012).
[Crossref]

R. H. T. Wilke, S. Trolier-McKinstry, P. B. Reid, and D. A. Schwartz, “PZT piezoelectric films on glass for Gen-X imaging,” Proc. SPIE 7803, 78030O (2010).
[Crossref]

Willingale, R.

D. Zhang, D. Rodriguez-Sanmartin, T. W. Button, C. Atkins, D. Brooks, P. Doel, C. Dunare, C. Feldman, A. James, A. Michette, W. Parkes, S. Pfauntsch, S. Sahraei, T. Stevenson, H. Wang, and R. Willingale, “Development of piezoelectric actuators for active x-ray optics,” J. Electroceram. 27(1), 1–6 (2011).
[Crossref]

P. Doel, C. Atkins, S. Thompson, D. Brooks, J. Yao, C. Feldman, R. Willingale, T. Button, D. Zhang, and A. James, “Large thin adaptive x-ray mirrors,” Proc. SPIE 6705, 67050M (2007).
[Crossref]

Wu, J.-M.

M.-S. Chen, T.-B. Wu, and J.-M. Wu, “Effect of textured LaNiO3 electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O3 thin films,” Appl. Phys. Lett. 68(10), 1430–1432 (1996).
[Crossref]

Wu, T.-B.

M.-S. Chen, T.-B. Wu, and J.-M. Wu, “Effect of textured LaNiO3 electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O3 thin films,” Appl. Phys. Lett. 68(10), 1430–1432 (1996).
[Crossref]

Wu, X.

X. Yan, W. Ren, H. Xin, P. Shi, X. Chen, and X. Wu, “Influence of substrate deformation on piezoelectric displacement measurement of piezoelectric film,” Ceram. Int. 39, S583–S586 (2013).
[Crossref]

Xin, H.

X. Yan, W. Ren, H. Xin, P. Shi, X. Chen, and X. Wu, “Influence of substrate deformation on piezoelectric displacement measurement of piezoelectric film,” Ceram. Int. 39, S583–S586 (2013).
[Crossref]

Xu, F.

F. Xu, F. Chu, and S. Trolier-McKinstry, “Longitudinal piezoelectric coefficient measurement for bulk ceramics and thin films using pneumatic pressure rig,” J. Appl. Phys. 86(1), 588–594 (1999).
[Crossref]

Yabashi, M.

S. Matsuyama, T. Kimura, H. Nakamori, S. Imai, Y. Sano, Y. Kohmura, K. Tamasaku, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Development of piezoelectric deformable mirror for hard x-ray nanofocusing,” Proc. SPIE 8503, 850303 (2012).
[Crossref]

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6(2), 122–125 (2010).
[Crossref]

Yakshin, A. E.

E. Louis, A. E. Yakshin, T. Tsarfati, and F. Bijkerk, “Nanometer interface and materials control for multilayer EUV-optical applications,” Prog. Surf. Sci. 86(11-12), 255–294 (2011).
[Crossref]

Yamaguchi, T.

K. Kikuta, K. Noda, S. Okumura, T. Yamaguchi, and S. Hirano, “Orientation control of perovskite thin films on glass substrates by the application of a seed layer prepared from oxide nanosheets,” J. Sol-Gel Sci. Techn. 42, 381–387 (2007).

Yamakawa, D.

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6(2), 122–125 (2010).
[Crossref]

Yamamura, K.

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6(2), 122–125 (2010).
[Crossref]

Yamauchi, K.

S. Matsuyama, T. Kimura, H. Nakamori, S. Imai, Y. Sano, Y. Kohmura, K. Tamasaku, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Development of piezoelectric deformable mirror for hard x-ray nanofocusing,” Proc. SPIE 8503, 850303 (2012).
[Crossref]

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6(2), 122–125 (2010).
[Crossref]

Yan, X.

X. Yan, W. Ren, H. Xin, P. Shi, X. Chen, and X. Wu, “Influence of substrate deformation on piezoelectric displacement measurement of piezoelectric film,” Ceram. Int. 39, S583–S586 (2013).
[Crossref]

Yang, G.

G. Yang and Y. Li, “Analysis and control of thermal and structural deformation of projection optics for 22 nm EUV lithography,” Proc. SPIE 8322, 83222V (2012).
[Crossref]

Yao, J.

P. Doel, C. Atkins, S. Thompson, D. Brooks, J. Yao, C. Feldman, R. Willingale, T. Button, D. Zhang, and A. James, “Large thin adaptive x-ray mirrors,” Proc. SPIE 6705, 67050M (2007).
[Crossref]

Yokoyama, H.

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6(2), 122–125 (2010).
[Crossref]

Yu, Y. H.

Y. H. Yu, M. O. Lai, and L. Lu, “Highly (100) oriented Pb(Zr0.52Ti0.48)O3/LaNiO3 films grown on amorphous substrates by pulsed laser deposition,” Appl. Phys., A Mater. Sci. Process. 88(2), 365–370 (2007).
[Crossref]

Yumoto, H.

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6(2), 122–125 (2010).
[Crossref]

Zalachas, N.

N. Zalachas, B. Laskewitz, M. Kamlah, K. Prume, Y. Lapusta, and S. Tiedke, “Effective piezoelectric coefficients of ferroelectric thin films on elastic substrates,” J. Intell. Mater. Syst. Struct. 20(6), 683–695 (2009).
[Crossref]

Zhang, D.

D. Zhang, D. Rodriguez-Sanmartin, T. W. Button, C. Atkins, D. Brooks, P. Doel, C. Dunare, C. Feldman, A. James, A. Michette, W. Parkes, S. Pfauntsch, S. Sahraei, T. Stevenson, H. Wang, and R. Willingale, “Development of piezoelectric actuators for active x-ray optics,” J. Electroceram. 27(1), 1–6 (2011).
[Crossref]

P. Doel, C. Atkins, S. Thompson, D. Brooks, J. Yao, C. Feldman, R. Willingale, T. Button, D. Zhang, and A. James, “Large thin adaptive x-ray mirrors,” Proc. SPIE 6705, 67050M (2007).
[Crossref]

Zhang, F.

K. Liu, Y. Li, F. Zhang, and M. Fan, “Transient thermal and structural deformation and its impact on optical performance of projection optics for extreme ultraviolet lithography,” Jpn. J. Appl. Phys. 46(10A), 6568–6572 (2007).
[Crossref]

Zhu, W.

Z. Wang, G. K. Lau, W. Zhu, and C. Chao, “Influence of test capacitor features on piezoelectric and dielectric measurement of ferroelectric films,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 15–22 (2006).
[Crossref] [PubMed]

Zhuang, Z. Q.

Z. Q. Zhuang, M. J. Haun, S. J. Jang, and L. E. Cross, “Composition and temperature dependence of the dielectric, piezoelectric and elastic properties of pure PZT ceramics,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36(4), 413–416 (1989).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

M. Nijland, S. Kumar, R. Lubbers, D. H. A. Blank, G. Rijnders, G. Koster, and J. E. ten Elshof, “Local control over nucleation of epitaxial thin films by seed layers of inorganic nanosheets,” ACS Appl. Mater. Interfaces 6(4), 2777–2785 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

M. Bayraktar, A. Chopra, F. Bijkerk, and G. Rijnders, “Nanosheet controlled epitaxial growth of PbZr0.52Ti0.48O3 thin films on glass substrates,” Appl. Phys. Lett. 105(13), 132904 (2014).
[Crossref]

M.-S. Chen, T.-B. Wu, and J.-M. Wu, “Effect of textured LaNiO3 electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O3 thin films,” Appl. Phys. Lett. 68(10), 1430–1432 (1996).
[Crossref]

D. M. Kim, C. B. Eom, V. Nagarajan, J. Ouyang, R. Ramesh, V. Vaithyanathan, and D. G. Schlom, “Thickness dependence of structural and piezoelectric properties of epitaxial Pb(Zr0.52Ti0.48)O3 films on Si and SrTiO3 substrates,” Appl. Phys. Lett. 88(14), 142904 (2006).
[Crossref]

S. Sivaramakrishnan, P. Mardilovich, A. Mason, A. Roelofs, T. Schmitz-Kempen, and S. Tiedke, “Electrode size dependence of piezoelectric response of lead zirconate titanate thin films measured by double beam laser interferometry,” Appl. Phys. Lett. 103(13), 132904 (2013).
[Crossref]

V. Nagarajan, “Scaling of the piezoelectric response in ferroelectric nanostructures: an effective clamping stress model,” Appl. Phys. Lett. 87(24), 242905 (2005).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

P. Verardi, M. Dinescu, F. Craciun, R. Dinu, and M. F. Ciobanu, “Growth of oriented Pb(ZrxTi1-x)O3 thin films on glass substrates by pulsed laser deposition,” Appl. Phys., A Mater. Sci. Process. 69(7Suppl.), S837–S839 (1999).
[Crossref]

Y. H. Yu, M. O. Lai, and L. Lu, “Highly (100) oriented Pb(Zr0.52Ti0.48)O3/LaNiO3 films grown on amorphous substrates by pulsed laser deposition,” Appl. Phys., A Mater. Sci. Process. 88(2), 365–370 (2007).
[Crossref]

Ceram. Int. (1)

X. Yan, W. Ren, H. Xin, P. Shi, X. Chen, and X. Wu, “Influence of substrate deformation on piezoelectric displacement measurement of piezoelectric film,” Ceram. Int. 39, S583–S586 (2013).
[Crossref]

Electrochem. Solid-State Lett. (1)

J. Y. Son and Y.-H. Shin, “Highly c-oriented PbZr0.48Ti0.52O3 thin films on glass substrates,” Electrochem. Solid-State Lett. 12(5), G20 (2009).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (3)

Z. Q. Zhuang, M. J. Haun, S. J. Jang, and L. E. Cross, “Composition and temperature dependence of the dielectric, piezoelectric and elastic properties of pure PZT ceramics,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36(4), 413–416 (1989).
[Crossref] [PubMed]

Z. Wang, G. K. Lau, W. Zhu, and C. Chao, “Influence of test capacitor features on piezoelectric and dielectric measurement of ferroelectric films,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 15–22 (2006).
[Crossref] [PubMed]

K. Prume, P. Muralt, F. Calame, T. Schmitz-Kempen, and S. Tiedke, “Piezoelectric thin films: evaluation of electrical and electromechanical characteristics for MEMS devices,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(1), 8–14 (2007).
[Crossref] [PubMed]

J. Appl. Phys. (5)

K. Lefki and G. J. M. Dormans, “Measurement of piezoelectric coefficients of ferroelectric thin films,” J. Appl. Phys. 76(3), 1764–1767 (1994).
[Crossref]

F. Xu, F. Chu, and S. Trolier-McKinstry, “Longitudinal piezoelectric coefficient measurement for bulk ceramics and thin films using pneumatic pressure rig,” J. Appl. Phys. 86(1), 588–594 (1999).
[Crossref]

A. Barzegar, D. Damjanovic, N. Ledermann, and P. Muralt, “Piezoelectric response of thin films determined by charge integration technique: substrate bending effects,” J. Appl. Phys. 93(8), 4756–4760 (2003).
[Crossref]

P. Gerber, A. Roelofs, C. Kügeler, U. Böttger, R. Waser, and K. Prume, “Effects of the top-electrode size on the piezoelectric properties (d33 and S) of lead zirconate titanate thin films,” J. Appl. Phys. 96(5), 2800–2804 (2004).
[Crossref]

K. K. Uprety, L. E. Ocola, and O. Auciello, “Growth and characterization of transparent Pb(Zr,Ti)O3 capacitor on glass substrate,” J. Appl. Phys. 102(8), 084107 (2007).
[Crossref]

J. Electroceram. (1)

D. Zhang, D. Rodriguez-Sanmartin, T. W. Button, C. Atkins, D. Brooks, P. Doel, C. Dunare, C. Feldman, A. James, A. Michette, W. Parkes, S. Pfauntsch, S. Sahraei, T. Stevenson, H. Wang, and R. Willingale, “Development of piezoelectric actuators for active x-ray optics,” J. Electroceram. 27(1), 1–6 (2011).
[Crossref]

J. Intell. Mater. Syst. Struct. (1)

N. Zalachas, B. Laskewitz, M. Kamlah, K. Prume, Y. Lapusta, and S. Tiedke, “Effective piezoelectric coefficients of ferroelectric thin films on elastic substrates,” J. Intell. Mater. Syst. Struct. 20(6), 683–695 (2009).
[Crossref]

J. Mater. Res. (1)

L. Chen, J.-H. Li, J. Slutsker, J. Ouyang, and A. L. Roytburd, “Contribution of substrate to converse piezoelectric response of constrained thin films,” J. Mater. Res. 19(10), 2853–2858 (2004).
[Crossref]

J. Phys. D Appl. Phys. (1)

Z. Wang and J. Miao, “Critical electrode size in measurement of d33 coefficient of films via spatial distribution of piezoelectric displacement,” J. Phys. D Appl. Phys. 41(3), 035306 (2008).
[Crossref]

J. Sol-Gel Sci. Techn. (1)

K. Kikuta, K. Noda, S. Okumura, T. Yamaguchi, and S. Hirano, “Orientation control of perovskite thin films on glass substrates by the application of a seed layer prepared from oxide nanosheets,” J. Sol-Gel Sci. Techn. 42, 381–387 (2007).

J. Vac. Sci. Technol. B (1)

Y. Li, K. Ota, and K. Murakami, “Thermal and structural deformation and its impact on optical performance of projection optics for extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 21(1), 127–129 (2003).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Liu, Y. Li, F. Zhang, and M. Fan, “Transient thermal and structural deformation and its impact on optical performance of projection optics for extreme ultraviolet lithography,” Jpn. J. Appl. Phys. 46(10A), 6568–6572 (2007).
[Crossref]

Nanotechnology (1)

D. H. Kim, Y. K. Kim, S. Hong, Y. Kim, and S. Baik, “Nanoscale bit formation in highly (111)-oriented ferroelectric thin films deposited on glass substrates for high-density storage media,” Nanotechnology 22(24), 245705 (2011).
[Crossref] [PubMed]

Nat. Phys. (1)

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6(2), 122–125 (2010).
[Crossref]

Precis. Eng. (1)

S. K. Ravensbergen, P. C. J. N. Rosielle, and M. Steinbuch, “Deformable mirrors with thermo-mechanical actuators for extreme ultraviolet lithography: design, realization and validation,” Precis. Eng. 37(2), 353–363 (2013).
[Crossref]

Proc. SPIE (9)

P. Doel, C. Atkins, S. Thompson, D. Brooks, J. Yao, C. Feldman, R. Willingale, T. Button, D. Zhang, and A. James, “Large thin adaptive x-ray mirrors,” Proc. SPIE 6705, 67050M (2007).
[Crossref]

P. B. Reid, S. S. Murray, S. Trolier-McKinstry, M. Freeman, M. Juda, W. Podgorski, B. Ramsey, and D. Schwartz, “Development of adjustable grazing incidence optics for generation-X,” Proc. SPIE 7011, 70110V (2008).
[Crossref]

W. N. Davis, P. B. Reid, and D. A. Schwartz, “Finite element analyses of thin film active grazing incidence x-ray optics,” Proc. SPIE 7803, 78030P (2010).
[Crossref]

R. Hamelinck, R. Ellenbroek, N. Rosielle, M. Steinbuch, M. Verhaegen, and N. Doelman, “Validation of a new adaptive deformable mirror concept,” Proc. SPIE 7015, 70150Q (2008).
[Crossref]

G. Yang and Y. Li, “Analysis and control of thermal and structural deformation of projection optics for 22 nm EUV lithography,” Proc. SPIE 8322, 83222V (2012).
[Crossref]

S. Matsuyama, T. Kimura, H. Nakamori, S. Imai, Y. Sano, Y. Kohmura, K. Tamasaku, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Development of piezoelectric deformable mirror for hard x-ray nanofocusing,” Proc. SPIE 8503, 850303 (2012).
[Crossref]

V. Cotroneo, W. N. Davis, V. Marquez, P. B. Reid, D. A. Schwartz, R. L. Johnson-Wilke, S. E. Trolier-McKinstry, and R. H. T. Wilke, “Adjustable grazing incidence x-ray optics based on thin PZT films,” Proc. SPIE 8503, 850309 (2012).
[Crossref]

R. H. T. Wilke, S. Trolier-McKinstry, P. B. Reid, and D. A. Schwartz, “PZT piezoelectric films on glass for Gen-X imaging,” Proc. SPIE 7803, 78030O (2010).
[Crossref]

A. K. Ray-Chaudhuri, S. E. Gianoulakis, P. A. Spence, M. P. Kanouff, and C. D. Moen, “Impact of thermal and structural effects on EUV lithographic performance,” Proc. SPIE 3331, 124–132 (1998).
[Crossref]

Prog. Surf. Sci. (1)

E. Louis, A. E. Yakshin, T. Tsarfati, and F. Bijkerk, “Nanometer interface and materials control for multilayer EUV-optical applications,” Prog. Surf. Sci. 86(11-12), 255–294 (2011).
[Crossref]

Smart Mater. Struct. (1)

G. J. T. Leighton and Z. Huang, “Accurate measurement of the piezoelectric coefficient of thin films by eliminating the substrate bending effect using spatial scanning laser vibrometry,” Smart Mater. Struct. 19(6), 065011 (2010).
[Crossref]

Other (18)

Comsol Multiphysics, ®, www.comsol.com

Polytec MSA-400 Micro System Analyzer User Manual, (2005).

Zemax® 13 Optical Design Program User’s Manual, April 4, (2013).

D. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge University, 2007).

V. Bakshi, EUV Lithography (SPIE, 2008).

R. Saathof, “Adaptive optics to counteract thermal aberrations,” PhD thesis. Delft, The Netherlands: Technische Universiteit Delft (2013).

Boston Micromachines Corporation,” http://www.bostonmicromachines.com

Iris AO Inc.” http://www.irisao.com

ALPAO SAS,” http://www.alpao.com

Flexible Optical B.V. (Okotech),” http://www.okotech.com

CILAS Corporate,” http://www.cilas.com

AOA Xinetics,” http://www.northropgrumman.com/BusinessVentures/AOAXinetics

Microgate Engineering,” http://www.microgate.it

R. Hamelinck, “Adaptive deformable mirror: based on electromagnetic actuators,” PhD thesis. Eindhoven, The Netherlands: Technische Universiteit Eindhoven (2010).

J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University, 1998).

F. Roddier, Adaptive Optics in Astronomy (Cambridge University, 1999).

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design and Applications (John Wiley & Sons, 2006).

R. K. Tyson, Principles of Adaptive Optics, Third Edition (Taylor & Francis, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic view of the film stack structured into a pixel. (b) Cross-sectional scanning electron microscope image of the crystalline piezoelectric actuator film stack deposited on a glass substrate.
Fig. 2
Fig. 2 (a) Example of distorted wavefront, here, a 5th order Zernike-polynomial (Z5, astigmatism) distortion with a5 = λEUV/2 = 6.8 nm amplitude and 20 cm diameter (b) The same wavefront corrected by reflection at a deformable mirror comprising an array of 4 × 4 cm2 square segments (pixels) made of thin film piezoelectric material. (c) Point spread function (PSF) calculated for the distorted wavefront (green, peak height S = 0.65), after correction with the array of 4 × 4 cm2 pixels (red, peak height S = 0.93) and the ideally corrected, diffraction limited wavefront (blue line, S = 1). The horizontal dashed gray line corresponds to a Strehl ratio of S = 0.8 above which wavefront correction is generally considered as of high-quality.
Fig. 3
Fig. 3 The Strehl ratio for aberrations in the shape of Zernike polynomials with a strength of an = λEUV/2 = 6.8 nm is shown for four different cases: before the correction and after the correction with a deformable mirror having a pixel size of L = 4 cm, 2 cm or 1 cm. The Marechal criterion (Strehl ratio above S = 0.8) that proves high correction quality is indicated with dashed gray line.
Fig. 4
Fig. 4 Measured effective longitudinal piezoelectric coefficient, d33,f, of the PZT film for 200 μm pixel size. Gray dashed line is shown as a guide to the eye.

Metrics