Abstract

We report the size effects on the metal-insulator phase transition of vanadium dioxide (VO2) nanowires prepared by chemical vapor deposition. The phase transition temperature can be tuned from 67 °C in the bulk VO2 to as low as 29 °C by reducing the diameter of VO2 nanowires to nanoscale. Temperature-dependent Raman spectra display a clear dynamic picture on the metal-insulator phase transition process of the VO2 nanowires. Whilst, Raman study shows no remarkable strain effect on the phase transition behaviors of our samples. The increasing surface defect density with reducing nanowire size facilitates the decreasing phase transition temperature. In addition, the polarized-photocurrent effect was observed, resulting from the anisotropy of the photoresponse and also caused by the reduced dimensionality. Our results indicate that size of VO2 nanostructures can dominate their thermoelectric and photoelectrical properties.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Emission of terahertz pulses from vanadium dioxide films undergoing metal–insulator phase transition

Mikhail Esaulkov, Petr Solyankin, Artem Sidorov, Lyubov Parshina, Artem Makarevich, Qi Jin, Qin Luo, Oleg Novodvorsky, Andrey Kaul, Elena Cherepetskaya, Alexander Shkurinov, Vladimir Makarov, and Xi-Cheng Zhang
Optica 2(9) 790-796 (2015)

Study of the phase evolution, metal-insulator transition, and optical properties of vanadium oxide thin films

Taixing Huang, Lin Yang, Jun Qin, Fei Huang, Xupeng Zhu, Peiheng Zhou, Bo Peng, Huigao Duan, Longjiang Deng, and Lei Bi
Opt. Mater. Express 6(11) 3609-3621 (2016)

Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition

Ryan M. Briggs, Imogen M. Pryce, and Harry A. Atwater
Opt. Express 18(11) 11192-11201 (2010)

References

  • View by:
  • |
  • |
  • |

  1. F. J. Morin, “Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
    [Crossref]
  2. A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11(11), 4383–4395 (1975).
    [Crossref]
  3. J. B. Goodenough, “The two components of the crystallographic transition in VO2,” J. Solid State Chem. 3(4), 490–500 (1971).
    [Crossref]
  4. M. Nazari, C. Chen, A. A. Bernussi, Z. Y. Fan, and M. Holtz, “Effect of free-carrier concentration on the phase transition and vibrational properties of VO2,” Appl. Phys. Lett. 99(7), 071902 (2011).
    [Crossref]
  5. F. Fan, Y. Hou, Z.-W. Jiang, X.-H. Wang, and S.-J. Chang, “Terahertz modulator based on insulator-metal transition in photonic crystal waveguide,” Appl. Opt. 51(20), 4589–4596 (2012).
    [Crossref] [PubMed]
  6. J. C. Rakotoniaina, R. Mokrani-Tamellin, J. R. Gavarri, G. Vacquier, A. Casalot, and G. Calvarin, “The thermochromic vanadium dioxide: I. Role of stresses and substitution on switching properties,” J. Solid State Chem. 103(1), 81–94 (1993).
    [Crossref]
  7. H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2 -based two- and three-terminal devices,” New J. Phys. 6(1), 52 (2004).
    [Crossref]
  8. E. Strelcov, Y. Lilach, and A. Kolmakov, “Gas Sensor Based on Metal-Insulator Transition in VO2 Nanowire Thermistor,” Nano Lett. 9(6), 2322–2326 (2009).
    [Crossref] [PubMed]
  9. R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglund., “Size effects in the structural phase transition of VO2 nanoparticles,” Phys. Rev. B 65(22), 224113 (2002).
    [Crossref]
  10. R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and J. R. F. Haglund, “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92(7), 4031–4036 (2002).
    [Crossref]
  11. R. Lopez, L. C. Feldman, and R. F. Haglund., “Size-Dependent Optical Properties of VO2 Nanoparticle Arrays,” Phys. Rev. Lett. 93(17), 177403 (2004).
    [Crossref] [PubMed]
  12. L. Whittaker, C. Jaye, Z. Fu, D. A. Fischer, and S. Banerjee, “Depressed Phase Transition in Solution-Grown VO2 Nanostructures,” J. Am. Chem. Soc. 131(25), 8884–8894 (2009).
    [Crossref] [PubMed]
  13. J. M. Baik, M. H. Kim, C. Larson, A. M. Wodtke, and M. Moskovits, “Nanostructure-Dependent Metal−Insulator Transitions in Vanadium-Oxide Nanowires,” J. Phys. Chem. C 112(35), 13328–13331 (2008).
    [Crossref]
  14. B. Varghese, R. Tamang, E. S. Tok, S. G. Mhaisalkar, and C. H. Sow, “Photothermoelectric Effects in Localized Photocurrent of Individual VO2 Nanowires,” J. Phys. Chem. C 114(35), 15149–15156 (2010).
    [Crossref]
  15. J. Cao, Y. Gu, W. Fan, L. Q. Chen, D. F. Ogletree, K. Chen, N. Tamura, M. Kunz, C. Barrett, J. Seidel, and J. Wu, “Extended Mapping and Exploration of the Vanadium Dioxide Stress-Temperature Phase Diagram,” Nano Lett. 10(7), 2667–2673 (2010).
    [Crossref] [PubMed]
  16. T.-L. Wu, L. Whittaker, S. Banerjee, and G. Sambandamurthy, “Temperature and voltage driven tunable metal-insulator transition in individual WxV1-xO2 nanowires,” Phys. Rev. B 83(7), 073101 (2011).
    [Crossref]
  17. J. Lu, H. Liu, S. Deng, M. Zheng, Y. Wang, J. A. van Kan, S. H. Tang, X. Zhang, C. H. Sow, and S. G. Mhaisalkar, “Highly sensitive and multispectral responsive phototransistor using tungsten-doped VO2 nanowires,” Nanoscale 6(13), 7619–7627 (2014).
    [Crossref] [PubMed]
  18. J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, “Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition,” Phys. Rev. B 85(2), 020101 (2012).
    [Crossref]
  19. Y. Wang, T. Zhou, K. Jiang, P. Da, Z. Peng, J. Tang, B. Kong, W.-B. Cai, Z. Yang, and G. Zheng, “Reduced Mesoporous Co3O4 Nanowires as Efficient Water Oxidation Electrocatalysts and Supercapacitor Electrodes,” Adv. Energy Mater. DOI: .
    [Crossref]
  20. K. Mun Wong, S. M. Alay-e-Abbas, Y. Fang, A. Shaukat, and Y. Lei, “Spatial distribution of neutral oxygen vacancies on ZnO nanowire surfaces: An investigation combining confocal microscopy and first principles calculations,” J. Appl. Phys. 114(3), 034901 (2013).
    [Crossref]
  21. P. Gali, F.-L. Kuo, N. Shepherd, and U. Philipose, “Role of oxygen vacancies in visible emission and transport properties of indium oxide nanowires,” Semicond. Sci. Technol. 27(1), 015015 (2012).
    [Crossref]
  22. T.-I. Jeon and D. Grischkowsky, “Nature of Conduction in Doped Silicon,” Phys. Rev. Lett. 78(6), 1106–1109 (1997).
    [Crossref]
  23. R. M. Sheetz, I. Ponomareva, E. Richter, A. N. Andriotis, and M. Menon, “Defect-induced optical absorption in the visible range in ZnO nanowires,” Phys. Rev. B 80(19), 195314 (2009).
    [Crossref]
  24. G. Gopalakrishnan, D. Ruzmetov, and S. Ramanathan, “On the triggering mechanism for the metal–insulator transition in thin film VO2 devices: electric field versus thermal effects,” J. Mater. Sci. 44(19), 5345–5353 (2009).
    [Crossref]
  25. D. Ruzmetov, G. Gopalakrishnan, J. Deng, V. Narayanamurti, and S. Ramanathan, “Electrical triggering of metal-insulator transition in nanoscale vanadium oxide junctions,” J. Appl. Phys. 106(8), 083702 (2009).
    [Crossref]
  26. B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R. Lopez, “Electric-field-driven phase transition in vanadium dioxide,” Phys. Rev. B 84(24), 241410 (2011).
    [Crossref]
  27. J. Sakai and M. Kurisu, “Effect of pressure on the electric-field-induced resistance switching of VO2 planar-type junctions,” Phys. Rev. B 78(3), 033106 (2008).
    [Crossref]
  28. M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging,” Science 318(5857), 1750–1753 (2007).
    [Crossref] [PubMed]
  29. S. A. Corr, D. P. Shoemaker, B. C. Melot, and R. Seshadri, “Real-Space Investigation of Structural Changes at the Metal-Insulator Transition in VO2.,” Phys. Rev. Lett. 105(5), 056404 (2010).
    [Crossref] [PubMed]
  30. L. Whittaker, T.-L. Wu, A. Stabile, G. Sambandamurthy, and S. Banerjee, “Single-Nanowire Raman Microprobe Studies of Doping-, Temperature-, and Voltage-Induced Metal-Insulator Transitions of W(x)V(1-x)O2 Nanowires,” ACS Nano 5(11), 8861–8867 (2011).
    [Crossref] [PubMed]
  31. A. Tselev, I. A. Luk’yanchuk, I. N. Ivanov, J. D. Budai, J. Z. Tischler, E. Strelcov, A. Kolmakov, and S. V. Kalinin, “Symmetry Relationship and Strain-Induced Transitions between Insulating M1 and M2 and Metallic R phases of Vanadium Dioxide,” Nano Lett. 10(11), 4409–4416 (2010).
    [Crossref] [PubMed]
  32. J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang, and H. Park, “Strain-Induced Self Organization of Metal-Insulator Domains in Single-Crystalline VO2 Nanobeams,” Nano Lett. 6(10), 2313–2317 (2006).
    [Crossref] [PubMed]
  33. J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, “Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition,” Phys. Rev. B 85(2), 020101 (2012).
    [Crossref]
  34. J. I. Sohn, H. J. Joo, K. S. Kim, H. W. Yang, A.-R. Jang, D. Ahn, H. H. Lee, S. N. Cha, D. J. Kang, J. M. Kim, and M. E. Welland, “Stress-induced domain dynamics and phase transitions in epitaxially grown VO2 nanowires,” Nanotechnology 23(20), 205707 (2012).
  35. Y. Muraoka and Z. Hiroi, “Metal-insulator transition of VO2 thin films grown on TiO2 (001) and (110) substrates,” Appl. Phys. Lett. 80(4), 583–585 (2002).
    [Crossref]
  36. C. Miller, M. Triplett, J. Lammatao, J. Suh, D. Fu, J. Wu, and D. Yu, “Unusually long free carrier lifetime and metal-insulator band offset in vanadium dioxide,” Phys. Rev. B 85(8), 085111 (2012).
    [Crossref]

2014 (1)

J. Lu, H. Liu, S. Deng, M. Zheng, Y. Wang, J. A. van Kan, S. H. Tang, X. Zhang, C. H. Sow, and S. G. Mhaisalkar, “Highly sensitive and multispectral responsive phototransistor using tungsten-doped VO2 nanowires,” Nanoscale 6(13), 7619–7627 (2014).
[Crossref] [PubMed]

2013 (1)

K. Mun Wong, S. M. Alay-e-Abbas, Y. Fang, A. Shaukat, and Y. Lei, “Spatial distribution of neutral oxygen vacancies on ZnO nanowire surfaces: An investigation combining confocal microscopy and first principles calculations,” J. Appl. Phys. 114(3), 034901 (2013).
[Crossref]

2012 (6)

P. Gali, F.-L. Kuo, N. Shepherd, and U. Philipose, “Role of oxygen vacancies in visible emission and transport properties of indium oxide nanowires,” Semicond. Sci. Technol. 27(1), 015015 (2012).
[Crossref]

J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, “Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition,” Phys. Rev. B 85(2), 020101 (2012).
[Crossref]

J. I. Sohn, H. J. Joo, K. S. Kim, H. W. Yang, A.-R. Jang, D. Ahn, H. H. Lee, S. N. Cha, D. J. Kang, J. M. Kim, and M. E. Welland, “Stress-induced domain dynamics and phase transitions in epitaxially grown VO2 nanowires,” Nanotechnology 23(20), 205707 (2012).

C. Miller, M. Triplett, J. Lammatao, J. Suh, D. Fu, J. Wu, and D. Yu, “Unusually long free carrier lifetime and metal-insulator band offset in vanadium dioxide,” Phys. Rev. B 85(8), 085111 (2012).
[Crossref]

J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, “Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition,” Phys. Rev. B 85(2), 020101 (2012).
[Crossref]

F. Fan, Y. Hou, Z.-W. Jiang, X.-H. Wang, and S.-J. Chang, “Terahertz modulator based on insulator-metal transition in photonic crystal waveguide,” Appl. Opt. 51(20), 4589–4596 (2012).
[Crossref] [PubMed]

2011 (4)

M. Nazari, C. Chen, A. A. Bernussi, Z. Y. Fan, and M. Holtz, “Effect of free-carrier concentration on the phase transition and vibrational properties of VO2,” Appl. Phys. Lett. 99(7), 071902 (2011).
[Crossref]

L. Whittaker, T.-L. Wu, A. Stabile, G. Sambandamurthy, and S. Banerjee, “Single-Nanowire Raman Microprobe Studies of Doping-, Temperature-, and Voltage-Induced Metal-Insulator Transitions of W(x)V(1-x)O2 Nanowires,” ACS Nano 5(11), 8861–8867 (2011).
[Crossref] [PubMed]

B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R. Lopez, “Electric-field-driven phase transition in vanadium dioxide,” Phys. Rev. B 84(24), 241410 (2011).
[Crossref]

T.-L. Wu, L. Whittaker, S. Banerjee, and G. Sambandamurthy, “Temperature and voltage driven tunable metal-insulator transition in individual WxV1-xO2 nanowires,” Phys. Rev. B 83(7), 073101 (2011).
[Crossref]

2010 (4)

S. A. Corr, D. P. Shoemaker, B. C. Melot, and R. Seshadri, “Real-Space Investigation of Structural Changes at the Metal-Insulator Transition in VO2.,” Phys. Rev. Lett. 105(5), 056404 (2010).
[Crossref] [PubMed]

A. Tselev, I. A. Luk’yanchuk, I. N. Ivanov, J. D. Budai, J. Z. Tischler, E. Strelcov, A. Kolmakov, and S. V. Kalinin, “Symmetry Relationship and Strain-Induced Transitions between Insulating M1 and M2 and Metallic R phases of Vanadium Dioxide,” Nano Lett. 10(11), 4409–4416 (2010).
[Crossref] [PubMed]

B. Varghese, R. Tamang, E. S. Tok, S. G. Mhaisalkar, and C. H. Sow, “Photothermoelectric Effects in Localized Photocurrent of Individual VO2 Nanowires,” J. Phys. Chem. C 114(35), 15149–15156 (2010).
[Crossref]

J. Cao, Y. Gu, W. Fan, L. Q. Chen, D. F. Ogletree, K. Chen, N. Tamura, M. Kunz, C. Barrett, J. Seidel, and J. Wu, “Extended Mapping and Exploration of the Vanadium Dioxide Stress-Temperature Phase Diagram,” Nano Lett. 10(7), 2667–2673 (2010).
[Crossref] [PubMed]

2009 (5)

L. Whittaker, C. Jaye, Z. Fu, D. A. Fischer, and S. Banerjee, “Depressed Phase Transition in Solution-Grown VO2 Nanostructures,” J. Am. Chem. Soc. 131(25), 8884–8894 (2009).
[Crossref] [PubMed]

E. Strelcov, Y. Lilach, and A. Kolmakov, “Gas Sensor Based on Metal-Insulator Transition in VO2 Nanowire Thermistor,” Nano Lett. 9(6), 2322–2326 (2009).
[Crossref] [PubMed]

R. M. Sheetz, I. Ponomareva, E. Richter, A. N. Andriotis, and M. Menon, “Defect-induced optical absorption in the visible range in ZnO nanowires,” Phys. Rev. B 80(19), 195314 (2009).
[Crossref]

G. Gopalakrishnan, D. Ruzmetov, and S. Ramanathan, “On the triggering mechanism for the metal–insulator transition in thin film VO2 devices: electric field versus thermal effects,” J. Mater. Sci. 44(19), 5345–5353 (2009).
[Crossref]

D. Ruzmetov, G. Gopalakrishnan, J. Deng, V. Narayanamurti, and S. Ramanathan, “Electrical triggering of metal-insulator transition in nanoscale vanadium oxide junctions,” J. Appl. Phys. 106(8), 083702 (2009).
[Crossref]

2008 (2)

J. Sakai and M. Kurisu, “Effect of pressure on the electric-field-induced resistance switching of VO2 planar-type junctions,” Phys. Rev. B 78(3), 033106 (2008).
[Crossref]

J. M. Baik, M. H. Kim, C. Larson, A. M. Wodtke, and M. Moskovits, “Nanostructure-Dependent Metal−Insulator Transitions in Vanadium-Oxide Nanowires,” J. Phys. Chem. C 112(35), 13328–13331 (2008).
[Crossref]

2007 (1)

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

2006 (1)

J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang, and H. Park, “Strain-Induced Self Organization of Metal-Insulator Domains in Single-Crystalline VO2 Nanobeams,” Nano Lett. 6(10), 2313–2317 (2006).
[Crossref] [PubMed]

2004 (2)

H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2 -based two- and three-terminal devices,” New J. Phys. 6(1), 52 (2004).
[Crossref]

R. Lopez, L. C. Feldman, and R. F. Haglund., “Size-Dependent Optical Properties of VO2 Nanoparticle Arrays,” Phys. Rev. Lett. 93(17), 177403 (2004).
[Crossref] [PubMed]

2002 (3)

R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglund., “Size effects in the structural phase transition of VO2 nanoparticles,” Phys. Rev. B 65(22), 224113 (2002).
[Crossref]

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and J. R. F. Haglund, “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92(7), 4031–4036 (2002).
[Crossref]

Y. Muraoka and Z. Hiroi, “Metal-insulator transition of VO2 thin films grown on TiO2 (001) and (110) substrates,” Appl. Phys. Lett. 80(4), 583–585 (2002).
[Crossref]

1997 (1)

T.-I. Jeon and D. Grischkowsky, “Nature of Conduction in Doped Silicon,” Phys. Rev. Lett. 78(6), 1106–1109 (1997).
[Crossref]

1993 (1)

J. C. Rakotoniaina, R. Mokrani-Tamellin, J. R. Gavarri, G. Vacquier, A. Casalot, and G. Calvarin, “The thermochromic vanadium dioxide: I. Role of stresses and substitution on switching properties,” J. Solid State Chem. 103(1), 81–94 (1993).
[Crossref]

1975 (1)

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11(11), 4383–4395 (1975).
[Crossref]

1971 (1)

J. B. Goodenough, “The two components of the crystallographic transition in VO2,” J. Solid State Chem. 3(4), 490–500 (1971).
[Crossref]

1959 (1)

F. J. Morin, “Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
[Crossref]

Ahn, D.

J. I. Sohn, H. J. Joo, K. S. Kim, H. W. Yang, A.-R. Jang, D. Ahn, H. H. Lee, S. N. Cha, D. J. Kang, J. M. Kim, and M. E. Welland, “Stress-induced domain dynamics and phase transitions in epitaxially grown VO2 nanowires,” Nanotechnology 23(20), 205707 (2012).

Alay-e-Abbas, S. M.

K. Mun Wong, S. M. Alay-e-Abbas, Y. Fang, A. Shaukat, and Y. Lei, “Spatial distribution of neutral oxygen vacancies on ZnO nanowire surfaces: An investigation combining confocal microscopy and first principles calculations,” J. Appl. Phys. 114(3), 034901 (2013).
[Crossref]

Andreev, G. O.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Andriotis, A. N.

R. M. Sheetz, I. Ponomareva, E. Richter, A. N. Andriotis, and M. Menon, “Defect-induced optical absorption in the visible range in ZnO nanowires,” Phys. Rev. B 80(19), 195314 (2009).
[Crossref]

Atkin, J. M.

J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, “Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition,” Phys. Rev. B 85(2), 020101 (2012).
[Crossref]

J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, “Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition,” Phys. Rev. B 85(2), 020101 (2012).
[Crossref]

Aubin, H.

B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R. Lopez, “Electric-field-driven phase transition in vanadium dioxide,” Phys. Rev. B 84(24), 241410 (2011).
[Crossref]

Baik, J. M.

J. M. Baik, M. H. Kim, C. Larson, A. M. Wodtke, and M. Moskovits, “Nanostructure-Dependent Metal−Insulator Transitions in Vanadium-Oxide Nanowires,” J. Phys. Chem. C 112(35), 13328–13331 (2008).
[Crossref]

Balatsky, A. V.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Banerjee, S.

L. Whittaker, T.-L. Wu, A. Stabile, G. Sambandamurthy, and S. Banerjee, “Single-Nanowire Raman Microprobe Studies of Doping-, Temperature-, and Voltage-Induced Metal-Insulator Transitions of W(x)V(1-x)O2 Nanowires,” ACS Nano 5(11), 8861–8867 (2011).
[Crossref] [PubMed]

T.-L. Wu, L. Whittaker, S. Banerjee, and G. Sambandamurthy, “Temperature and voltage driven tunable metal-insulator transition in individual WxV1-xO2 nanowires,” Phys. Rev. B 83(7), 073101 (2011).
[Crossref]

L. Whittaker, C. Jaye, Z. Fu, D. A. Fischer, and S. Banerjee, “Depressed Phase Transition in Solution-Grown VO2 Nanostructures,” J. Am. Chem. Soc. 131(25), 8884–8894 (2009).
[Crossref] [PubMed]

Barrett, C.

J. Cao, Y. Gu, W. Fan, L. Q. Chen, D. F. Ogletree, K. Chen, N. Tamura, M. Kunz, C. Barrett, J. Seidel, and J. Wu, “Extended Mapping and Exploration of the Vanadium Dioxide Stress-Temperature Phase Diagram,” Nano Lett. 10(7), 2667–2673 (2010).
[Crossref] [PubMed]

Basov, D. N.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Bernussi, A. A.

M. Nazari, C. Chen, A. A. Bernussi, Z. Y. Fan, and M. Holtz, “Effect of free-carrier concentration on the phase transition and vibrational properties of VO2,” Appl. Phys. Lett. 99(7), 071902 (2011).
[Crossref]

Berweger, S.

J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, “Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition,” Phys. Rev. B 85(2), 020101 (2012).
[Crossref]

J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, “Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition,” Phys. Rev. B 85(2), 020101 (2012).
[Crossref]

Boatner, L. A.

R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglund., “Size effects in the structural phase transition of VO2 nanoparticles,” Phys. Rev. B 65(22), 224113 (2002).
[Crossref]

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and J. R. F. Haglund, “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92(7), 4031–4036 (2002).
[Crossref]

Brehm, M.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Budai, J. D.

A. Tselev, I. A. Luk’yanchuk, I. N. Ivanov, J. D. Budai, J. Z. Tischler, E. Strelcov, A. Kolmakov, and S. V. Kalinin, “Symmetry Relationship and Strain-Induced Transitions between Insulating M1 and M2 and Metallic R phases of Vanadium Dioxide,” Nano Lett. 10(11), 4409–4416 (2010).
[Crossref] [PubMed]

Calvarin, G.

J. C. Rakotoniaina, R. Mokrani-Tamellin, J. R. Gavarri, G. Vacquier, A. Casalot, and G. Calvarin, “The thermochromic vanadium dioxide: I. Role of stresses and substitution on switching properties,” J. Solid State Chem. 103(1), 81–94 (1993).
[Crossref]

Cao, J.

J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, “Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition,” Phys. Rev. B 85(2), 020101 (2012).
[Crossref]

J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, “Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition,” Phys. Rev. B 85(2), 020101 (2012).
[Crossref]

J. Cao, Y. Gu, W. Fan, L. Q. Chen, D. F. Ogletree, K. Chen, N. Tamura, M. Kunz, C. Barrett, J. Seidel, and J. Wu, “Extended Mapping and Exploration of the Vanadium Dioxide Stress-Temperature Phase Diagram,” Nano Lett. 10(7), 2667–2673 (2010).
[Crossref] [PubMed]

Casalot, A.

J. C. Rakotoniaina, R. Mokrani-Tamellin, J. R. Gavarri, G. Vacquier, A. Casalot, and G. Calvarin, “The thermochromic vanadium dioxide: I. Role of stresses and substitution on switching properties,” J. Solid State Chem. 103(1), 81–94 (1993).
[Crossref]

Cha, S. N.

J. I. Sohn, H. J. Joo, K. S. Kim, H. W. Yang, A.-R. Jang, D. Ahn, H. H. Lee, S. N. Cha, D. J. Kang, J. M. Kim, and M. E. Welland, “Stress-induced domain dynamics and phase transitions in epitaxially grown VO2 nanowires,” Nanotechnology 23(20), 205707 (2012).

Chae, B.-G.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2 -based two- and three-terminal devices,” New J. Phys. 6(1), 52 (2004).
[Crossref]

Chang, S.-J.

Chavez, E. K.

J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, “Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition,” Phys. Rev. B 85(2), 020101 (2012).
[Crossref]

J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, “Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition,” Phys. Rev. B 85(2), 020101 (2012).
[Crossref]

Chen, C.

M. Nazari, C. Chen, A. A. Bernussi, Z. Y. Fan, and M. Holtz, “Effect of free-carrier concentration on the phase transition and vibrational properties of VO2,” Appl. Phys. Lett. 99(7), 071902 (2011).
[Crossref]

Chen, K.

J. Cao, Y. Gu, W. Fan, L. Q. Chen, D. F. Ogletree, K. Chen, N. Tamura, M. Kunz, C. Barrett, J. Seidel, and J. Wu, “Extended Mapping and Exploration of the Vanadium Dioxide Stress-Temperature Phase Diagram,” Nano Lett. 10(7), 2667–2673 (2010).
[Crossref] [PubMed]

Chen, L. Q.

J. Cao, Y. Gu, W. Fan, L. Q. Chen, D. F. Ogletree, K. Chen, N. Tamura, M. Kunz, C. Barrett, J. Seidel, and J. Wu, “Extended Mapping and Exploration of the Vanadium Dioxide Stress-Temperature Phase Diagram,” Nano Lett. 10(7), 2667–2673 (2010).
[Crossref] [PubMed]

Corr, S. A.

S. A. Corr, D. P. Shoemaker, B. C. Melot, and R. Seshadri, “Real-Space Investigation of Structural Changes at the Metal-Insulator Transition in VO2.,” Phys. Rev. Lett. 105(5), 056404 (2010).
[Crossref] [PubMed]

de Leon, N. P.

J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang, and H. Park, “Strain-Induced Self Organization of Metal-Insulator Domains in Single-Crystalline VO2 Nanobeams,” Nano Lett. 6(10), 2313–2317 (2006).
[Crossref] [PubMed]

Deng, J.

D. Ruzmetov, G. Gopalakrishnan, J. Deng, V. Narayanamurti, and S. Ramanathan, “Electrical triggering of metal-insulator transition in nanoscale vanadium oxide junctions,” J. Appl. Phys. 106(8), 083702 (2009).
[Crossref]

Deng, S.

J. Lu, H. Liu, S. Deng, M. Zheng, Y. Wang, J. A. van Kan, S. H. Tang, X. Zhang, C. H. Sow, and S. G. Mhaisalkar, “Highly sensitive and multispectral responsive phototransistor using tungsten-doped VO2 nanowires,” Nanoscale 6(13), 7619–7627 (2014).
[Crossref] [PubMed]

Fan, F.

Fan, W.

J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, “Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition,” Phys. Rev. B 85(2), 020101 (2012).
[Crossref]

J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, “Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition,” Phys. Rev. B 85(2), 020101 (2012).
[Crossref]

J. Cao, Y. Gu, W. Fan, L. Q. Chen, D. F. Ogletree, K. Chen, N. Tamura, M. Kunz, C. Barrett, J. Seidel, and J. Wu, “Extended Mapping and Exploration of the Vanadium Dioxide Stress-Temperature Phase Diagram,” Nano Lett. 10(7), 2667–2673 (2010).
[Crossref] [PubMed]

Fan, Z. Y.

M. Nazari, C. Chen, A. A. Bernussi, Z. Y. Fan, and M. Holtz, “Effect of free-carrier concentration on the phase transition and vibrational properties of VO2,” Appl. Phys. Lett. 99(7), 071902 (2011).
[Crossref]

Fang, Y.

K. Mun Wong, S. M. Alay-e-Abbas, Y. Fang, A. Shaukat, and Y. Lei, “Spatial distribution of neutral oxygen vacancies on ZnO nanowire surfaces: An investigation combining confocal microscopy and first principles calculations,” J. Appl. Phys. 114(3), 034901 (2013).
[Crossref]

Feldman, L. C.

R. Lopez, L. C. Feldman, and R. F. Haglund., “Size-Dependent Optical Properties of VO2 Nanoparticle Arrays,” Phys. Rev. Lett. 93(17), 177403 (2004).
[Crossref] [PubMed]

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and J. R. F. Haglund, “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92(7), 4031–4036 (2002).
[Crossref]

R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglund., “Size effects in the structural phase transition of VO2 nanoparticles,” Phys. Rev. B 65(22), 224113 (2002).
[Crossref]

Fischer, D. A.

L. Whittaker, C. Jaye, Z. Fu, D. A. Fischer, and S. Banerjee, “Depressed Phase Transition in Solution-Grown VO2 Nanostructures,” J. Am. Chem. Soc. 131(25), 8884–8894 (2009).
[Crossref] [PubMed]

Fu, D.

C. Miller, M. Triplett, J. Lammatao, J. Suh, D. Fu, J. Wu, and D. Yu, “Unusually long free carrier lifetime and metal-insulator band offset in vanadium dioxide,” Phys. Rev. B 85(8), 085111 (2012).
[Crossref]

Fu, Z.

L. Whittaker, C. Jaye, Z. Fu, D. A. Fischer, and S. Banerjee, “Depressed Phase Transition in Solution-Grown VO2 Nanostructures,” J. Am. Chem. Soc. 131(25), 8884–8894 (2009).
[Crossref] [PubMed]

Gali, P.

P. Gali, F.-L. Kuo, N. Shepherd, and U. Philipose, “Role of oxygen vacancies in visible emission and transport properties of indium oxide nanowires,” Semicond. Sci. Technol. 27(1), 015015 (2012).
[Crossref]

Gavarri, J. R.

J. C. Rakotoniaina, R. Mokrani-Tamellin, J. R. Gavarri, G. Vacquier, A. Casalot, and G. Calvarin, “The thermochromic vanadium dioxide: I. Role of stresses and substitution on switching properties,” J. Solid State Chem. 103(1), 81–94 (1993).
[Crossref]

Ghosh, R.

B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R. Lopez, “Electric-field-driven phase transition in vanadium dioxide,” Phys. Rev. B 84(24), 241410 (2011).
[Crossref]

Goodenough, J. B.

J. B. Goodenough, “The two components of the crystallographic transition in VO2,” J. Solid State Chem. 3(4), 490–500 (1971).
[Crossref]

Gopalakrishnan, G.

G. Gopalakrishnan, D. Ruzmetov, and S. Ramanathan, “On the triggering mechanism for the metal–insulator transition in thin film VO2 devices: electric field versus thermal effects,” J. Mater. Sci. 44(19), 5345–5353 (2009).
[Crossref]

D. Ruzmetov, G. Gopalakrishnan, J. Deng, V. Narayanamurti, and S. Ramanathan, “Electrical triggering of metal-insulator transition in nanoscale vanadium oxide junctions,” J. Appl. Phys. 106(8), 083702 (2009).
[Crossref]

Grischkowsky, D.

T.-I. Jeon and D. Grischkowsky, “Nature of Conduction in Doped Silicon,” Phys. Rev. Lett. 78(6), 1106–1109 (1997).
[Crossref]

Gu, Q.

J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang, and H. Park, “Strain-Induced Self Organization of Metal-Insulator Domains in Single-Crystalline VO2 Nanobeams,” Nano Lett. 6(10), 2313–2317 (2006).
[Crossref] [PubMed]

Gu, Y.

J. Cao, Y. Gu, W. Fan, L. Q. Chen, D. F. Ogletree, K. Chen, N. Tamura, M. Kunz, C. Barrett, J. Seidel, and J. Wu, “Extended Mapping and Exploration of the Vanadium Dioxide Stress-Temperature Phase Diagram,” Nano Lett. 10(7), 2667–2673 (2010).
[Crossref] [PubMed]

Guiton, B. S.

J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang, and H. Park, “Strain-Induced Self Organization of Metal-Insulator Domains in Single-Crystalline VO2 Nanobeams,” Nano Lett. 6(10), 2313–2317 (2006).
[Crossref] [PubMed]

Haglund, J. R. F.

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and J. R. F. Haglund, “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92(7), 4031–4036 (2002).
[Crossref]

Haglund, R. F.

R. Lopez, L. C. Feldman, and R. F. Haglund., “Size-Dependent Optical Properties of VO2 Nanoparticle Arrays,” Phys. Rev. Lett. 93(17), 177403 (2004).
[Crossref] [PubMed]

R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglund., “Size effects in the structural phase transition of VO2 nanoparticles,” Phys. Rev. B 65(22), 224113 (2002).
[Crossref]

Haynes, T. E.

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and J. R. F. Haglund, “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92(7), 4031–4036 (2002).
[Crossref]

R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglund., “Size effects in the structural phase transition of VO2 nanoparticles,” Phys. Rev. B 65(22), 224113 (2002).
[Crossref]

Hiroi, Z.

Y. Muraoka and Z. Hiroi, “Metal-insulator transition of VO2 thin films grown on TiO2 (001) and (110) substrates,” Appl. Phys. Lett. 80(4), 583–585 (2002).
[Crossref]

Ho, P.-C.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Holtz, M.

M. Nazari, C. Chen, A. A. Bernussi, Z. Y. Fan, and M. Holtz, “Effect of free-carrier concentration on the phase transition and vibrational properties of VO2,” Appl. Phys. Lett. 99(7), 071902 (2011).
[Crossref]

Hou, Y.

Ivanov, I. N.

A. Tselev, I. A. Luk’yanchuk, I. N. Ivanov, J. D. Budai, J. Z. Tischler, E. Strelcov, A. Kolmakov, and S. V. Kalinin, “Symmetry Relationship and Strain-Induced Transitions between Insulating M1 and M2 and Metallic R phases of Vanadium Dioxide,” Nano Lett. 10(11), 4409–4416 (2010).
[Crossref] [PubMed]

Jang, A.-R.

J. I. Sohn, H. J. Joo, K. S. Kim, H. W. Yang, A.-R. Jang, D. Ahn, H. H. Lee, S. N. Cha, D. J. Kang, J. M. Kim, and M. E. Welland, “Stress-induced domain dynamics and phase transitions in epitaxially grown VO2 nanowires,” Nanotechnology 23(20), 205707 (2012).

Jaye, C.

L. Whittaker, C. Jaye, Z. Fu, D. A. Fischer, and S. Banerjee, “Depressed Phase Transition in Solution-Grown VO2 Nanostructures,” J. Am. Chem. Soc. 131(25), 8884–8894 (2009).
[Crossref] [PubMed]

Jeon, T.-I.

T.-I. Jeon and D. Grischkowsky, “Nature of Conduction in Doped Silicon,” Phys. Rev. Lett. 78(6), 1106–1109 (1997).
[Crossref]

Jiang, Z.-W.

Joo, H. J.

J. I. Sohn, H. J. Joo, K. S. Kim, H. W. Yang, A.-R. Jang, D. Ahn, H. H. Lee, S. N. Cha, D. J. Kang, J. M. Kim, and M. E. Welland, “Stress-induced domain dynamics and phase transitions in epitaxially grown VO2 nanowires,” Nanotechnology 23(20), 205707 (2012).

Kalinin, S. V.

A. Tselev, I. A. Luk’yanchuk, I. N. Ivanov, J. D. Budai, J. Z. Tischler, E. Strelcov, A. Kolmakov, and S. V. Kalinin, “Symmetry Relationship and Strain-Induced Transitions between Insulating M1 and M2 and Metallic R phases of Vanadium Dioxide,” Nano Lett. 10(11), 4409–4416 (2010).
[Crossref] [PubMed]

Kang, D. J.

J. I. Sohn, H. J. Joo, K. S. Kim, H. W. Yang, A.-R. Jang, D. Ahn, H. H. Lee, S. N. Cha, D. J. Kang, J. M. Kim, and M. E. Welland, “Stress-induced domain dynamics and phase transitions in epitaxially grown VO2 nanowires,” Nanotechnology 23(20), 205707 (2012).

Kang, K.-Y.

H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2 -based two- and three-terminal devices,” New J. Phys. 6(1), 52 (2004).
[Crossref]

Keilmann, F.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Kim, B.-J.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Kim, G.

H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2 -based two- and three-terminal devices,” New J. Phys. 6(1), 52 (2004).
[Crossref]

Kim, H.-T.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2 -based two- and three-terminal devices,” New J. Phys. 6(1), 52 (2004).
[Crossref]

Kim, J. M.

J. I. Sohn, H. J. Joo, K. S. Kim, H. W. Yang, A.-R. Jang, D. Ahn, H. H. Lee, S. N. Cha, D. J. Kang, J. M. Kim, and M. E. Welland, “Stress-induced domain dynamics and phase transitions in epitaxially grown VO2 nanowires,” Nanotechnology 23(20), 205707 (2012).

Kim, K. S.

J. I. Sohn, H. J. Joo, K. S. Kim, H. W. Yang, A.-R. Jang, D. Ahn, H. H. Lee, S. N. Cha, D. J. Kang, J. M. Kim, and M. E. Welland, “Stress-induced domain dynamics and phase transitions in epitaxially grown VO2 nanowires,” Nanotechnology 23(20), 205707 (2012).

Kim, M. H.

J. M. Baik, M. H. Kim, C. Larson, A. M. Wodtke, and M. Moskovits, “Nanostructure-Dependent Metal−Insulator Transitions in Vanadium-Oxide Nanowires,” J. Phys. Chem. C 112(35), 13328–13331 (2008).
[Crossref]

Kolmakov, A.

A. Tselev, I. A. Luk’yanchuk, I. N. Ivanov, J. D. Budai, J. Z. Tischler, E. Strelcov, A. Kolmakov, and S. V. Kalinin, “Symmetry Relationship and Strain-Induced Transitions between Insulating M1 and M2 and Metallic R phases of Vanadium Dioxide,” Nano Lett. 10(11), 4409–4416 (2010).
[Crossref] [PubMed]

E. Strelcov, Y. Lilach, and A. Kolmakov, “Gas Sensor Based on Metal-Insulator Transition in VO2 Nanowire Thermistor,” Nano Lett. 9(6), 2322–2326 (2009).
[Crossref] [PubMed]

Kunz, M.

J. Cao, Y. Gu, W. Fan, L. Q. Chen, D. F. Ogletree, K. Chen, N. Tamura, M. Kunz, C. Barrett, J. Seidel, and J. Wu, “Extended Mapping and Exploration of the Vanadium Dioxide Stress-Temperature Phase Diagram,” Nano Lett. 10(7), 2667–2673 (2010).
[Crossref] [PubMed]

Kuo, F.-L.

P. Gali, F.-L. Kuo, N. Shepherd, and U. Philipose, “Role of oxygen vacancies in visible emission and transport properties of indium oxide nanowires,” Semicond. Sci. Technol. 27(1), 015015 (2012).
[Crossref]

Kurisu, M.

J. Sakai and M. Kurisu, “Effect of pressure on the electric-field-induced resistance switching of VO2 planar-type junctions,” Phys. Rev. B 78(3), 033106 (2008).
[Crossref]

Lammatao, J.

C. Miller, M. Triplett, J. Lammatao, J. Suh, D. Fu, J. Wu, and D. Yu, “Unusually long free carrier lifetime and metal-insulator band offset in vanadium dioxide,” Phys. Rev. B 85(8), 085111 (2012).
[Crossref]

Larson, C.

J. M. Baik, M. H. Kim, C. Larson, A. M. Wodtke, and M. Moskovits, “Nanostructure-Dependent Metal−Insulator Transitions in Vanadium-Oxide Nanowires,” J. Phys. Chem. C 112(35), 13328–13331 (2008).
[Crossref]

Lee, H. H.

J. I. Sohn, H. J. Joo, K. S. Kim, H. W. Yang, A.-R. Jang, D. Ahn, H. H. Lee, S. N. Cha, D. J. Kang, J. M. Kim, and M. E. Welland, “Stress-induced domain dynamics and phase transitions in epitaxially grown VO2 nanowires,” Nanotechnology 23(20), 205707 (2012).

Lei, Y.

K. Mun Wong, S. M. Alay-e-Abbas, Y. Fang, A. Shaukat, and Y. Lei, “Spatial distribution of neutral oxygen vacancies on ZnO nanowire surfaces: An investigation combining confocal microscopy and first principles calculations,” J. Appl. Phys. 114(3), 034901 (2013).
[Crossref]

Lilach, Y.

E. Strelcov, Y. Lilach, and A. Kolmakov, “Gas Sensor Based on Metal-Insulator Transition in VO2 Nanowire Thermistor,” Nano Lett. 9(6), 2322–2326 (2009).
[Crossref] [PubMed]

Lim, Y.-S.

H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2 -based two- and three-terminal devices,” New J. Phys. 6(1), 52 (2004).
[Crossref]

Liu, H.

J. Lu, H. Liu, S. Deng, M. Zheng, Y. Wang, J. A. van Kan, S. H. Tang, X. Zhang, C. H. Sow, and S. G. Mhaisalkar, “Highly sensitive and multispectral responsive phototransistor using tungsten-doped VO2 nanowires,” Nanoscale 6(13), 7619–7627 (2014).
[Crossref] [PubMed]

Liu, Y.

B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R. Lopez, “Electric-field-driven phase transition in vanadium dioxide,” Phys. Rev. B 84(24), 241410 (2011).
[Crossref]

Lopez, R.

B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R. Lopez, “Electric-field-driven phase transition in vanadium dioxide,” Phys. Rev. B 84(24), 241410 (2011).
[Crossref]

R. Lopez, L. C. Feldman, and R. F. Haglund., “Size-Dependent Optical Properties of VO2 Nanoparticle Arrays,” Phys. Rev. Lett. 93(17), 177403 (2004).
[Crossref] [PubMed]

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and J. R. F. Haglund, “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92(7), 4031–4036 (2002).
[Crossref]

R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglund., “Size effects in the structural phase transition of VO2 nanoparticles,” Phys. Rev. B 65(22), 224113 (2002).
[Crossref]

Lu, J.

J. Lu, H. Liu, S. Deng, M. Zheng, Y. Wang, J. A. van Kan, S. H. Tang, X. Zhang, C. H. Sow, and S. G. Mhaisalkar, “Highly sensitive and multispectral responsive phototransistor using tungsten-doped VO2 nanowires,” Nanoscale 6(13), 7619–7627 (2014).
[Crossref] [PubMed]

Luk’yanchuk, I. A.

A. Tselev, I. A. Luk’yanchuk, I. N. Ivanov, J. D. Budai, J. Z. Tischler, E. Strelcov, A. Kolmakov, and S. V. Kalinin, “Symmetry Relationship and Strain-Induced Transitions between Insulating M1 and M2 and Metallic R phases of Vanadium Dioxide,” Nano Lett. 10(11), 4409–4416 (2010).
[Crossref] [PubMed]

Maeng, S.-L.

H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2 -based two- and three-terminal devices,” New J. Phys. 6(1), 52 (2004).
[Crossref]

Maple, M. B.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Melot, B. C.

S. A. Corr, D. P. Shoemaker, B. C. Melot, and R. Seshadri, “Real-Space Investigation of Structural Changes at the Metal-Insulator Transition in VO2.,” Phys. Rev. Lett. 105(5), 056404 (2010).
[Crossref] [PubMed]

Menon, M.

R. M. Sheetz, I. Ponomareva, E. Richter, A. N. Andriotis, and M. Menon, “Defect-induced optical absorption in the visible range in ZnO nanowires,” Phys. Rev. B 80(19), 195314 (2009).
[Crossref]

Mhaisalkar, S. G.

J. Lu, H. Liu, S. Deng, M. Zheng, Y. Wang, J. A. van Kan, S. H. Tang, X. Zhang, C. H. Sow, and S. G. Mhaisalkar, “Highly sensitive and multispectral responsive phototransistor using tungsten-doped VO2 nanowires,” Nanoscale 6(13), 7619–7627 (2014).
[Crossref] [PubMed]

B. Varghese, R. Tamang, E. S. Tok, S. G. Mhaisalkar, and C. H. Sow, “Photothermoelectric Effects in Localized Photocurrent of Individual VO2 Nanowires,” J. Phys. Chem. C 114(35), 15149–15156 (2010).
[Crossref]

Miller, C.

C. Miller, M. Triplett, J. Lammatao, J. Suh, D. Fu, J. Wu, and D. Yu, “Unusually long free carrier lifetime and metal-insulator band offset in vanadium dioxide,” Phys. Rev. B 85(8), 085111 (2012).
[Crossref]

Mokrani-Tamellin, R.

J. C. Rakotoniaina, R. Mokrani-Tamellin, J. R. Gavarri, G. Vacquier, A. Casalot, and G. Calvarin, “The thermochromic vanadium dioxide: I. Role of stresses and substitution on switching properties,” J. Solid State Chem. 103(1), 81–94 (1993).
[Crossref]

Morin, F. J.

F. J. Morin, “Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
[Crossref]

Moskovits, M.

J. M. Baik, M. H. Kim, C. Larson, A. M. Wodtke, and M. Moskovits, “Nanostructure-Dependent Metal−Insulator Transitions in Vanadium-Oxide Nanowires,” J. Phys. Chem. C 112(35), 13328–13331 (2008).
[Crossref]

Mott, N. F.

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11(11), 4383–4395 (1975).
[Crossref]

Mun Wong, K.

K. Mun Wong, S. M. Alay-e-Abbas, Y. Fang, A. Shaukat, and Y. Lei, “Spatial distribution of neutral oxygen vacancies on ZnO nanowire surfaces: An investigation combining confocal microscopy and first principles calculations,” J. Appl. Phys. 114(3), 034901 (2013).
[Crossref]

Muraoka, Y.

Y. Muraoka and Z. Hiroi, “Metal-insulator transition of VO2 thin films grown on TiO2 (001) and (110) substrates,” Appl. Phys. Lett. 80(4), 583–585 (2002).
[Crossref]

Narayanamurti, V.

D. Ruzmetov, G. Gopalakrishnan, J. Deng, V. Narayanamurti, and S. Ramanathan, “Electrical triggering of metal-insulator transition in nanoscale vanadium oxide junctions,” J. Appl. Phys. 106(8), 083702 (2009).
[Crossref]

Nazari, M.

M. Nazari, C. Chen, A. A. Bernussi, Z. Y. Fan, and M. Holtz, “Effect of free-carrier concentration on the phase transition and vibrational properties of VO2,” Appl. Phys. Lett. 99(7), 071902 (2011).
[Crossref]

Ogletree, D. F.

J. Cao, Y. Gu, W. Fan, L. Q. Chen, D. F. Ogletree, K. Chen, N. Tamura, M. Kunz, C. Barrett, J. Seidel, and J. Wu, “Extended Mapping and Exploration of the Vanadium Dioxide Stress-Temperature Phase Diagram,” Nano Lett. 10(7), 2667–2673 (2010).
[Crossref] [PubMed]

Ouyang, L.

J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang, and H. Park, “Strain-Induced Self Organization of Metal-Insulator Domains in Single-Crystalline VO2 Nanobeams,” Nano Lett. 6(10), 2313–2317 (2006).
[Crossref] [PubMed]

Park, H.

J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang, and H. Park, “Strain-Induced Self Organization of Metal-Insulator Domains in Single-Crystalline VO2 Nanobeams,” Nano Lett. 6(10), 2313–2317 (2006).
[Crossref] [PubMed]

Philipose, U.

P. Gali, F.-L. Kuo, N. Shepherd, and U. Philipose, “Role of oxygen vacancies in visible emission and transport properties of indium oxide nanowires,” Semicond. Sci. Technol. 27(1), 015015 (2012).
[Crossref]

Ponomareva, I.

R. M. Sheetz, I. Ponomareva, E. Richter, A. N. Andriotis, and M. Menon, “Defect-induced optical absorption in the visible range in ZnO nanowires,” Phys. Rev. B 80(19), 195314 (2009).
[Crossref]

Qazilbash, M. M.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Rakotoniaina, J. C.

J. C. Rakotoniaina, R. Mokrani-Tamellin, J. R. Gavarri, G. Vacquier, A. Casalot, and G. Calvarin, “The thermochromic vanadium dioxide: I. Role of stresses and substitution on switching properties,” J. Solid State Chem. 103(1), 81–94 (1993).
[Crossref]

Ramanathan, S.

G. Gopalakrishnan, D. Ruzmetov, and S. Ramanathan, “On the triggering mechanism for the metal–insulator transition in thin film VO2 devices: electric field versus thermal effects,” J. Mater. Sci. 44(19), 5345–5353 (2009).
[Crossref]

D. Ruzmetov, G. Gopalakrishnan, J. Deng, V. Narayanamurti, and S. Ramanathan, “Electrical triggering of metal-insulator transition in nanoscale vanadium oxide junctions,” J. Appl. Phys. 106(8), 083702 (2009).
[Crossref]

Raschke, M. B.

J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, “Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition,” Phys. Rev. B 85(2), 020101 (2012).
[Crossref]

J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, “Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition,” Phys. Rev. B 85(2), 020101 (2012).
[Crossref]

Richter, E.

R. M. Sheetz, I. Ponomareva, E. Richter, A. N. Andriotis, and M. Menon, “Defect-induced optical absorption in the visible range in ZnO nanowires,” Phys. Rev. B 80(19), 195314 (2009).
[Crossref]

Ruzmetov, D.

G. Gopalakrishnan, D. Ruzmetov, and S. Ramanathan, “On the triggering mechanism for the metal–insulator transition in thin film VO2 devices: electric field versus thermal effects,” J. Mater. Sci. 44(19), 5345–5353 (2009).
[Crossref]

D. Ruzmetov, G. Gopalakrishnan, J. Deng, V. Narayanamurti, and S. Ramanathan, “Electrical triggering of metal-insulator transition in nanoscale vanadium oxide junctions,” J. Appl. Phys. 106(8), 083702 (2009).
[Crossref]

Sakai, J.

J. Sakai and M. Kurisu, “Effect of pressure on the electric-field-induced resistance switching of VO2 planar-type junctions,” Phys. Rev. B 78(3), 033106 (2008).
[Crossref]

Sambandamurthy, G.

L. Whittaker, T.-L. Wu, A. Stabile, G. Sambandamurthy, and S. Banerjee, “Single-Nanowire Raman Microprobe Studies of Doping-, Temperature-, and Voltage-Induced Metal-Insulator Transitions of W(x)V(1-x)O2 Nanowires,” ACS Nano 5(11), 8861–8867 (2011).
[Crossref] [PubMed]

T.-L. Wu, L. Whittaker, S. Banerjee, and G. Sambandamurthy, “Temperature and voltage driven tunable metal-insulator transition in individual WxV1-xO2 nanowires,” Phys. Rev. B 83(7), 073101 (2011).
[Crossref]

Seidel, J.

J. Cao, Y. Gu, W. Fan, L. Q. Chen, D. F. Ogletree, K. Chen, N. Tamura, M. Kunz, C. Barrett, J. Seidel, and J. Wu, “Extended Mapping and Exploration of the Vanadium Dioxide Stress-Temperature Phase Diagram,” Nano Lett. 10(7), 2667–2673 (2010).
[Crossref] [PubMed]

Seshadri, R.

S. A. Corr, D. P. Shoemaker, B. C. Melot, and R. Seshadri, “Real-Space Investigation of Structural Changes at the Metal-Insulator Transition in VO2.,” Phys. Rev. Lett. 105(5), 056404 (2010).
[Crossref] [PubMed]

Shaukat, A.

K. Mun Wong, S. M. Alay-e-Abbas, Y. Fang, A. Shaukat, and Y. Lei, “Spatial distribution of neutral oxygen vacancies on ZnO nanowire surfaces: An investigation combining confocal microscopy and first principles calculations,” J. Appl. Phys. 114(3), 034901 (2013).
[Crossref]

Sheetz, R. M.

R. M. Sheetz, I. Ponomareva, E. Richter, A. N. Andriotis, and M. Menon, “Defect-induced optical absorption in the visible range in ZnO nanowires,” Phys. Rev. B 80(19), 195314 (2009).
[Crossref]

Shepherd, N.

P. Gali, F.-L. Kuo, N. Shepherd, and U. Philipose, “Role of oxygen vacancies in visible emission and transport properties of indium oxide nanowires,” Semicond. Sci. Technol. 27(1), 015015 (2012).
[Crossref]

Shoemaker, D. P.

S. A. Corr, D. P. Shoemaker, B. C. Melot, and R. Seshadri, “Real-Space Investigation of Structural Changes at the Metal-Insulator Transition in VO2.,” Phys. Rev. Lett. 105(5), 056404 (2010).
[Crossref] [PubMed]

Sohn, J. I.

J. I. Sohn, H. J. Joo, K. S. Kim, H. W. Yang, A.-R. Jang, D. Ahn, H. H. Lee, S. N. Cha, D. J. Kang, J. M. Kim, and M. E. Welland, “Stress-induced domain dynamics and phase transitions in epitaxially grown VO2 nanowires,” Nanotechnology 23(20), 205707 (2012).

Sow, C. H.

J. Lu, H. Liu, S. Deng, M. Zheng, Y. Wang, J. A. van Kan, S. H. Tang, X. Zhang, C. H. Sow, and S. G. Mhaisalkar, “Highly sensitive and multispectral responsive phototransistor using tungsten-doped VO2 nanowires,” Nanoscale 6(13), 7619–7627 (2014).
[Crossref] [PubMed]

B. Varghese, R. Tamang, E. S. Tok, S. G. Mhaisalkar, and C. H. Sow, “Photothermoelectric Effects in Localized Photocurrent of Individual VO2 Nanowires,” J. Phys. Chem. C 114(35), 15149–15156 (2010).
[Crossref]

Stabile, A.

L. Whittaker, T.-L. Wu, A. Stabile, G. Sambandamurthy, and S. Banerjee, “Single-Nanowire Raman Microprobe Studies of Doping-, Temperature-, and Voltage-Induced Metal-Insulator Transitions of W(x)V(1-x)O2 Nanowires,” ACS Nano 5(11), 8861–8867 (2011).
[Crossref] [PubMed]

Strelcov, E.

A. Tselev, I. A. Luk’yanchuk, I. N. Ivanov, J. D. Budai, J. Z. Tischler, E. Strelcov, A. Kolmakov, and S. V. Kalinin, “Symmetry Relationship and Strain-Induced Transitions between Insulating M1 and M2 and Metallic R phases of Vanadium Dioxide,” Nano Lett. 10(11), 4409–4416 (2010).
[Crossref] [PubMed]

E. Strelcov, Y. Lilach, and A. Kolmakov, “Gas Sensor Based on Metal-Insulator Transition in VO2 Nanowire Thermistor,” Nano Lett. 9(6), 2322–2326 (2009).
[Crossref] [PubMed]

Suh, J.

C. Miller, M. Triplett, J. Lammatao, J. Suh, D. Fu, J. Wu, and D. Yu, “Unusually long free carrier lifetime and metal-insulator band offset in vanadium dioxide,” Phys. Rev. B 85(8), 085111 (2012).
[Crossref]

Tamang, R.

B. Varghese, R. Tamang, E. S. Tok, S. G. Mhaisalkar, and C. H. Sow, “Photothermoelectric Effects in Localized Photocurrent of Individual VO2 Nanowires,” J. Phys. Chem. C 114(35), 15149–15156 (2010).
[Crossref]

Tamura, N.

J. Cao, Y. Gu, W. Fan, L. Q. Chen, D. F. Ogletree, K. Chen, N. Tamura, M. Kunz, C. Barrett, J. Seidel, and J. Wu, “Extended Mapping and Exploration of the Vanadium Dioxide Stress-Temperature Phase Diagram,” Nano Lett. 10(7), 2667–2673 (2010).
[Crossref] [PubMed]

Tang, S. H.

J. Lu, H. Liu, S. Deng, M. Zheng, Y. Wang, J. A. van Kan, S. H. Tang, X. Zhang, C. H. Sow, and S. G. Mhaisalkar, “Highly sensitive and multispectral responsive phototransistor using tungsten-doped VO2 nanowires,” Nanoscale 6(13), 7619–7627 (2014).
[Crossref] [PubMed]

Tischler, J. Z.

A. Tselev, I. A. Luk’yanchuk, I. N. Ivanov, J. D. Budai, J. Z. Tischler, E. Strelcov, A. Kolmakov, and S. V. Kalinin, “Symmetry Relationship and Strain-Induced Transitions between Insulating M1 and M2 and Metallic R phases of Vanadium Dioxide,” Nano Lett. 10(11), 4409–4416 (2010).
[Crossref] [PubMed]

Tok, E. S.

B. Varghese, R. Tamang, E. S. Tok, S. G. Mhaisalkar, and C. H. Sow, “Photothermoelectric Effects in Localized Photocurrent of Individual VO2 Nanowires,” J. Phys. Chem. C 114(35), 15149–15156 (2010).
[Crossref]

Triplett, M.

C. Miller, M. Triplett, J. Lammatao, J. Suh, D. Fu, J. Wu, and D. Yu, “Unusually long free carrier lifetime and metal-insulator band offset in vanadium dioxide,” Phys. Rev. B 85(8), 085111 (2012).
[Crossref]

Tselev, A.

A. Tselev, I. A. Luk’yanchuk, I. N. Ivanov, J. D. Budai, J. Z. Tischler, E. Strelcov, A. Kolmakov, and S. V. Kalinin, “Symmetry Relationship and Strain-Induced Transitions between Insulating M1 and M2 and Metallic R phases of Vanadium Dioxide,” Nano Lett. 10(11), 4409–4416 (2010).
[Crossref] [PubMed]

Vacquier, G.

J. C. Rakotoniaina, R. Mokrani-Tamellin, J. R. Gavarri, G. Vacquier, A. Casalot, and G. Calvarin, “The thermochromic vanadium dioxide: I. Role of stresses and substitution on switching properties,” J. Solid State Chem. 103(1), 81–94 (1993).
[Crossref]

van Kan, J. A.

J. Lu, H. Liu, S. Deng, M. Zheng, Y. Wang, J. A. van Kan, S. H. Tang, X. Zhang, C. H. Sow, and S. G. Mhaisalkar, “Highly sensitive and multispectral responsive phototransistor using tungsten-doped VO2 nanowires,” Nanoscale 6(13), 7619–7627 (2014).
[Crossref] [PubMed]

Varghese, B.

B. Varghese, R. Tamang, E. S. Tok, S. G. Mhaisalkar, and C. H. Sow, “Photothermoelectric Effects in Localized Photocurrent of Individual VO2 Nanowires,” J. Phys. Chem. C 114(35), 15149–15156 (2010).
[Crossref]

Wang, X.-H.

Wang, Y.

J. Lu, H. Liu, S. Deng, M. Zheng, Y. Wang, J. A. van Kan, S. H. Tang, X. Zhang, C. H. Sow, and S. G. Mhaisalkar, “Highly sensitive and multispectral responsive phototransistor using tungsten-doped VO2 nanowires,” Nanoscale 6(13), 7619–7627 (2014).
[Crossref] [PubMed]

Welland, M. E.

J. I. Sohn, H. J. Joo, K. S. Kim, H. W. Yang, A.-R. Jang, D. Ahn, H. H. Lee, S. N. Cha, D. J. Kang, J. M. Kim, and M. E. Welland, “Stress-induced domain dynamics and phase transitions in epitaxially grown VO2 nanowires,” Nanotechnology 23(20), 205707 (2012).

Whittaker, L.

T.-L. Wu, L. Whittaker, S. Banerjee, and G. Sambandamurthy, “Temperature and voltage driven tunable metal-insulator transition in individual WxV1-xO2 nanowires,” Phys. Rev. B 83(7), 073101 (2011).
[Crossref]

L. Whittaker, T.-L. Wu, A. Stabile, G. Sambandamurthy, and S. Banerjee, “Single-Nanowire Raman Microprobe Studies of Doping-, Temperature-, and Voltage-Induced Metal-Insulator Transitions of W(x)V(1-x)O2 Nanowires,” ACS Nano 5(11), 8861–8867 (2011).
[Crossref] [PubMed]

L. Whittaker, C. Jaye, Z. Fu, D. A. Fischer, and S. Banerjee, “Depressed Phase Transition in Solution-Grown VO2 Nanostructures,” J. Am. Chem. Soc. 131(25), 8884–8894 (2009).
[Crossref] [PubMed]

Wodtke, A. M.

J. M. Baik, M. H. Kim, C. Larson, A. M. Wodtke, and M. Moskovits, “Nanostructure-Dependent Metal−Insulator Transitions in Vanadium-Oxide Nanowires,” J. Phys. Chem. C 112(35), 13328–13331 (2008).
[Crossref]

Wu, B.

B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R. Lopez, “Electric-field-driven phase transition in vanadium dioxide,” Phys. Rev. B 84(24), 241410 (2011).
[Crossref]

Wu, J.

J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, “Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition,” Phys. Rev. B 85(2), 020101 (2012).
[Crossref]

J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, “Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition,” Phys. Rev. B 85(2), 020101 (2012).
[Crossref]

C. Miller, M. Triplett, J. Lammatao, J. Suh, D. Fu, J. Wu, and D. Yu, “Unusually long free carrier lifetime and metal-insulator band offset in vanadium dioxide,” Phys. Rev. B 85(8), 085111 (2012).
[Crossref]

J. Cao, Y. Gu, W. Fan, L. Q. Chen, D. F. Ogletree, K. Chen, N. Tamura, M. Kunz, C. Barrett, J. Seidel, and J. Wu, “Extended Mapping and Exploration of the Vanadium Dioxide Stress-Temperature Phase Diagram,” Nano Lett. 10(7), 2667–2673 (2010).
[Crossref] [PubMed]

J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang, and H. Park, “Strain-Induced Self Organization of Metal-Insulator Domains in Single-Crystalline VO2 Nanobeams,” Nano Lett. 6(10), 2313–2317 (2006).
[Crossref] [PubMed]

Wu, T.-L.

L. Whittaker, T.-L. Wu, A. Stabile, G. Sambandamurthy, and S. Banerjee, “Single-Nanowire Raman Microprobe Studies of Doping-, Temperature-, and Voltage-Induced Metal-Insulator Transitions of W(x)V(1-x)O2 Nanowires,” ACS Nano 5(11), 8861–8867 (2011).
[Crossref] [PubMed]

T.-L. Wu, L. Whittaker, S. Banerjee, and G. Sambandamurthy, “Temperature and voltage driven tunable metal-insulator transition in individual WxV1-xO2 nanowires,” Phys. Rev. B 83(7), 073101 (2011).
[Crossref]

Yang, H. W.

J. I. Sohn, H. J. Joo, K. S. Kim, H. W. Yang, A.-R. Jang, D. Ahn, H. H. Lee, S. N. Cha, D. J. Kang, J. M. Kim, and M. E. Welland, “Stress-induced domain dynamics and phase transitions in epitaxially grown VO2 nanowires,” Nanotechnology 23(20), 205707 (2012).

Youn, D.-H.

H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2 -based two- and three-terminal devices,” New J. Phys. 6(1), 52 (2004).
[Crossref]

Yu, D.

C. Miller, M. Triplett, J. Lammatao, J. Suh, D. Fu, J. Wu, and D. Yu, “Unusually long free carrier lifetime and metal-insulator band offset in vanadium dioxide,” Phys. Rev. B 85(8), 085111 (2012).
[Crossref]

Yun, S. J.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Zhang, X.

J. Lu, H. Liu, S. Deng, M. Zheng, Y. Wang, J. A. van Kan, S. H. Tang, X. Zhang, C. H. Sow, and S. G. Mhaisalkar, “Highly sensitive and multispectral responsive phototransistor using tungsten-doped VO2 nanowires,” Nanoscale 6(13), 7619–7627 (2014).
[Crossref] [PubMed]

Zheng, M.

J. Lu, H. Liu, S. Deng, M. Zheng, Y. Wang, J. A. van Kan, S. H. Tang, X. Zhang, C. H. Sow, and S. G. Mhaisalkar, “Highly sensitive and multispectral responsive phototransistor using tungsten-doped VO2 nanowires,” Nanoscale 6(13), 7619–7627 (2014).
[Crossref] [PubMed]

Zimmers, A.

B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R. Lopez, “Electric-field-driven phase transition in vanadium dioxide,” Phys. Rev. B 84(24), 241410 (2011).
[Crossref]

Zylbersztejn, A.

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11(11), 4383–4395 (1975).
[Crossref]

ACS Nano (1)

L. Whittaker, T.-L. Wu, A. Stabile, G. Sambandamurthy, and S. Banerjee, “Single-Nanowire Raman Microprobe Studies of Doping-, Temperature-, and Voltage-Induced Metal-Insulator Transitions of W(x)V(1-x)O2 Nanowires,” ACS Nano 5(11), 8861–8867 (2011).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. Nazari, C. Chen, A. A. Bernussi, Z. Y. Fan, and M. Holtz, “Effect of free-carrier concentration on the phase transition and vibrational properties of VO2,” Appl. Phys. Lett. 99(7), 071902 (2011).
[Crossref]

Y. Muraoka and Z. Hiroi, “Metal-insulator transition of VO2 thin films grown on TiO2 (001) and (110) substrates,” Appl. Phys. Lett. 80(4), 583–585 (2002).
[Crossref]

J. Am. Chem. Soc. (1)

L. Whittaker, C. Jaye, Z. Fu, D. A. Fischer, and S. Banerjee, “Depressed Phase Transition in Solution-Grown VO2 Nanostructures,” J. Am. Chem. Soc. 131(25), 8884–8894 (2009).
[Crossref] [PubMed]

J. Appl. Phys. (3)

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and J. R. F. Haglund, “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92(7), 4031–4036 (2002).
[Crossref]

K. Mun Wong, S. M. Alay-e-Abbas, Y. Fang, A. Shaukat, and Y. Lei, “Spatial distribution of neutral oxygen vacancies on ZnO nanowire surfaces: An investigation combining confocal microscopy and first principles calculations,” J. Appl. Phys. 114(3), 034901 (2013).
[Crossref]

D. Ruzmetov, G. Gopalakrishnan, J. Deng, V. Narayanamurti, and S. Ramanathan, “Electrical triggering of metal-insulator transition in nanoscale vanadium oxide junctions,” J. Appl. Phys. 106(8), 083702 (2009).
[Crossref]

J. Mater. Sci. (1)

G. Gopalakrishnan, D. Ruzmetov, and S. Ramanathan, “On the triggering mechanism for the metal–insulator transition in thin film VO2 devices: electric field versus thermal effects,” J. Mater. Sci. 44(19), 5345–5353 (2009).
[Crossref]

J. Phys. Chem. C (2)

J. M. Baik, M. H. Kim, C. Larson, A. M. Wodtke, and M. Moskovits, “Nanostructure-Dependent Metal−Insulator Transitions in Vanadium-Oxide Nanowires,” J. Phys. Chem. C 112(35), 13328–13331 (2008).
[Crossref]

B. Varghese, R. Tamang, E. S. Tok, S. G. Mhaisalkar, and C. H. Sow, “Photothermoelectric Effects in Localized Photocurrent of Individual VO2 Nanowires,” J. Phys. Chem. C 114(35), 15149–15156 (2010).
[Crossref]

J. Solid State Chem. (2)

J. B. Goodenough, “The two components of the crystallographic transition in VO2,” J. Solid State Chem. 3(4), 490–500 (1971).
[Crossref]

J. C. Rakotoniaina, R. Mokrani-Tamellin, J. R. Gavarri, G. Vacquier, A. Casalot, and G. Calvarin, “The thermochromic vanadium dioxide: I. Role of stresses and substitution on switching properties,” J. Solid State Chem. 103(1), 81–94 (1993).
[Crossref]

Nano Lett. (4)

E. Strelcov, Y. Lilach, and A. Kolmakov, “Gas Sensor Based on Metal-Insulator Transition in VO2 Nanowire Thermistor,” Nano Lett. 9(6), 2322–2326 (2009).
[Crossref] [PubMed]

J. Cao, Y. Gu, W. Fan, L. Q. Chen, D. F. Ogletree, K. Chen, N. Tamura, M. Kunz, C. Barrett, J. Seidel, and J. Wu, “Extended Mapping and Exploration of the Vanadium Dioxide Stress-Temperature Phase Diagram,” Nano Lett. 10(7), 2667–2673 (2010).
[Crossref] [PubMed]

A. Tselev, I. A. Luk’yanchuk, I. N. Ivanov, J. D. Budai, J. Z. Tischler, E. Strelcov, A. Kolmakov, and S. V. Kalinin, “Symmetry Relationship and Strain-Induced Transitions between Insulating M1 and M2 and Metallic R phases of Vanadium Dioxide,” Nano Lett. 10(11), 4409–4416 (2010).
[Crossref] [PubMed]

J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang, and H. Park, “Strain-Induced Self Organization of Metal-Insulator Domains in Single-Crystalline VO2 Nanobeams,” Nano Lett. 6(10), 2313–2317 (2006).
[Crossref] [PubMed]

Nanoscale (1)

J. Lu, H. Liu, S. Deng, M. Zheng, Y. Wang, J. A. van Kan, S. H. Tang, X. Zhang, C. H. Sow, and S. G. Mhaisalkar, “Highly sensitive and multispectral responsive phototransistor using tungsten-doped VO2 nanowires,” Nanoscale 6(13), 7619–7627 (2014).
[Crossref] [PubMed]

Nanotechnology (1)

J. I. Sohn, H. J. Joo, K. S. Kim, H. W. Yang, A.-R. Jang, D. Ahn, H. H. Lee, S. N. Cha, D. J. Kang, J. M. Kim, and M. E. Welland, “Stress-induced domain dynamics and phase transitions in epitaxially grown VO2 nanowires,” Nanotechnology 23(20), 205707 (2012).

New J. Phys. (1)

H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2 -based two- and three-terminal devices,” New J. Phys. 6(1), 52 (2004).
[Crossref]

Phys. Rev. B (9)

R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglund., “Size effects in the structural phase transition of VO2 nanoparticles,” Phys. Rev. B 65(22), 224113 (2002).
[Crossref]

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11(11), 4383–4395 (1975).
[Crossref]

J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, “Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition,” Phys. Rev. B 85(2), 020101 (2012).
[Crossref]

T.-L. Wu, L. Whittaker, S. Banerjee, and G. Sambandamurthy, “Temperature and voltage driven tunable metal-insulator transition in individual WxV1-xO2 nanowires,” Phys. Rev. B 83(7), 073101 (2011).
[Crossref]

J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, “Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition,” Phys. Rev. B 85(2), 020101 (2012).
[Crossref]

C. Miller, M. Triplett, J. Lammatao, J. Suh, D. Fu, J. Wu, and D. Yu, “Unusually long free carrier lifetime and metal-insulator band offset in vanadium dioxide,” Phys. Rev. B 85(8), 085111 (2012).
[Crossref]

B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R. Lopez, “Electric-field-driven phase transition in vanadium dioxide,” Phys. Rev. B 84(24), 241410 (2011).
[Crossref]

J. Sakai and M. Kurisu, “Effect of pressure on the electric-field-induced resistance switching of VO2 planar-type junctions,” Phys. Rev. B 78(3), 033106 (2008).
[Crossref]

R. M. Sheetz, I. Ponomareva, E. Richter, A. N. Andriotis, and M. Menon, “Defect-induced optical absorption in the visible range in ZnO nanowires,” Phys. Rev. B 80(19), 195314 (2009).
[Crossref]

Phys. Rev. Lett. (4)

T.-I. Jeon and D. Grischkowsky, “Nature of Conduction in Doped Silicon,” Phys. Rev. Lett. 78(6), 1106–1109 (1997).
[Crossref]

S. A. Corr, D. P. Shoemaker, B. C. Melot, and R. Seshadri, “Real-Space Investigation of Structural Changes at the Metal-Insulator Transition in VO2.,” Phys. Rev. Lett. 105(5), 056404 (2010).
[Crossref] [PubMed]

R. Lopez, L. C. Feldman, and R. F. Haglund., “Size-Dependent Optical Properties of VO2 Nanoparticle Arrays,” Phys. Rev. Lett. 93(17), 177403 (2004).
[Crossref] [PubMed]

F. J. Morin, “Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
[Crossref]

Science (1)

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

P. Gali, F.-L. Kuo, N. Shepherd, and U. Philipose, “Role of oxygen vacancies in visible emission and transport properties of indium oxide nanowires,” Semicond. Sci. Technol. 27(1), 015015 (2012).
[Crossref]

Other (1)

Y. Wang, T. Zhou, K. Jiang, P. Da, Z. Peng, J. Tang, B. Kong, W.-B. Cai, Z. Yang, and G. Zheng, “Reduced Mesoporous Co3O4 Nanowires as Efficient Water Oxidation Electrocatalysts and Supercapacitor Electrodes,” Adv. Energy Mater. DOI: .
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Resistance versus temperature for VO2 wires with different diameters: (a) 3 μm, (b) 2 μm, (c) 1.2 μm, (d) 0.5 μm. The red solid lines represent heating process and the blue solid lines represent cooling process. Inset (a): A representative device of VO2 wire with Au electrodes. Inset (b): Typical SEM image of a VO2 nanowire. (e) Voltage distribution and (f) temperature distribution of the VO2 wire (0.5 μm) when 0.5 V voltage is applied to the device.
Fig. 2
Fig. 2 I-V curves measured at substrate temperature in the range of 20-70 °C by varying the bias voltage from low to high voltage for VO2 nanowires with diameter of (a) 3 μm and (b) 0.5 μm.
Fig. 3
Fig. 3 Raman spectra obtained from an individual VO2 nanowire with the diameter of 1.2 μm as temperature (a) increasing and (b) decreasing.
Fig. 4
Fig. 4 (a) Raman spectra acquired from a single VO2 nanowire with the diameter of 0.1 μm as temperature increasing. (b) The phase transition temperature of the VO2 nanowires on heating process plotted as a function of the nanowires diameter. The solid line is well fitted the experimental data and the vertical bars denote the experimental errors.
Fig. 5
Fig. 5 Photocurrent measured from VO2 nanowires with diameters of (a) 3.4 µm, (b) 2.3 µm and (c) 0.5 µm, with periodic irradiation of 532 nm laser at the intensity of around 0.1 W/cm2 and varying polarization direction.

Metrics