Abstract

We report interferometric measurements of the temperature coefficient of the refractive index (dn/dT) and the coefficient of thermal expansion (α) of a praseodymium-doped yttrium lithium fluoride (Pr:YLF) crystal and of a fused silica reference sample. Our phase-resolved interferometric method yields a large number of data points and thus allows a precise measurement and a good error estimation. Furthermore, both dn/dT and α are obtained simultaneously from a single measurement which reduces errors that can occur in separate measurements. Over the temperature range from 20 °C to 80 °C, the value of dn/dT of Pr:YLF decreases from −5.2 × 10−6 /K to −6.2 × 10−6 /K for the ordinary refractive index and from −7.6 × 10−6 /K to −8.6 × 10−6 /K for the extraordinary refractive index. The coefficient of thermal expansion for the a-axis of Pr:YLF increases from 16.4 × 10−6 /K to 17.8 × 10−6 /K over the same temperature range.

© 2014 Optical Society of America

Full Article  |  PDF Article

Corrections

Orestis S. Kazasidis and Ulrich Wittrock, "Interferometric measurement of the temperature coefficient of the refractive index dn/dT and the coefficient of thermal expansion of Pr:YLF laser crystals: erratum," Opt. Express 23, 24097-24097 (2015)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-18-24097

OSA Recommended Articles
Highly accurate interferometric evaluation of thermal expansion and dn/dT of optical materials

Yoichi Sato and Takunori Taira
Opt. Mater. Express 4(5) 876-888 (2014)

Linear thermal expansion and thermo-optic coefficients of YVO4 crystals the 80-320 K temperature range

N. Ter-Gabrielyan, V. Fromzel, and M. Dubinskii
Opt. Mater. Express 2(11) 1624-1631 (2012)

Thermo-optic properties of ceramic YAG at high temperatures

Hiroaki Furuse, Ryo Yasuhara, and Keijiro Hiraga
Opt. Mater. Express 4(9) 1794-1799 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. L. Doualan and R. Moncorgé, “Laser crystals with low phonon frequencies,” Ann. Chim. Sci. Mat. 28, 5–20 (2003).
    [Crossref]
  2. L. Esterowitz, R. Allen, M. Kruer, F. Bartoli, L. S. Goldberg, H. P. Jenssen, A. Linz, and V. O. Nicolai, “Blue light emission by a Pr:LiYF4-laser operated at room temperature,” J. Appl. Phys. 48, 650–652 (1977).
    [Crossref]
  3. T. Gün, P. Metz, and G. Huber, “Efficient continuous wave deep ultraviolet Pr3+:LiYF4 laser at 261.3 nm,” Appl. Phys. Lett. 99, 181103 (2011).
    [Crossref]
  4. T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. Chai, “Efficient continuous wave-laser emission of Pr3+-doped fluorides at room temperature,” Appl. Phys. B 58, 149–151 (1994).
    [Crossref]
  5. A. Richter, E. Heumann, G. Huber, V. Ostroumov, and W. Seelert, “Power scaling of semiconductor laser pumped Praseodymium-lasers,” Opt. Express 15, 5172–5178 (2007).
    [Crossref] [PubMed]
  6. Z. Liu, Z. Cai, S. Huang, C. Zeng, Z. Meng, Y. Bu, Z. Luo, B. Xu, H. Xu, C. Ye, F. Stareki, P. Camy, and R. Moncorgé, “Diode-pumped Pr3+:LiYF4 continuous-wave deep red laser at 698 nm,” J. Opt. Soc. Am. B 30, 302–305 (2013).
    [Crossref]
  7. P. W. Metz, F. Reichert, F. Moglia, S. Müller, D.-T. Marzahl, C. Kränkel, and G. Huber, “High-power red, orange, and green Pr3+:LiYF4 lasers,” Opt. Lett. 39, 3193–3196 (2014).
    [Crossref] [PubMed]
  8. W. Koechner, Solid State Laser Engineering (Springer, 2006), 6th ed.
  9. M. Bass, Handbook of Optics (McGraw-Hill, 1995).
  10. CASTECH Inc, Ruanjian Avenue 89, Fuzhou, Fujian 350003, China.
  11. Laser Components GmbH, Werner-von-Siemens-Str. 15, 82140 Olching, Germany.
  12. N. P. Barnes and D. J. Gettemy, “Temperature variation of the refractive indices of yttrium lithium fluoride,” J. Opt. Soc. Am. 70, 1244–1247 (1980).
    [Crossref]
  13. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
    [Crossref]
  14. D. V. Strekalov, R. J. Thompson, L. M. Baumgartel, I. S. Grudinin, and N. Yu, “Temperature measurement and stabilization in a birefringent whispering gallery mode resonator,” Opt. Express 19, 14495–14501 (2011).
    [Crossref] [PubMed]
  15. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1208 (1965).
    [Crossref]
  16. J. H. Wray and J. T. Neu, “Refractive index of several glasses as a function of wavelength and temperature,” J. Opt. Soc. Am. 59, 774–776 (1969).
    [Crossref]
  17. T. Y. Fan and J. L. Daneu, “Thermal coefficients of the optical path length and refractive index in YAG,” Appl. Opt. 37, 1635–1637 (1998).
    [Crossref]
  18. P.-E. Dupouy, M. Büchner, P. Paquier, G. Trénec, and J. Vigué, “Interferometric measurement of the temperature dependence of an index of refraction: application to fused silica,” Appl. Opt. 49, 678–682 (2010).
    [Crossref] [PubMed]
  19. T. Baak, “Thermal coefficient of refractive index of optical glasses,” J. Opt. Soc. Am. 59, 851–856 (1969).
    [Crossref]
  20. C. J. Parker and W. A. Popov, “Experimental determination of the effect of temperature on refractive index and optical path length of glass,” Appl. Opt. 10, 2137–2143 (1971).
    [Crossref] [PubMed]
  21. T. S. Aurora, S. M. Day, V. King, and D. O. Pederson, “High-temperature laser interferometer for thermal expansion and optical-length measurements,” Rev. Sci. Instrum. 55, 149–152 (1984).
    [Crossref]
  22. V. Cardinali, E. Marmois, B. L. Garrec, and G. Bourdet, “Determination of the thermo-optic coefficient dn/dt of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature,” Opt. Mater.34, 990–994 (2012). 6th Laser Ceramics Symposium.
    [Crossref]
  23. N. Ter-Gabrielyan, V. Fromzel, and M. Dubinskii, “Linear thermal expansion and thermo-optic coefficients of YVO4 crystals the 80–320 K temperature range,” Opt. Mater. Express 2, 1624–1631 (2012).
    [Crossref]
  24. Y. Sato and T. Taira, “Highly accurate interferometric evaluation of thermal expansion and dn/dt of optical materials,” Opt. Mater. Express 4, 876–888 (2014).
    [Crossref]
  25. J. D. Foster and L. M. Osterink, “Index of refraction and expansion thermal coefficients of Nd:YAG,” Appl. Opt. 7, 2428–2429 (1968).
    [Crossref] [PubMed]
  26. R. Waxler, G. Cleek, I. Malitson, M. Dodge, and T. Hahn, “Optical and mechanical properties of some neodymium-doped laser glasses,” J. Res. Natl. Bur. Stand. Sec. A 75A, 163–174 (1971).
    [Crossref]
  27. T. Izumitani and H. Toratani, “Temperature coefficient of electronic polarizability in optical glasses,” J. Non-Cryst. Solids40, 611–619 (1980). Proceedings of the Fifth University Conference on Glass Science.
    [Crossref]
  28. J. M. Jewell, C. Askins, and I. D. Aggarwal, “Interferometric method for concurrent measurement of thermo-optic and thermal expansion coefficients,” Appl. Opt. 30, 3656–3660 (1991).
    [Crossref] [PubMed]
  29. C. Büdenbender, “Entwicklung eines neuen Messverfahrens zur Bestimmung von thermo-optischen Konstanten von Laserkristallen,” Master’s thesis, Photonics Laboratory, Münster University of Applied Sciences (2009).
  30. Netzsch-Gerätebau GmbH.
  31. Forschungsinstitut für mineralische und metallische Werkstoffe -Edelsteine/Edelmetalle- GmbH (FEE), Struthstr. 2, D-55743 Idar-Oberstein, Germany.
  32. Thorlabs GmbH, Lubeck OR Dachau/Munich, Germany.
  33. M. N. Polyanskiy, “Refractive index database,” (2014). [Online; accessed June 2014].
  34. M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1970), 4th ed.
  35. T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D: Appl. Phys. 16, L97 (1983).
    [Crossref]
  36. T. M. Pollak, R. C. Folweiler, E. P. Chicklis, J. W. Baer, A. Linz, and D. Gabbe, “Properties and fabrication of crystalline fluoride materials for high power laser applications,” Tech. rep. (1980).
  37. T. Pollak, W. Wing, R. Grasso, E. Chicklis, and H. Jenssen, “CW laser operation of Nd:YLF,” IEEE J. Quantum Electron. 18, 159–163 (1982).
    [Crossref]
  38. S. Payne, W. F. Krupke, L. K. Smith, W. L. Kway, L. DeLoach, and J. B. Tassano, “752 nm wing-pumped Cr:LiSAF laser,” IEEE J. Quantum Electron. 28, 1188–1196 (1992).
    [Crossref]

2014 (2)

2013 (1)

2012 (1)

2011 (2)

2010 (1)

2007 (1)

2005 (1)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[Crossref]

2003 (1)

J. L. Doualan and R. Moncorgé, “Laser crystals with low phonon frequencies,” Ann. Chim. Sci. Mat. 28, 5–20 (2003).
[Crossref]

1998 (1)

1994 (1)

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. Chai, “Efficient continuous wave-laser emission of Pr3+-doped fluorides at room temperature,” Appl. Phys. B 58, 149–151 (1994).
[Crossref]

1992 (1)

S. Payne, W. F. Krupke, L. K. Smith, W. L. Kway, L. DeLoach, and J. B. Tassano, “752 nm wing-pumped Cr:LiSAF laser,” IEEE J. Quantum Electron. 28, 1188–1196 (1992).
[Crossref]

1991 (1)

1984 (1)

T. S. Aurora, S. M. Day, V. King, and D. O. Pederson, “High-temperature laser interferometer for thermal expansion and optical-length measurements,” Rev. Sci. Instrum. 55, 149–152 (1984).
[Crossref]

1983 (1)

T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D: Appl. Phys. 16, L97 (1983).
[Crossref]

1982 (1)

T. Pollak, W. Wing, R. Grasso, E. Chicklis, and H. Jenssen, “CW laser operation of Nd:YLF,” IEEE J. Quantum Electron. 18, 159–163 (1982).
[Crossref]

1980 (1)

1977 (1)

L. Esterowitz, R. Allen, M. Kruer, F. Bartoli, L. S. Goldberg, H. P. Jenssen, A. Linz, and V. O. Nicolai, “Blue light emission by a Pr:LiYF4-laser operated at room temperature,” J. Appl. Phys. 48, 650–652 (1977).
[Crossref]

1971 (2)

C. J. Parker and W. A. Popov, “Experimental determination of the effect of temperature on refractive index and optical path length of glass,” Appl. Opt. 10, 2137–2143 (1971).
[Crossref] [PubMed]

R. Waxler, G. Cleek, I. Malitson, M. Dodge, and T. Hahn, “Optical and mechanical properties of some neodymium-doped laser glasses,” J. Res. Natl. Bur. Stand. Sec. A 75A, 163–174 (1971).
[Crossref]

1969 (2)

1968 (1)

1965 (1)

Aggarwal, I. D.

Aggarwal, R. L.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[Crossref]

Allen, R.

L. Esterowitz, R. Allen, M. Kruer, F. Bartoli, L. S. Goldberg, H. P. Jenssen, A. Linz, and V. O. Nicolai, “Blue light emission by a Pr:LiYF4-laser operated at room temperature,” J. Appl. Phys. 48, 650–652 (1977).
[Crossref]

Askins, C.

Aurora, T. S.

T. S. Aurora, S. M. Day, V. King, and D. O. Pederson, “High-temperature laser interferometer for thermal expansion and optical-length measurements,” Rev. Sci. Instrum. 55, 149–152 (1984).
[Crossref]

Baak, T.

Baer, J. W.

T. M. Pollak, R. C. Folweiler, E. P. Chicklis, J. W. Baer, A. Linz, and D. Gabbe, “Properties and fabrication of crystalline fluoride materials for high power laser applications,” Tech. rep. (1980).

Barnes, N. P.

Bartoli, F.

L. Esterowitz, R. Allen, M. Kruer, F. Bartoli, L. S. Goldberg, H. P. Jenssen, A. Linz, and V. O. Nicolai, “Blue light emission by a Pr:LiYF4-laser operated at room temperature,” J. Appl. Phys. 48, 650–652 (1977).
[Crossref]

Bass, M.

M. Bass, Handbook of Optics (McGraw-Hill, 1995).

Baumgartel, L. M.

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1970), 4th ed.

Bourdet, G.

V. Cardinali, E. Marmois, B. L. Garrec, and G. Bourdet, “Determination of the thermo-optic coefficient dn/dt of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature,” Opt. Mater.34, 990–994 (2012). 6th Laser Ceramics Symposium.
[Crossref]

Bu, Y.

Büchner, M.

Büdenbender, C.

C. Büdenbender, “Entwicklung eines neuen Messverfahrens zur Bestimmung von thermo-optischen Konstanten von Laserkristallen,” Master’s thesis, Photonics Laboratory, Münster University of Applied Sciences (2009).

Cai, Z.

Camy, P.

Cardinali, V.

V. Cardinali, E. Marmois, B. L. Garrec, and G. Bourdet, “Determination of the thermo-optic coefficient dn/dt of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature,” Opt. Mater.34, 990–994 (2012). 6th Laser Ceramics Symposium.
[Crossref]

Chai, B.

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. Chai, “Efficient continuous wave-laser emission of Pr3+-doped fluorides at room temperature,” Appl. Phys. B 58, 149–151 (1994).
[Crossref]

Chicklis, E.

T. Pollak, W. Wing, R. Grasso, E. Chicklis, and H. Jenssen, “CW laser operation of Nd:YLF,” IEEE J. Quantum Electron. 18, 159–163 (1982).
[Crossref]

Chicklis, E. P.

T. M. Pollak, R. C. Folweiler, E. P. Chicklis, J. W. Baer, A. Linz, and D. Gabbe, “Properties and fabrication of crystalline fluoride materials for high power laser applications,” Tech. rep. (1980).

Cleek, G.

R. Waxler, G. Cleek, I. Malitson, M. Dodge, and T. Hahn, “Optical and mechanical properties of some neodymium-doped laser glasses,” J. Res. Natl. Bur. Stand. Sec. A 75A, 163–174 (1971).
[Crossref]

Daneu, J. L.

Danger, T.

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. Chai, “Efficient continuous wave-laser emission of Pr3+-doped fluorides at room temperature,” Appl. Phys. B 58, 149–151 (1994).
[Crossref]

Day, S. M.

T. S. Aurora, S. M. Day, V. King, and D. O. Pederson, “High-temperature laser interferometer for thermal expansion and optical-length measurements,” Rev. Sci. Instrum. 55, 149–152 (1984).
[Crossref]

DeLoach, L.

S. Payne, W. F. Krupke, L. K. Smith, W. L. Kway, L. DeLoach, and J. B. Tassano, “752 nm wing-pumped Cr:LiSAF laser,” IEEE J. Quantum Electron. 28, 1188–1196 (1992).
[Crossref]

Dodge, M.

R. Waxler, G. Cleek, I. Malitson, M. Dodge, and T. Hahn, “Optical and mechanical properties of some neodymium-doped laser glasses,” J. Res. Natl. Bur. Stand. Sec. A 75A, 163–174 (1971).
[Crossref]

Doualan, J. L.

J. L. Doualan and R. Moncorgé, “Laser crystals with low phonon frequencies,” Ann. Chim. Sci. Mat. 28, 5–20 (2003).
[Crossref]

Dubinskii, M.

Dupouy, P.-E.

Esterowitz, L.

L. Esterowitz, R. Allen, M. Kruer, F. Bartoli, L. S. Goldberg, H. P. Jenssen, A. Linz, and V. O. Nicolai, “Blue light emission by a Pr:LiYF4-laser operated at room temperature,” J. Appl. Phys. 48, 650–652 (1977).
[Crossref]

Fan, T. Y.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[Crossref]

T. Y. Fan and J. L. Daneu, “Thermal coefficients of the optical path length and refractive index in YAG,” Appl. Opt. 37, 1635–1637 (1998).
[Crossref]

Folweiler, R. C.

T. M. Pollak, R. C. Folweiler, E. P. Chicklis, J. W. Baer, A. Linz, and D. Gabbe, “Properties and fabrication of crystalline fluoride materials for high power laser applications,” Tech. rep. (1980).

Foster, J. D.

Fromzel, V.

Gabbe, D.

T. M. Pollak, R. C. Folweiler, E. P. Chicklis, J. W. Baer, A. Linz, and D. Gabbe, “Properties and fabrication of crystalline fluoride materials for high power laser applications,” Tech. rep. (1980).

Garrec, B. L.

V. Cardinali, E. Marmois, B. L. Garrec, and G. Bourdet, “Determination of the thermo-optic coefficient dn/dt of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature,” Opt. Mater.34, 990–994 (2012). 6th Laser Ceramics Symposium.
[Crossref]

Gettemy, D. J.

Goldberg, L. S.

L. Esterowitz, R. Allen, M. Kruer, F. Bartoli, L. S. Goldberg, H. P. Jenssen, A. Linz, and V. O. Nicolai, “Blue light emission by a Pr:LiYF4-laser operated at room temperature,” J. Appl. Phys. 48, 650–652 (1977).
[Crossref]

Grasso, R.

T. Pollak, W. Wing, R. Grasso, E. Chicklis, and H. Jenssen, “CW laser operation of Nd:YLF,” IEEE J. Quantum Electron. 18, 159–163 (1982).
[Crossref]

Grudinin, I. S.

Gün, T.

T. Gün, P. Metz, and G. Huber, “Efficient continuous wave deep ultraviolet Pr3+:LiYF4 laser at 261.3 nm,” Appl. Phys. Lett. 99, 181103 (2011).
[Crossref]

Hahn, T.

R. Waxler, G. Cleek, I. Malitson, M. Dodge, and T. Hahn, “Optical and mechanical properties of some neodymium-doped laser glasses,” J. Res. Natl. Bur. Stand. Sec. A 75A, 163–174 (1971).
[Crossref]

Heumann, E.

A. Richter, E. Heumann, G. Huber, V. Ostroumov, and W. Seelert, “Power scaling of semiconductor laser pumped Praseodymium-lasers,” Opt. Express 15, 5172–5178 (2007).
[Crossref] [PubMed]

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. Chai, “Efficient continuous wave-laser emission of Pr3+-doped fluorides at room temperature,” Appl. Phys. B 58, 149–151 (1994).
[Crossref]

Huang, S.

Huber, G.

P. W. Metz, F. Reichert, F. Moglia, S. Müller, D.-T. Marzahl, C. Kränkel, and G. Huber, “High-power red, orange, and green Pr3+:LiYF4 lasers,” Opt. Lett. 39, 3193–3196 (2014).
[Crossref] [PubMed]

T. Gün, P. Metz, and G. Huber, “Efficient continuous wave deep ultraviolet Pr3+:LiYF4 laser at 261.3 nm,” Appl. Phys. Lett. 99, 181103 (2011).
[Crossref]

A. Richter, E. Heumann, G. Huber, V. Ostroumov, and W. Seelert, “Power scaling of semiconductor laser pumped Praseodymium-lasers,” Opt. Express 15, 5172–5178 (2007).
[Crossref] [PubMed]

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. Chai, “Efficient continuous wave-laser emission of Pr3+-doped fluorides at room temperature,” Appl. Phys. B 58, 149–151 (1994).
[Crossref]

Izumitani, T.

T. Izumitani and H. Toratani, “Temperature coefficient of electronic polarizability in optical glasses,” J. Non-Cryst. Solids40, 611–619 (1980). Proceedings of the Fifth University Conference on Glass Science.
[Crossref]

Jenssen, H.

T. Pollak, W. Wing, R. Grasso, E. Chicklis, and H. Jenssen, “CW laser operation of Nd:YLF,” IEEE J. Quantum Electron. 18, 159–163 (1982).
[Crossref]

Jenssen, H. P.

L. Esterowitz, R. Allen, M. Kruer, F. Bartoli, L. S. Goldberg, H. P. Jenssen, A. Linz, and V. O. Nicolai, “Blue light emission by a Pr:LiYF4-laser operated at room temperature,” J. Appl. Phys. 48, 650–652 (1977).
[Crossref]

Jewell, J. M.

King, V.

T. S. Aurora, S. M. Day, V. King, and D. O. Pederson, “High-temperature laser interferometer for thermal expansion and optical-length measurements,” Rev. Sci. Instrum. 55, 149–152 (1984).
[Crossref]

Koechner, W.

W. Koechner, Solid State Laser Engineering (Springer, 2006), 6th ed.

Kränkel, C.

Kruer, M.

L. Esterowitz, R. Allen, M. Kruer, F. Bartoli, L. S. Goldberg, H. P. Jenssen, A. Linz, and V. O. Nicolai, “Blue light emission by a Pr:LiYF4-laser operated at room temperature,” J. Appl. Phys. 48, 650–652 (1977).
[Crossref]

Krupke, W. F.

S. Payne, W. F. Krupke, L. K. Smith, W. L. Kway, L. DeLoach, and J. B. Tassano, “752 nm wing-pumped Cr:LiSAF laser,” IEEE J. Quantum Electron. 28, 1188–1196 (1992).
[Crossref]

Kway, W. L.

S. Payne, W. F. Krupke, L. K. Smith, W. L. Kway, L. DeLoach, and J. B. Tassano, “752 nm wing-pumped Cr:LiSAF laser,” IEEE J. Quantum Electron. 28, 1188–1196 (1992).
[Crossref]

Linz, A.

L. Esterowitz, R. Allen, M. Kruer, F. Bartoli, L. S. Goldberg, H. P. Jenssen, A. Linz, and V. O. Nicolai, “Blue light emission by a Pr:LiYF4-laser operated at room temperature,” J. Appl. Phys. 48, 650–652 (1977).
[Crossref]

T. M. Pollak, R. C. Folweiler, E. P. Chicklis, J. W. Baer, A. Linz, and D. Gabbe, “Properties and fabrication of crystalline fluoride materials for high power laser applications,” Tech. rep. (1980).

Liu, Z.

Luo, Z.

Malitson, I.

R. Waxler, G. Cleek, I. Malitson, M. Dodge, and T. Hahn, “Optical and mechanical properties of some neodymium-doped laser glasses,” J. Res. Natl. Bur. Stand. Sec. A 75A, 163–174 (1971).
[Crossref]

Malitson, I. H.

Marmois, E.

V. Cardinali, E. Marmois, B. L. Garrec, and G. Bourdet, “Determination of the thermo-optic coefficient dn/dt of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature,” Opt. Mater.34, 990–994 (2012). 6th Laser Ceramics Symposium.
[Crossref]

Marzahl, D.-T.

Meng, Z.

Metz, P.

T. Gün, P. Metz, and G. Huber, “Efficient continuous wave deep ultraviolet Pr3+:LiYF4 laser at 261.3 nm,” Appl. Phys. Lett. 99, 181103 (2011).
[Crossref]

Metz, P. W.

Moglia, F.

Moncorgé, R.

Müller, S.

Neu, J. T.

Nicolai, V. O.

L. Esterowitz, R. Allen, M. Kruer, F. Bartoli, L. S. Goldberg, H. P. Jenssen, A. Linz, and V. O. Nicolai, “Blue light emission by a Pr:LiYF4-laser operated at room temperature,” J. Appl. Phys. 48, 650–652 (1977).
[Crossref]

Ochoa, J. R.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[Crossref]

Osterink, L. M.

Ostroumov, V.

Paquier, P.

Parker, C. J.

Payne, S.

S. Payne, W. F. Krupke, L. K. Smith, W. L. Kway, L. DeLoach, and J. B. Tassano, “752 nm wing-pumped Cr:LiSAF laser,” IEEE J. Quantum Electron. 28, 1188–1196 (1992).
[Crossref]

Pederson, D. O.

T. S. Aurora, S. M. Day, V. King, and D. O. Pederson, “High-temperature laser interferometer for thermal expansion and optical-length measurements,” Rev. Sci. Instrum. 55, 149–152 (1984).
[Crossref]

Pollak, T.

T. Pollak, W. Wing, R. Grasso, E. Chicklis, and H. Jenssen, “CW laser operation of Nd:YLF,” IEEE J. Quantum Electron. 18, 159–163 (1982).
[Crossref]

Pollak, T. M.

T. M. Pollak, R. C. Folweiler, E. P. Chicklis, J. W. Baer, A. Linz, and D. Gabbe, “Properties and fabrication of crystalline fluoride materials for high power laser applications,” Tech. rep. (1980).

Polyanskiy, M. N.

M. N. Polyanskiy, “Refractive index database,” (2014). [Online; accessed June 2014].

Popov, W. A.

Reichert, F.

Richter, A.

Ripin, D. J.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[Crossref]

Sandrock, T.

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. Chai, “Efficient continuous wave-laser emission of Pr3+-doped fluorides at room temperature,” Appl. Phys. B 58, 149–151 (1994).
[Crossref]

Sato, Y.

Seelert, W.

Smith, L. K.

S. Payne, W. F. Krupke, L. K. Smith, W. L. Kway, L. DeLoach, and J. B. Tassano, “752 nm wing-pumped Cr:LiSAF laser,” IEEE J. Quantum Electron. 28, 1188–1196 (1992).
[Crossref]

Stareki, F.

Strekalov, D. V.

Taira, T.

Tassano, J. B.

S. Payne, W. F. Krupke, L. K. Smith, W. L. Kway, L. DeLoach, and J. B. Tassano, “752 nm wing-pumped Cr:LiSAF laser,” IEEE J. Quantum Electron. 28, 1188–1196 (1992).
[Crossref]

Ter-Gabrielyan, N.

Thompson, R. J.

Toratani, H.

T. Izumitani and H. Toratani, “Temperature coefficient of electronic polarizability in optical glasses,” J. Non-Cryst. Solids40, 611–619 (1980). Proceedings of the Fifth University Conference on Glass Science.
[Crossref]

Toyoda, T.

T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D: Appl. Phys. 16, L97 (1983).
[Crossref]

Trénec, G.

Vigué, J.

Waxler, R.

R. Waxler, G. Cleek, I. Malitson, M. Dodge, and T. Hahn, “Optical and mechanical properties of some neodymium-doped laser glasses,” J. Res. Natl. Bur. Stand. Sec. A 75A, 163–174 (1971).
[Crossref]

Wing, W.

T. Pollak, W. Wing, R. Grasso, E. Chicklis, and H. Jenssen, “CW laser operation of Nd:YLF,” IEEE J. Quantum Electron. 18, 159–163 (1982).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1970), 4th ed.

Wray, J. H.

Xu, B.

Xu, H.

Yabe, M.

T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D: Appl. Phys. 16, L97 (1983).
[Crossref]

Ye, C.

Yu, N.

Zeng, C.

Ann. Chim. Sci. Mat. (1)

J. L. Doualan and R. Moncorgé, “Laser crystals with low phonon frequencies,” Ann. Chim. Sci. Mat. 28, 5–20 (2003).
[Crossref]

Appl. Opt. (5)

Appl. Phys. B (1)

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. Chai, “Efficient continuous wave-laser emission of Pr3+-doped fluorides at room temperature,” Appl. Phys. B 58, 149–151 (1994).
[Crossref]

Appl. Phys. Lett. (1)

T. Gün, P. Metz, and G. Huber, “Efficient continuous wave deep ultraviolet Pr3+:LiYF4 laser at 261.3 nm,” Appl. Phys. Lett. 99, 181103 (2011).
[Crossref]

IEEE J. Quantum Electron. (2)

T. Pollak, W. Wing, R. Grasso, E. Chicklis, and H. Jenssen, “CW laser operation of Nd:YLF,” IEEE J. Quantum Electron. 18, 159–163 (1982).
[Crossref]

S. Payne, W. F. Krupke, L. K. Smith, W. L. Kway, L. DeLoach, and J. B. Tassano, “752 nm wing-pumped Cr:LiSAF laser,” IEEE J. Quantum Electron. 28, 1188–1196 (1992).
[Crossref]

J. Appl. Phys. (2)

L. Esterowitz, R. Allen, M. Kruer, F. Bartoli, L. S. Goldberg, H. P. Jenssen, A. Linz, and V. O. Nicolai, “Blue light emission by a Pr:LiYF4-laser operated at room temperature,” J. Appl. Phys. 48, 650–652 (1977).
[Crossref]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[Crossref]

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D: Appl. Phys. 16, L97 (1983).
[Crossref]

J. Res. Natl. Bur. Stand. Sec. A (1)

R. Waxler, G. Cleek, I. Malitson, M. Dodge, and T. Hahn, “Optical and mechanical properties of some neodymium-doped laser glasses,” J. Res. Natl. Bur. Stand. Sec. A 75A, 163–174 (1971).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. Express (2)

Rev. Sci. Instrum. (1)

T. S. Aurora, S. M. Day, V. King, and D. O. Pederson, “High-temperature laser interferometer for thermal expansion and optical-length measurements,” Rev. Sci. Instrum. 55, 149–152 (1984).
[Crossref]

Other (13)

V. Cardinali, E. Marmois, B. L. Garrec, and G. Bourdet, “Determination of the thermo-optic coefficient dn/dt of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature,” Opt. Mater.34, 990–994 (2012). 6th Laser Ceramics Symposium.
[Crossref]

T. Izumitani and H. Toratani, “Temperature coefficient of electronic polarizability in optical glasses,” J. Non-Cryst. Solids40, 611–619 (1980). Proceedings of the Fifth University Conference on Glass Science.
[Crossref]

C. Büdenbender, “Entwicklung eines neuen Messverfahrens zur Bestimmung von thermo-optischen Konstanten von Laserkristallen,” Master’s thesis, Photonics Laboratory, Münster University of Applied Sciences (2009).

Netzsch-Gerätebau GmbH.

Forschungsinstitut für mineralische und metallische Werkstoffe -Edelsteine/Edelmetalle- GmbH (FEE), Struthstr. 2, D-55743 Idar-Oberstein, Germany.

Thorlabs GmbH, Lubeck OR Dachau/Munich, Germany.

M. N. Polyanskiy, “Refractive index database,” (2014). [Online; accessed June 2014].

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1970), 4th ed.

T. M. Pollak, R. C. Folweiler, E. P. Chicklis, J. W. Baer, A. Linz, and D. Gabbe, “Properties and fabrication of crystalline fluoride materials for high power laser applications,” Tech. rep. (1980).

W. Koechner, Solid State Laser Engineering (Springer, 2006), 6th ed.

M. Bass, Handbook of Optics (McGraw-Hill, 1995).

CASTECH Inc, Ruanjian Avenue 89, Fuzhou, Fujian 350003, China.

Laser Components GmbH, Werner-von-Siemens-Str. 15, 82140 Olching, Germany.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 In the upper left corner a 3D-cross sectional view of the assembly of the substrates and the crystal is shown, in the middle illustrations of the interferometers in a 2D-cross sectional view and in a top view are shown, and in the lower left corner a recorded interferogram is shown. The wedge angle of the substrates is exaggerated in the illustration.
Fig. 2
Fig. 2 The complete experimental setup and the recording devices. The dimensions of the elements and the distances between them are not to scale.
Fig. 3
Fig. 3 (a): The electric field of the incident laser beam projected onto the crystallographic coordinate system of Pr:YLF (left) and the coordinate system defined by the mount of the crystal (right, see also Fig. 1).
Fig. 4
Fig. 4 Data from the interferometers for Pr:YLF together with the fitted curves. (a): The substrate interferometer, with a correlation coefficient of Rcorr = 0.96. (b): The crystal interferometer, with Rcorr = 0.97.
Fig. 5
Fig. 5 An example of the measured intensity of the substrate interferometer for the fused silica sample. The fit has a correlation coefficient of Rcorr = 0.97.
Fig. 6
Fig. 6 (a): Our polynomial for αa of Pr:YLF plotted together with the result of Aggarwal et al. for YLF [13]. Our error estimation of ± 0.2 × 10−6 /K is designated as a highlighted region around our result, because we have continuous data. Aggarwal et al. reported an error of ± 0.1 × 10−6 /K below 200 K and somewhat larger at higher temperatures.

Tables (5)

Tables Icon

Table 1: The measured samples.

Tables Icon

Table 2: The measured values of α and dn/dT for fused silica. For each temperature, the mean value of the experiments is given together with their standard deviation (SD). All values are in 10−6 /K. The error is estimated to be ± 0.04 × 10−6 /K for α and ± 0.2 × 10−6 /K for dn/dT.

Tables Icon

Table 3: The measured values of α and dn/dT for the Pr:YLF crystal. For each temperature, the mean value of the experiments is given together with their standard deviation (SD). All values are in 10−6 /K. The error is estimated to be ± 0.2 × 10−6 /K for α and ± 0.3 × 10−6 /K for dn/dT.

Tables Icon

Table 4: The maximum standard deviation for each measured quantity and the measurement error. All values are in 10−6 /K.

Tables Icon

Table 5: The error estimation for each sample and reported quantity. All values are in 10−6 /K.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

I r = I min + F sin 2 ( ϕ / 2 ) 1 + F sin 2 ( ϕ / 2 ) .
I r I min + F sin 2 ( ϕ / 2 ) = I min + F 2 ( 1 cos ϕ ) .
ϕ ( T ) = 4 π λ 0 [ n ( T ) L ( T ) ] ,
α = 1 L 0 d L d T ,
γ = 1 n 0 L 0 d ( n L ) d T ,
d n d T = n 0 ( γ α ) .
d n o d T = n o , 0 ( γ o α a ) ,
d n eo d T = n eo , 0 ( γ eo α a ) ,
ϕ = f 2 T 2 + f 1 T + f 0 ,
d n d T ( T ) = 0.0147 × 10 6 K 2 T + 5.3382 × 10 6 K 1 ,
α a ( T ) = 0.0236 × 10 6 K 2 T + 9.4487 × 10 6 K 1 ,
d n o d T ( T ) = 0.0169 × 10 6 K 2 T 0.2569 × 10 6 K 1 ,
d n eo d T ( T ) = 0.0161 × 10 6 K 2 T 2.8970 × 10 6 K 1 ,
SEM = SD m NoE ,

Metrics