Abstract

We demonstrate 1250 nm pulses generated in dual-zero dispersion photonic crystal fiber capable of three-photon excitation fluorescence microscopy. The total power conversion efficiency from the 28 fs seed pulse centered at 1075 nm to pulses at 1250 nm, including coupling losses from the nonlinear fiber, is 35%, with up to 67% power conversion efficiency of the fiber coupled light. Frequency-resolved optical gating measurements characterize 1250 nm pulses at 0.6 nJ and 2 nJ, illustrating the change in nonlinear spectral phase accumulation with pulse energy even for nonlinear fiber lengths < 50 mm. The 0.6 nJ pulse has a 26 fs duration and is the shortest nonlinear fiber derived 1250 nm pulse yet reported (to the best of our knowledge). The short pulse durations and energies make these pulses a viable route to producing light at 1250 nm for multiphoton microscopy, which we we demonstrate here, via a three-photon excitation fluorescence microscope.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Energetic ultrafast fiber laser sources tunable in 1030–1215 nm for deep tissue multi-photon microscopy

Wei Liu, Shih-Hsuan Chia, Hsiang-Yu Chung, Rüdiger Greinert, Franz X. Kärtner, and Guoqing Chang
Opt. Express 25(6) 6822-6831 (2017)

Ultraviolet-enhanced supercontinuum generation in tapered photonic crystal fiber

S. P. Stark, A. Podlipensky, N. Y. Joly, and P. St. J. Russell
J. Opt. Soc. Am. B 27(3) 592-598 (2010)

Generation of Cerenkov radiation at 850 nm in higher-order-mode fiber

Ji Cheng, Jennifer H. Lee, Ke Wang, Chris Xu, Kim G. Jespersen, Martin Garmund, Lars Grüner-Nielsen, and Dan Jakobsen
Opt. Express 19(9) 8774-8780 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111, 29–37 (2001).
    [Crossref] [PubMed]
  2. M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14, 010508 (2009).
    [Crossref] [PubMed]
  3. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17, 13354–13364 (2009).
    [Crossref] [PubMed]
  4. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 1–5 (2013).
    [Crossref]
  5. S. W. Chu, I. H. Chen, T. M. Liu, P. C. Chen, C. K. Sun, and B. L. Lin, “Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser,” Opt. Lett. 26, 1909–1911 (2001).
    [Crossref]
  6. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
    [Crossref] [PubMed]
  7. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
    [Crossref]
  8. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
    [Crossref] [PubMed]
  9. J. M. Dudley and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  10. K. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
    [Crossref]
  11. A. Aguirre, N. Nishizawa, J. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express 14, 1145–1160 (2006).
    [Crossref] [PubMed]
  12. H. Wang and A. M. Rollins, “Optimization of dual-band continuum light source for ultrahigh-resolution optical coherence tomography,” Appl. Opt. 46, 1787–1794 (2007).
    [Crossref] [PubMed]
  13. J. van Howe, J. H. Lee, S. Zhou, F. Wise, C. Xu, S. Ramachandran, S. Ghalmi, and M. F. Yan, “Demonstration of soliton self-frequency shift below 1300 nm in higher-order mode, solid silica-based fiber,” Opt. Lett. 32, 340–342 (2007).
    [Crossref] [PubMed]
  14. J. H. Lee, J. van Howe, C. Xu, S. Ramachandran, S. Ghalmi, and M. F. Yan, “Generation of femtosecond pulses at 1350 nm by Cerenkov radiation in higher-order-mode fiber,” Opt. Lett. 32, 1053–1055 (2007).
    [Crossref] [PubMed]
  15. S. R. Domingue and R. A. Bartels, “Nonlinear fiber amplifier with tunable transform limited pulse duration from a few 100 to sub-100-fs at watt-level powers,” Opt. Lett. 39, 359–362 (2014).
    [Crossref] [PubMed]
  16. S. R. Domingue and R. A. Bartels, “High-energy, sub-20 fs, nearly transform-limited pulse at 1065 nm enabled by a flat field ultrafast pulse shaper,” publication pending.
  17. D. J. Kane, “Principal components generalized projections: a review,” J. Opt. Soc. Am. B. 25, A120–A132 (2008).
    [Crossref]
  18. S. R. Domingue and R. A. Bartels, “Overcoming temporal polarization instabilities from the latent birefringence in all-normal dispersion, wave-breaking-extended nonlinear fiber supercontinuum generation,” Opt. Express 21, 13305–13321 (2013).
    [Crossref] [PubMed]
  19. H. Tu, Y. Liu, X. Liu, D. Turchinovich, J. Lægsgaard, and S. A. Boppart, “Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser,” Opt. Express 20, 1113–1128 (2012).
    [Crossref] [PubMed]

2014 (1)

2013 (2)

S. R. Domingue and R. A. Bartels, “Overcoming temporal polarization instabilities from the latent birefringence in all-normal dispersion, wave-breaking-extended nonlinear fiber supercontinuum generation,” Opt. Express 21, 13305–13321 (2013).
[Crossref] [PubMed]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 1–5 (2013).
[Crossref]

2012 (1)

2009 (2)

M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14, 010508 (2009).
[Crossref] [PubMed]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17, 13354–13364 (2009).
[Crossref] [PubMed]

2008 (1)

D. J. Kane, “Principal components generalized projections: a review,” J. Opt. Soc. Am. B. 25, A120–A132 (2008).
[Crossref]

2007 (3)

2006 (2)

2003 (1)

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

2001 (2)

S. W. Chu, I. H. Chen, T. M. Liu, P. C. Chen, C. K. Sun, and B. L. Lin, “Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser,” Opt. Lett. 26, 1909–1911 (2001).
[Crossref]

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111, 29–37 (2001).
[Crossref] [PubMed]

2000 (1)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[Crossref]

1989 (1)

K. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[Crossref]

1986 (1)

Aguirre, A.

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Arriaga, J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[Crossref]

Baldacchini, T.

M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14, 010508 (2009).
[Crossref] [PubMed]

Balu, M.

M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14, 010508 (2009).
[Crossref] [PubMed]

Bartels, R. A.

Beaurepaire, E.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111, 29–37 (2001).
[Crossref] [PubMed]

Birks, T. A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[Crossref]

Blow, K.

K. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[Crossref]

Boppart, S. A.

Carter, J.

M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14, 010508 (2009).
[Crossref] [PubMed]

Chaigneau, E.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111, 29–37 (2001).
[Crossref] [PubMed]

Charpak, S.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111, 29–37 (2001).
[Crossref] [PubMed]

Chen, I. H.

Chen, P. C.

Chu, S. W.

Clark, C. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 1–5 (2013).
[Crossref]

Coen, S.

J. M. Dudley and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Domingue, S. R.

Dudley, J. M.

J. M. Dudley and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Durst, M. E.

Fujimoto, J.

Gaeta, A. L.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Gallagher, M. T.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Ghalmi, S.

Gordon, J. P.

Horton, N. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 1–5 (2013).
[Crossref]

Kane, D. J.

D. J. Kane, “Principal components generalized projections: a review,” J. Opt. Soc. Am. B. 25, A120–A132 (2008).
[Crossref]

Knight, J. C.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[Crossref]

Kobat, D.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 1–5 (2013).
[Crossref]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17, 13354–13364 (2009).
[Crossref] [PubMed]

Koch, K. W.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Kopf, D.

Krasieva, T. B.

M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14, 010508 (2009).
[Crossref] [PubMed]

Lægsgaard, J.

Lederer, M.

Lee, J. H.

Lin, B. L.

Liu, T. M.

Liu, X.

Liu, Y.

Mertz, J.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111, 29–37 (2001).
[Crossref] [PubMed]

Müller, D.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Nishimura, N.

Nishizawa, N.

Oheim, M.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111, 29–37 (2001).
[Crossref] [PubMed]

Ortigosa-Blanch, A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[Crossref]

Ouzounov, D. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Ramachandran, S.

Rollins, A. M.

Russell, P. S. J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[Crossref]

Schaffer, C. B.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 1–5 (2013).
[Crossref]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17, 13354–13364 (2009).
[Crossref] [PubMed]

Seitz, W.

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Sun, C. K.

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Tromberg, B. J.

M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14, 010508 (2009).
[Crossref] [PubMed]

Tu, H.

Turchinovich, D.

van Howe, J.

Venkataraman, N.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Wadsworth, W. J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[Crossref]

Wang, H.

Wang, K.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 1–5 (2013).
[Crossref]

Wise, F.

Wise, F. W.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 1–5 (2013).
[Crossref]

Wong, A. W.

Wood, D.

K. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[Crossref]

Xu, C.

Yan, M. F.

Zadoyan, R.

M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14, 010508 (2009).
[Crossref] [PubMed]

Zhou, S.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

K. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[Crossref]

J. Biomed. Opt. (1)

M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14, 010508 (2009).
[Crossref] [PubMed]

J. Neurosci. Methods (1)

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111, 29–37 (2001).
[Crossref] [PubMed]

J. Opt. Soc. Am. B. (1)

D. J. Kane, “Principal components generalized projections: a review,” J. Opt. Soc. Am. B. 25, A120–A132 (2008).
[Crossref]

Nat. Photonics (1)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 1–5 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Rev. Mod. Phys. (1)

J. M. Dudley and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Science (1)

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Other (1)

S. R. Domingue and R. A. Bartels, “High-energy, sub-20 fs, nearly transform-limited pulse at 1065 nm enabled by a flat field ultrafast pulse shaper,” publication pending.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The modeled SC power spectra for the fiber lengths listed on the right from an N=6, 25 fs FWHM Gaussian seed pulse in PCF with ZDW at 890 nm. (b) A theoretical comparison of the effects of Raman scattering on the dual-band spectra formation in dual-ZDW PCF. Power spectra from 1 nJ, 30 fs FWHM Gaussian seed pulses at the fiber lengths shown to the far right, with (black-solid) and without (blue-dashed) Raman scattering.
Fig. 2
Fig. 2 Setup for the 1075 nm pulse generation and subsequent 1250 nm pulse generation. ANDi: all normal dispersion laser, NFA: nonlinear fiber amplifier; TG1 and TG2: transmission gratings 1600 l/mm and 1000 l/mm respectively; AL: achromatic lens, MC: Martinez compressor; WP: half-waveplate; C1 and C2: aspheric fiber collimators with APC receptacles; NLF1: nonlinear fiber (10/125-PM), L1, L2, L3, and L4: lenses; PS: pulse shaper; PL: Plössl lens; SLM: spatial light modulator; AWP1, AWP2, and AWP3: achromatic half-waveplates, PBS: polarizing beam splitter; OAPC: off-axis parabolic fiber collimator with APC receptacle; NLF2: nonlinear fiber (NL-1050-ZERO-2); AS: aspheric lens.
Fig. 3
Fig. 3 1075 nm nonlinear fiber seed pulse. (a) Phantom-FROG: comparison of the measured (left) and reconstructed (right) SHG-FROG traces, (b) spectral phase (blue) and power spectrum (black), and (c) the temporal profile of the bandwidth supported transform-limited pulse (blue) and the reconstructed pulse (black).
Fig. 4
Fig. 4 1250 nm pulses at 2 nJ pulse (top) and 0.6 nJ (bottom). (a,d) Phantom-FROG: comparison of the measured (left) and reconstructed (right) SHG-FROG traces, (b,e) spectral phase (blue) and power spectrum (black), and (c,f) the temporal profile of the bandwidth supported transform-limited pulse (blue) and the reconstructed pulse (black).
Fig. 5
Fig. 5 (a) Setup of the 3-photon epi-detected stage-scanning microscope (top) and an example of the position and velocity curves of both x (black) and y (blue) stages used to acquire sectioned 2D images (bottom). The shaded areas indicate regions of constant velocity where pixel data is captured. PMT: photomultiplier tube, F: filters, and DM: dichroic mirror. (b) An integrated image stack of fluorescein-dyed lens tissue (left) and two 2D sections separated in the z-dimension by 30 micron (right).

Tables (1)

Tables Icon

Table 1 SSFS conversion efficiency by seed pulse duration and soliton number.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A z k 2 i k + 1 k ! β k k A t k = i γ ( 1 + i τ shock t ) ( A ( z , t ) R ( t ) × | A ( z , t t ) | 2 d t ) .

Metrics