Abstract

Two quantum control spectroscopic techniques were applied to study InAs quantum dot (QD) devices, which contain different strain-reducing layers. By adaptively control light matter interaction, a delayed resonant response from the InAs QDs was found to be encoded into the optimal phase profile of ultrafast optical pulse used. We verified the delayed resonant response to originate from excitons coupled to acoustic phonons of InAs QDs with two-dimensional coherent spectroscopy. Our study yields valuable dynamical information that can deepen our understanding of the coherent coupling process of exciton in the quantum-confined systems.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quadrature demodulation of a quantum dot optical response to faint light fields

Galan Moody, Corey McDonald, Ari Feldman, Todd Harvey, Richard P. Mirin, and Kevin L. Silverman
Optica 3(12) 1397-1403 (2016)

Observation of resonance fluorescence and the Mollow triplet from a coherently driven site-controlled quantum dot

Sebastian Unsleber, Sebastian Maier, Dara P. S. McCutcheon, Yu-Ming He, Michael Dambach, Manuel Gschrey, Niels Gregersen, Jesper Mørk, Stephan Reitzenstein, Sven Höfling, Christian Schneider, and Martin Kamp
Optica 2(12) 1072-1077 (2015)

Oscillatory acoustic phonon relaxation of excitons in quantum dot molecules

Juan E. Rolon, Kushal C. Wijesundara, Sergio E. Ulloa, Allan S. Bracker, Daniel Gammon, and Eric A. Stinaff
J. Opt. Soc. Am. B 29(2) A146-A153 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, 1998).
  2. P. C. Chiu, W. S. Liu, M. J. Shiau, J. I. Chyi, W. Y. Chen, H. S. Chang, and T. M. Hsu, “Enhancing the optical properties of InAs quantum dots by an InAlAsSb overgrown layer,” Appl. Phys. Lett. 91, 153106 (2007).
    [Crossref]
  3. W. S. Liu, H. L. Tseng, and P. C. Kuo, “Enhancing optical characteristics of InAs/InGaAsSb quantum dot structures with long-excited state emission at 1.31 um,” Opt. Express 22(16), 18860–18869 (2014).
    [Crossref] [PubMed]
  4. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
    [Crossref]
  5. D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 um room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
    [Crossref]
  6. K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, “1.3-um CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA,” IEEE Photon. Technol. Lett. 11(10), 1205–1207 (1999).
    [Crossref]
  7. B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, “Direct modulation of excited state quantum dot lasers,” Appl. Phys. Lett. 95(6), 061101 (2009).
    [Crossref]
  8. C. S. Lee, P. Bhattacharya, T. Frost, and W. Guo, “Characteristics of a high speed 1.22um tunnel injection p-doped quantum dot excited state laser,” Appl. Phys. Lett. 98(1), 011103 (2011).
    [Crossref]
  9. W. S. Liu, H. Chang, Y. S. Liu, and J. I. Chyi, “Pinholelike defects in multistack 1.3 um InAs quantum dot laser,” J. Appl. Phys. 99(11), 114514 (2006).
    [Crossref]
  10. J. M. Ripalda, D. Granados, Y. Gonzalez, A. M. Sanchez, S. I. Molina, and J. M. Garcia, “Room temperature emission at 1.6 um from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005).
    [Crossref]
  11. R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992).
    [Crossref] [PubMed]
  12. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
    [Crossref]
  13. S. S. Szigeti, A. R. Carvalho, J. G. Morley, and M. R. Hush, “Ignorance is bliss: General and robust cancellation of decoherence via no-knowledge quantum feedback,” Phys. Rev. Lett. 113, 020407 (2014).
    [Crossref] [PubMed]
  14. T. C. Weinacht and P. H. Bucksbaum, “Using feedback for coherent control of quantum systems,” J. Opt. B Quantum Semiclass. Opt. 4, R35–R52 (2001).
    [Crossref]
  15. D. J. Tannor and S. A. Rice, “Control of selectivity of chemical reactions via control of wavepacket evolution,” J. Chem. Phys. 83, 5013–5018 (1985).
    [Crossref]
  16. P. Brumer and M. Shapiro, “Control of unimolecular reactions using coherent light,” Chem. Phys. Lett. 126, 541–564 (1986).
    [Crossref]
  17. A. M. Weiner, S. Oudin, D. E. Leaird, and D. H. Reitze, “Shaping of femtosecond pulses using phase-only filters designed by simulated annealing,” J. Opt. Soc. Am. A 10, 1112–1120 (1993).
    [Crossref]
  18. M. A. Montgomery and N. H. Damrauer, “Elucidation of control mechanisms discovered during adaptive manipulation of [Ru(dpb)3](PF6)2 emission in the solution phase,” J. Phys. Chem. A 111, 1426–1433 (2007).
    [Crossref] [PubMed]
  19. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
    [Crossref] [PubMed]
  20. X. Li, T. Zhang, C. N. Borca, and S. T. Cundiff, “Many-Body Interactions in Semiconductors Probed by Optical Two-Dimensional Fourier Transform Spectroscopy,” Phys. Rev. Lett. 96, 057406 (2006).
    [Crossref] [PubMed]
  21. D. B. Turner, P. Wen, D. H. Arias, K. A. Nelson, H. Li, G. Moody, M. E. Siemens, and S. T. Cundiff, “Persistent exciton-type many-body interactions in GaAs quantum wells measured using two-dimensional optical spectroscopy,” Phys. Rev. B 85, 201303(R) (2012).
    [Crossref]
  22. K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-Quantum 2D FT Electronic Spectroscopy of Biexcitons in GaAs Quantum Wells,” Science 324, 1169–1173 (2009).
    [Crossref] [PubMed]
  23. E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, and G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. 104, 14203–14208 (2007).
    [Crossref] [PubMed]
  24. J. O. Tollerud, C. R. Hall, and J. A. Davis, “Isolating quantum coherence using coherent multi-dimensional spectroscopy with spectrally shaped pulses,” Opt. Express 22, 6719–6733 (2014).
    [Crossref] [PubMed]
  25. M. C. Chen, J. Y. Huang, Q. Yang, C. L. Pan, and J. I. Chyi, “Freezing phase scheme for fast adaptive control and its application to characterization of femtosecond coherent optical pulses reflected from semiconductor saturable absorber mirrors,” J. Opt. Soc. Am. B 22, 1134–1141 (2005).
    [Crossref]
  26. M. C. Chen, J. Y. Huang, and L. Chen, “Coherent control multiphoton processes in semiconductor saturable Bragg reflector with freezing phase algorithm,” Appl. Phys. B 80, 333–340 (2005).
    [Crossref]
  27. A. Raisanen, L. J. Brillson, R. S. Goldman, K. L. Kavanagh, and H. H. Wieder, “Optical detection of misfit dislocation-induced deep levels at InGaAs/GaAs heterojunctions,” Appl. Phys. Lett. 64, 3572–3574 (1994).
    [Crossref]
  28. D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287–1292 (1999).
    [Crossref]
  29. S. F. Ren, D. Lu, and G. Qin, “Phonon modes in InAs quantum dots,” Phys. Rev. B 63, 195315 (2001).
    [Crossref]
  30. I. A. Ostapenko, G. Honig, S. Rodt, A. Schliwa, A. Hoffmann, D. Bimberg, M. R. Dachner, M. Richter, A. Knorr, S. Kako, and Y. Arakawa, “Exciton acoustic-phonon coupling in single GaN/AlN quantum dots,” Phys. Rev. B 85, 081303(R) (2012).
    [Crossref]
  31. D. Sarkar, H. P. van der Meulen, J. M. Calleja, J. M. Meyer, R. J. Haug, and K. Pierz, “Piezoelectric exciton acoustic-phonon coupling in single quantum dots,” Phys. Rev. B 78, 241305(R) (2008).
    [Crossref]
  32. G. Moody, M. E. Siemens, A. D. Bristow, X. Dai, D. Karaiskaj, A. S. Bracker, D. Gammon, and S. T. Cundiff, “Exciton-exciton and exciton-phonon interactions in an interfacial GaAs quantum dot ensemble,” Phys. Rev. B 83, 115324 (2011).
    [Crossref]
  33. J. Bylsma, P. Dey, J. Paul, S. Hoogland, E. H. Sargent, J. M. Luther, M. C. Beard, and D. Karaiskaj, “Quantum beats due to excitonic ground-state splitting in colloidal quantum dots,” Phys. Rev. B 86, 125322 (2012).
    [Crossref]
  34. E. Harel, S. M. Rupich, R. D. Schaller, D. V. Talapin, and G. S. Engel, “Measurement of electronic splitting in PbS quantum dots by two-dimensional nonlinear spectroscopy,” Phys. Rev. B 86, 075412 (2012).
    [Crossref]

2014 (3)

2012 (4)

D. B. Turner, P. Wen, D. H. Arias, K. A. Nelson, H. Li, G. Moody, M. E. Siemens, and S. T. Cundiff, “Persistent exciton-type many-body interactions in GaAs quantum wells measured using two-dimensional optical spectroscopy,” Phys. Rev. B 85, 201303(R) (2012).
[Crossref]

I. A. Ostapenko, G. Honig, S. Rodt, A. Schliwa, A. Hoffmann, D. Bimberg, M. R. Dachner, M. Richter, A. Knorr, S. Kako, and Y. Arakawa, “Exciton acoustic-phonon coupling in single GaN/AlN quantum dots,” Phys. Rev. B 85, 081303(R) (2012).
[Crossref]

J. Bylsma, P. Dey, J. Paul, S. Hoogland, E. H. Sargent, J. M. Luther, M. C. Beard, and D. Karaiskaj, “Quantum beats due to excitonic ground-state splitting in colloidal quantum dots,” Phys. Rev. B 86, 125322 (2012).
[Crossref]

E. Harel, S. M. Rupich, R. D. Schaller, D. V. Talapin, and G. S. Engel, “Measurement of electronic splitting in PbS quantum dots by two-dimensional nonlinear spectroscopy,” Phys. Rev. B 86, 075412 (2012).
[Crossref]

2011 (2)

G. Moody, M. E. Siemens, A. D. Bristow, X. Dai, D. Karaiskaj, A. S. Bracker, D. Gammon, and S. T. Cundiff, “Exciton-exciton and exciton-phonon interactions in an interfacial GaAs quantum dot ensemble,” Phys. Rev. B 83, 115324 (2011).
[Crossref]

C. S. Lee, P. Bhattacharya, T. Frost, and W. Guo, “Characteristics of a high speed 1.22um tunnel injection p-doped quantum dot excited state laser,” Appl. Phys. Lett. 98(1), 011103 (2011).
[Crossref]

2009 (2)

B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, “Direct modulation of excited state quantum dot lasers,” Appl. Phys. Lett. 95(6), 061101 (2009).
[Crossref]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-Quantum 2D FT Electronic Spectroscopy of Biexcitons in GaAs Quantum Wells,” Science 324, 1169–1173 (2009).
[Crossref] [PubMed]

2008 (1)

D. Sarkar, H. P. van der Meulen, J. M. Calleja, J. M. Meyer, R. J. Haug, and K. Pierz, “Piezoelectric exciton acoustic-phonon coupling in single quantum dots,” Phys. Rev. B 78, 241305(R) (2008).
[Crossref]

2007 (3)

E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, and G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. 104, 14203–14208 (2007).
[Crossref] [PubMed]

M. A. Montgomery and N. H. Damrauer, “Elucidation of control mechanisms discovered during adaptive manipulation of [Ru(dpb)3](PF6)2 emission in the solution phase,” J. Phys. Chem. A 111, 1426–1433 (2007).
[Crossref] [PubMed]

P. C. Chiu, W. S. Liu, M. J. Shiau, J. I. Chyi, W. Y. Chen, H. S. Chang, and T. M. Hsu, “Enhancing the optical properties of InAs quantum dots by an InAlAsSb overgrown layer,” Appl. Phys. Lett. 91, 153106 (2007).
[Crossref]

2006 (2)

W. S. Liu, H. Chang, Y. S. Liu, and J. I. Chyi, “Pinholelike defects in multistack 1.3 um InAs quantum dot laser,” J. Appl. Phys. 99(11), 114514 (2006).
[Crossref]

X. Li, T. Zhang, C. N. Borca, and S. T. Cundiff, “Many-Body Interactions in Semiconductors Probed by Optical Two-Dimensional Fourier Transform Spectroscopy,” Phys. Rev. Lett. 96, 057406 (2006).
[Crossref] [PubMed]

2005 (3)

M. C. Chen, J. Y. Huang, Q. Yang, C. L. Pan, and J. I. Chyi, “Freezing phase scheme for fast adaptive control and its application to characterization of femtosecond coherent optical pulses reflected from semiconductor saturable absorber mirrors,” J. Opt. Soc. Am. B 22, 1134–1141 (2005).
[Crossref]

M. C. Chen, J. Y. Huang, and L. Chen, “Coherent control multiphoton processes in semiconductor saturable Bragg reflector with freezing phase algorithm,” Appl. Phys. B 80, 333–340 (2005).
[Crossref]

J. M. Ripalda, D. Granados, Y. Gonzalez, A. M. Sanchez, S. I. Molina, and J. M. Garcia, “Room temperature emission at 1.6 um from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005).
[Crossref]

2003 (1)

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[Crossref] [PubMed]

2001 (2)

T. C. Weinacht and P. H. Bucksbaum, “Using feedback for coherent control of quantum systems,” J. Opt. B Quantum Semiclass. Opt. 4, R35–R52 (2001).
[Crossref]

S. F. Ren, D. Lu, and G. Qin, “Phonon modes in InAs quantum dots,” Phys. Rev. B 63, 195315 (2001).
[Crossref]

2000 (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[Crossref]

1999 (2)

K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, “1.3-um CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA,” IEEE Photon. Technol. Lett. 11(10), 1205–1207 (1999).
[Crossref]

D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287–1292 (1999).
[Crossref]

1998 (1)

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 um room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[Crossref]

1994 (1)

A. Raisanen, L. J. Brillson, R. S. Goldman, K. L. Kavanagh, and H. H. Wieder, “Optical detection of misfit dislocation-induced deep levels at InGaAs/GaAs heterojunctions,” Appl. Phys. Lett. 64, 3572–3574 (1994).
[Crossref]

1993 (1)

1992 (1)

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992).
[Crossref] [PubMed]

1986 (1)

P. Brumer and M. Shapiro, “Control of unimolecular reactions using coherent light,” Chem. Phys. Lett. 126, 541–564 (1986).
[Crossref]

1985 (1)

D. J. Tannor and S. A. Rice, “Control of selectivity of chemical reactions via control of wavepacket evolution,” J. Chem. Phys. 83, 5013–5018 (1985).
[Crossref]

1982 (1)

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Ahn, T. K.

E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, and G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. 104, 14203–14208 (2007).
[Crossref] [PubMed]

Arakawa, Y.

I. A. Ostapenko, G. Honig, S. Rodt, A. Schliwa, A. Hoffmann, D. Bimberg, M. R. Dachner, M. Richter, A. Knorr, S. Kako, and Y. Arakawa, “Exciton acoustic-phonon coupling in single GaN/AlN quantum dots,” Phys. Rev. B 85, 081303(R) (2012).
[Crossref]

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Arias, D. H.

D. B. Turner, P. Wen, D. H. Arias, K. A. Nelson, H. Li, G. Moody, M. E. Siemens, and S. T. Cundiff, “Persistent exciton-type many-body interactions in GaAs quantum wells measured using two-dimensional optical spectroscopy,” Phys. Rev. B 85, 201303(R) (2012).
[Crossref]

Beard, M. C.

J. Bylsma, P. Dey, J. Paul, S. Hoogland, E. H. Sargent, J. M. Luther, M. C. Beard, and D. Karaiskaj, “Quantum beats due to excitonic ground-state splitting in colloidal quantum dots,” Phys. Rev. B 86, 125322 (2012).
[Crossref]

Bhattacharya, P.

C. S. Lee, P. Bhattacharya, T. Frost, and W. Guo, “Characteristics of a high speed 1.22um tunnel injection p-doped quantum dot excited state laser,” Appl. Phys. Lett. 98(1), 011103 (2011).
[Crossref]

Bimberg, D.

I. A. Ostapenko, G. Honig, S. Rodt, A. Schliwa, A. Hoffmann, D. Bimberg, M. R. Dachner, M. Richter, A. Knorr, S. Kako, and Y. Arakawa, “Exciton acoustic-phonon coupling in single GaN/AlN quantum dots,” Phys. Rev. B 85, 081303(R) (2012).
[Crossref]

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, 1998).

Blankenship, R. E.

E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, and G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. 104, 14203–14208 (2007).
[Crossref] [PubMed]

Borca, C. N.

X. Li, T. Zhang, C. N. Borca, and S. T. Cundiff, “Many-Body Interactions in Semiconductors Probed by Optical Two-Dimensional Fourier Transform Spectroscopy,” Phys. Rev. Lett. 96, 057406 (2006).
[Crossref] [PubMed]

Bracker, A. S.

G. Moody, M. E. Siemens, A. D. Bristow, X. Dai, D. Karaiskaj, A. S. Bracker, D. Gammon, and S. T. Cundiff, “Exciton-exciton and exciton-phonon interactions in an interfacial GaAs quantum dot ensemble,” Phys. Rev. B 83, 115324 (2011).
[Crossref]

Brillson, L. J.

A. Raisanen, L. J. Brillson, R. S. Goldman, K. L. Kavanagh, and H. H. Wieder, “Optical detection of misfit dislocation-induced deep levels at InGaAs/GaAs heterojunctions,” Appl. Phys. Lett. 64, 3572–3574 (1994).
[Crossref]

Bristow, A. D.

G. Moody, M. E. Siemens, A. D. Bristow, X. Dai, D. Karaiskaj, A. S. Bracker, D. Gammon, and S. T. Cundiff, “Exciton-exciton and exciton-phonon interactions in an interfacial GaAs quantum dot ensemble,” Phys. Rev. B 83, 115324 (2011).
[Crossref]

Brumer, P.

P. Brumer and M. Shapiro, “Control of unimolecular reactions using coherent light,” Chem. Phys. Lett. 126, 541–564 (1986).
[Crossref]

Bucksbaum, P. H.

T. C. Weinacht and P. H. Bucksbaum, “Using feedback for coherent control of quantum systems,” J. Opt. B Quantum Semiclass. Opt. 4, R35–R52 (2001).
[Crossref]

Bylsma, J.

J. Bylsma, P. Dey, J. Paul, S. Hoogland, E. H. Sargent, J. M. Luther, M. C. Beard, and D. Karaiskaj, “Quantum beats due to excitonic ground-state splitting in colloidal quantum dots,” Phys. Rev. B 86, 125322 (2012).
[Crossref]

Calhoun, T. R.

E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, and G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. 104, 14203–14208 (2007).
[Crossref] [PubMed]

Calleja, J. M.

D. Sarkar, H. P. van der Meulen, J. M. Calleja, J. M. Meyer, R. J. Haug, and K. Pierz, “Piezoelectric exciton acoustic-phonon coupling in single quantum dots,” Phys. Rev. B 78, 241305(R) (2008).
[Crossref]

Carvalho, A. R.

S. S. Szigeti, A. R. Carvalho, J. G. Morley, and M. R. Hush, “Ignorance is bliss: General and robust cancellation of decoherence via no-knowledge quantum feedback,” Phys. Rev. Lett. 113, 020407 (2014).
[Crossref] [PubMed]

Chang, H.

W. S. Liu, H. Chang, Y. S. Liu, and J. I. Chyi, “Pinholelike defects in multistack 1.3 um InAs quantum dot laser,” J. Appl. Phys. 99(11), 114514 (2006).
[Crossref]

Chang, H. S.

P. C. Chiu, W. S. Liu, M. J. Shiau, J. I. Chyi, W. Y. Chen, H. S. Chang, and T. M. Hsu, “Enhancing the optical properties of InAs quantum dots by an InAlAsSb overgrown layer,” Appl. Phys. Lett. 91, 153106 (2007).
[Crossref]

Chen, L.

M. C. Chen, J. Y. Huang, and L. Chen, “Coherent control multiphoton processes in semiconductor saturable Bragg reflector with freezing phase algorithm,” Appl. Phys. B 80, 333–340 (2005).
[Crossref]

Chen, M. C.

Chen, W. Y.

P. C. Chiu, W. S. Liu, M. J. Shiau, J. I. Chyi, W. Y. Chen, H. S. Chang, and T. M. Hsu, “Enhancing the optical properties of InAs quantum dots by an InAlAsSb overgrown layer,” Appl. Phys. Lett. 91, 153106 (2007).
[Crossref]

Childs, D. T. D.

B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, “Direct modulation of excited state quantum dot lasers,” Appl. Phys. Lett. 95(6), 061101 (2009).
[Crossref]

Chiu, P. C.

P. C. Chiu, W. S. Liu, M. J. Shiau, J. I. Chyi, W. Y. Chen, H. S. Chang, and T. M. Hsu, “Enhancing the optical properties of InAs quantum dots by an InAlAsSb overgrown layer,” Appl. Phys. Lett. 91, 153106 (2007).
[Crossref]

Chyi, J. I.

P. C. Chiu, W. S. Liu, M. J. Shiau, J. I. Chyi, W. Y. Chen, H. S. Chang, and T. M. Hsu, “Enhancing the optical properties of InAs quantum dots by an InAlAsSb overgrown layer,” Appl. Phys. Lett. 91, 153106 (2007).
[Crossref]

W. S. Liu, H. Chang, Y. S. Liu, and J. I. Chyi, “Pinholelike defects in multistack 1.3 um InAs quantum dot laser,” J. Appl. Phys. 99(11), 114514 (2006).
[Crossref]

M. C. Chen, J. Y. Huang, Q. Yang, C. L. Pan, and J. I. Chyi, “Freezing phase scheme for fast adaptive control and its application to characterization of femtosecond coherent optical pulses reflected from semiconductor saturable absorber mirrors,” J. Opt. Soc. Am. B 22, 1134–1141 (2005).
[Crossref]

Cundiff, S. T.

D. B. Turner, P. Wen, D. H. Arias, K. A. Nelson, H. Li, G. Moody, M. E. Siemens, and S. T. Cundiff, “Persistent exciton-type many-body interactions in GaAs quantum wells measured using two-dimensional optical spectroscopy,” Phys. Rev. B 85, 201303(R) (2012).
[Crossref]

G. Moody, M. E. Siemens, A. D. Bristow, X. Dai, D. Karaiskaj, A. S. Bracker, D. Gammon, and S. T. Cundiff, “Exciton-exciton and exciton-phonon interactions in an interfacial GaAs quantum dot ensemble,” Phys. Rev. B 83, 115324 (2011).
[Crossref]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-Quantum 2D FT Electronic Spectroscopy of Biexcitons in GaAs Quantum Wells,” Science 324, 1169–1173 (2009).
[Crossref] [PubMed]

X. Li, T. Zhang, C. N. Borca, and S. T. Cundiff, “Many-Body Interactions in Semiconductors Probed by Optical Two-Dimensional Fourier Transform Spectroscopy,” Phys. Rev. Lett. 96, 057406 (2006).
[Crossref] [PubMed]

Dachner, M. R.

I. A. Ostapenko, G. Honig, S. Rodt, A. Schliwa, A. Hoffmann, D. Bimberg, M. R. Dachner, M. Richter, A. Knorr, S. Kako, and Y. Arakawa, “Exciton acoustic-phonon coupling in single GaN/AlN quantum dots,” Phys. Rev. B 85, 081303(R) (2012).
[Crossref]

Dai, X.

G. Moody, M. E. Siemens, A. D. Bristow, X. Dai, D. Karaiskaj, A. S. Bracker, D. Gammon, and S. T. Cundiff, “Exciton-exciton and exciton-phonon interactions in an interfacial GaAs quantum dot ensemble,” Phys. Rev. B 83, 115324 (2011).
[Crossref]

Damrauer, N. H.

M. A. Montgomery and N. H. Damrauer, “Elucidation of control mechanisms discovered during adaptive manipulation of [Ru(dpb)3](PF6)2 emission in the solution phase,” J. Phys. Chem. A 111, 1426–1433 (2007).
[Crossref] [PubMed]

Davis, J. A.

Deppe, D. G.

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 um room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[Crossref]

Dey, P.

J. Bylsma, P. Dey, J. Paul, S. Hoogland, E. H. Sargent, J. M. Luther, M. C. Beard, and D. Karaiskaj, “Quantum beats due to excitonic ground-state splitting in colloidal quantum dots,” Phys. Rev. B 86, 125322 (2012).
[Crossref]

Engel, G. S.

E. Harel, S. M. Rupich, R. D. Schaller, D. V. Talapin, and G. S. Engel, “Measurement of electronic splitting in PbS quantum dots by two-dimensional nonlinear spectroscopy,” Phys. Rev. B 86, 075412 (2012).
[Crossref]

E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, and G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. 104, 14203–14208 (2007).
[Crossref] [PubMed]

Fleming, G. R.

E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, and G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. 104, 14203–14208 (2007).
[Crossref] [PubMed]

Frost, T.

C. S. Lee, P. Bhattacharya, T. Frost, and W. Guo, “Characteristics of a high speed 1.22um tunnel injection p-doped quantum dot excited state laser,” Appl. Phys. Lett. 98(1), 011103 (2011).
[Crossref]

Gammon, D.

G. Moody, M. E. Siemens, A. D. Bristow, X. Dai, D. Karaiskaj, A. S. Bracker, D. Gammon, and S. T. Cundiff, “Exciton-exciton and exciton-phonon interactions in an interfacial GaAs quantum dot ensemble,” Phys. Rev. B 83, 115324 (2011).
[Crossref]

Garcia, J. M.

J. M. Ripalda, D. Granados, Y. Gonzalez, A. M. Sanchez, S. I. Molina, and J. M. Garcia, “Room temperature emission at 1.6 um from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005).
[Crossref]

Goldman, R. S.

A. Raisanen, L. J. Brillson, R. S. Goldman, K. L. Kavanagh, and H. H. Wieder, “Optical detection of misfit dislocation-induced deep levels at InGaAs/GaAs heterojunctions,” Appl. Phys. Lett. 64, 3572–3574 (1994).
[Crossref]

Gonzalez, Y.

J. M. Ripalda, D. Granados, Y. Gonzalez, A. M. Sanchez, S. I. Molina, and J. M. Garcia, “Room temperature emission at 1.6 um from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005).
[Crossref]

Granados, D.

J. M. Ripalda, D. Granados, Y. Gonzalez, A. M. Sanchez, S. I. Molina, and J. M. Garcia, “Room temperature emission at 1.6 um from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005).
[Crossref]

Grundmann, M.

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, 1998).

Gundogdu, K.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-Quantum 2D FT Electronic Spectroscopy of Biexcitons in GaAs Quantum Wells,” Science 324, 1169–1173 (2009).
[Crossref] [PubMed]

Guo, W.

C. S. Lee, P. Bhattacharya, T. Frost, and W. Guo, “Characteristics of a high speed 1.22um tunnel injection p-doped quantum dot excited state laser,” Appl. Phys. Lett. 98(1), 011103 (2011).
[Crossref]

Hall, C. R.

Harel, E.

E. Harel, S. M. Rupich, R. D. Schaller, D. V. Talapin, and G. S. Engel, “Measurement of electronic splitting in PbS quantum dots by two-dimensional nonlinear spectroscopy,” Phys. Rev. B 86, 075412 (2012).
[Crossref]

Haug, R. J.

D. Sarkar, H. P. van der Meulen, J. M. Calleja, J. M. Meyer, R. J. Haug, and K. Pierz, “Piezoelectric exciton acoustic-phonon coupling in single quantum dots,” Phys. Rev. B 78, 241305(R) (2008).
[Crossref]

Hoffmann, A.

I. A. Ostapenko, G. Honig, S. Rodt, A. Schliwa, A. Hoffmann, D. Bimberg, M. R. Dachner, M. Richter, A. Knorr, S. Kako, and Y. Arakawa, “Exciton acoustic-phonon coupling in single GaN/AlN quantum dots,” Phys. Rev. B 85, 081303(R) (2012).
[Crossref]

Hogg, R. A.

B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, “Direct modulation of excited state quantum dot lasers,” Appl. Phys. Lett. 95(6), 061101 (2009).
[Crossref]

Honig, G.

I. A. Ostapenko, G. Honig, S. Rodt, A. Schliwa, A. Hoffmann, D. Bimberg, M. R. Dachner, M. Richter, A. Knorr, S. Kako, and Y. Arakawa, “Exciton acoustic-phonon coupling in single GaN/AlN quantum dots,” Phys. Rev. B 85, 081303(R) (2012).
[Crossref]

Hoogland, S.

J. Bylsma, P. Dey, J. Paul, S. Hoogland, E. H. Sargent, J. M. Luther, M. C. Beard, and D. Karaiskaj, “Quantum beats due to excitonic ground-state splitting in colloidal quantum dots,” Phys. Rev. B 86, 125322 (2012).
[Crossref]

Hsu, T. M.

P. C. Chiu, W. S. Liu, M. J. Shiau, J. I. Chyi, W. Y. Chen, H. S. Chang, and T. M. Hsu, “Enhancing the optical properties of InAs quantum dots by an InAlAsSb overgrown layer,” Appl. Phys. Lett. 91, 153106 (2007).
[Crossref]

Huang, J. Y.

Huffaker, D. L.

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 um room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[Crossref]

Hush, M. R.

S. S. Szigeti, A. R. Carvalho, J. G. Morley, and M. R. Hush, “Ignorance is bliss: General and robust cancellation of decoherence via no-knowledge quantum feedback,” Phys. Rev. Lett. 113, 020407 (2014).
[Crossref] [PubMed]

Ishikawa, H.

K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, “1.3-um CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA,” IEEE Photon. Technol. Lett. 11(10), 1205–1207 (1999).
[Crossref]

Jonas, D. M.

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[Crossref] [PubMed]

Judson, R. S.

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992).
[Crossref] [PubMed]

Kako, S.

I. A. Ostapenko, G. Honig, S. Rodt, A. Schliwa, A. Hoffmann, D. Bimberg, M. R. Dachner, M. Richter, A. Knorr, S. Kako, and Y. Arakawa, “Exciton acoustic-phonon coupling in single GaN/AlN quantum dots,” Phys. Rev. B 85, 081303(R) (2012).
[Crossref]

Karaiskaj, D.

J. Bylsma, P. Dey, J. Paul, S. Hoogland, E. H. Sargent, J. M. Luther, M. C. Beard, and D. Karaiskaj, “Quantum beats due to excitonic ground-state splitting in colloidal quantum dots,” Phys. Rev. B 86, 125322 (2012).
[Crossref]

G. Moody, M. E. Siemens, A. D. Bristow, X. Dai, D. Karaiskaj, A. S. Bracker, D. Gammon, and S. T. Cundiff, “Exciton-exciton and exciton-phonon interactions in an interfacial GaAs quantum dot ensemble,” Phys. Rev. B 83, 115324 (2011).
[Crossref]

Kavanagh, K. L.

A. Raisanen, L. J. Brillson, R. S. Goldman, K. L. Kavanagh, and H. H. Wieder, “Optical detection of misfit dislocation-induced deep levels at InGaAs/GaAs heterojunctions,” Appl. Phys. Lett. 64, 3572–3574 (1994).
[Crossref]

Knorr, A.

I. A. Ostapenko, G. Honig, S. Rodt, A. Schliwa, A. Hoffmann, D. Bimberg, M. R. Dachner, M. Richter, A. Knorr, S. Kako, and Y. Arakawa, “Exciton acoustic-phonon coupling in single GaN/AlN quantum dots,” Phys. Rev. B 85, 081303(R) (2012).
[Crossref]

Kuo, P. C.

Leaird, D. E.

Ledentsov, N. N.

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, 1998).

Lee, C. S.

C. S. Lee, P. Bhattacharya, T. Frost, and W. Guo, “Characteristics of a high speed 1.22um tunnel injection p-doped quantum dot excited state laser,” Appl. Phys. Lett. 98(1), 011103 (2011).
[Crossref]

Li, H.

D. B. Turner, P. Wen, D. H. Arias, K. A. Nelson, H. Li, G. Moody, M. E. Siemens, and S. T. Cundiff, “Persistent exciton-type many-body interactions in GaAs quantum wells measured using two-dimensional optical spectroscopy,” Phys. Rev. B 85, 201303(R) (2012).
[Crossref]

Li, X.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-Quantum 2D FT Electronic Spectroscopy of Biexcitons in GaAs Quantum Wells,” Science 324, 1169–1173 (2009).
[Crossref] [PubMed]

X. Li, T. Zhang, C. N. Borca, and S. T. Cundiff, “Many-Body Interactions in Semiconductors Probed by Optical Two-Dimensional Fourier Transform Spectroscopy,” Phys. Rev. Lett. 96, 057406 (2006).
[Crossref] [PubMed]

Liu, W. S.

W. S. Liu, H. L. Tseng, and P. C. Kuo, “Enhancing optical characteristics of InAs/InGaAsSb quantum dot structures with long-excited state emission at 1.31 um,” Opt. Express 22(16), 18860–18869 (2014).
[Crossref] [PubMed]

P. C. Chiu, W. S. Liu, M. J. Shiau, J. I. Chyi, W. Y. Chen, H. S. Chang, and T. M. Hsu, “Enhancing the optical properties of InAs quantum dots by an InAlAsSb overgrown layer,” Appl. Phys. Lett. 91, 153106 (2007).
[Crossref]

W. S. Liu, H. Chang, Y. S. Liu, and J. I. Chyi, “Pinholelike defects in multistack 1.3 um InAs quantum dot laser,” J. Appl. Phys. 99(11), 114514 (2006).
[Crossref]

Liu, Y. S.

W. S. Liu, H. Chang, Y. S. Liu, and J. I. Chyi, “Pinholelike defects in multistack 1.3 um InAs quantum dot laser,” J. Appl. Phys. 99(11), 114514 (2006).
[Crossref]

Lu, D.

S. F. Ren, D. Lu, and G. Qin, “Phonon modes in InAs quantum dots,” Phys. Rev. B 63, 195315 (2001).
[Crossref]

Luther, J. M.

J. Bylsma, P. Dey, J. Paul, S. Hoogland, E. H. Sargent, J. M. Luther, M. C. Beard, and D. Karaiskaj, “Quantum beats due to excitonic ground-state splitting in colloidal quantum dots,” Phys. Rev. B 86, 125322 (2012).
[Crossref]

Mancal, T.

E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, and G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. 104, 14203–14208 (2007).
[Crossref] [PubMed]

Meshulach, D.

D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287–1292 (1999).
[Crossref]

Meyer, J. M.

D. Sarkar, H. P. van der Meulen, J. M. Calleja, J. M. Meyer, R. J. Haug, and K. Pierz, “Piezoelectric exciton acoustic-phonon coupling in single quantum dots,” Phys. Rev. B 78, 241305(R) (2008).
[Crossref]

Molina, S. I.

J. M. Ripalda, D. Granados, Y. Gonzalez, A. M. Sanchez, S. I. Molina, and J. M. Garcia, “Room temperature emission at 1.6 um from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005).
[Crossref]

Montgomery, M. A.

M. A. Montgomery and N. H. Damrauer, “Elucidation of control mechanisms discovered during adaptive manipulation of [Ru(dpb)3](PF6)2 emission in the solution phase,” J. Phys. Chem. A 111, 1426–1433 (2007).
[Crossref] [PubMed]

Moody, G.

D. B. Turner, P. Wen, D. H. Arias, K. A. Nelson, H. Li, G. Moody, M. E. Siemens, and S. T. Cundiff, “Persistent exciton-type many-body interactions in GaAs quantum wells measured using two-dimensional optical spectroscopy,” Phys. Rev. B 85, 201303(R) (2012).
[Crossref]

G. Moody, M. E. Siemens, A. D. Bristow, X. Dai, D. Karaiskaj, A. S. Bracker, D. Gammon, and S. T. Cundiff, “Exciton-exciton and exciton-phonon interactions in an interfacial GaAs quantum dot ensemble,” Phys. Rev. B 83, 115324 (2011).
[Crossref]

Morley, J. G.

S. S. Szigeti, A. R. Carvalho, J. G. Morley, and M. R. Hush, “Ignorance is bliss: General and robust cancellation of decoherence via no-knowledge quantum feedback,” Phys. Rev. Lett. 113, 020407 (2014).
[Crossref] [PubMed]

Mukai, K.

K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, “1.3-um CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA,” IEEE Photon. Technol. Lett. 11(10), 1205–1207 (1999).
[Crossref]

Nakata, Y.

K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, “1.3-um CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA,” IEEE Photon. Technol. Lett. 11(10), 1205–1207 (1999).
[Crossref]

Nelson, K. A.

D. B. Turner, P. Wen, D. H. Arias, K. A. Nelson, H. Li, G. Moody, M. E. Siemens, and S. T. Cundiff, “Persistent exciton-type many-body interactions in GaAs quantum wells measured using two-dimensional optical spectroscopy,” Phys. Rev. B 85, 201303(R) (2012).
[Crossref]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-Quantum 2D FT Electronic Spectroscopy of Biexcitons in GaAs Quantum Wells,” Science 324, 1169–1173 (2009).
[Crossref] [PubMed]

Ostapenko, I. A.

I. A. Ostapenko, G. Honig, S. Rodt, A. Schliwa, A. Hoffmann, D. Bimberg, M. R. Dachner, M. Richter, A. Knorr, S. Kako, and Y. Arakawa, “Exciton acoustic-phonon coupling in single GaN/AlN quantum dots,” Phys. Rev. B 85, 081303(R) (2012).
[Crossref]

Otsubo, K.

K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, “1.3-um CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA,” IEEE Photon. Technol. Lett. 11(10), 1205–1207 (1999).
[Crossref]

Oudin, S.

Pan, C. L.

Park, G.

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 um room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[Crossref]

Paul, J.

J. Bylsma, P. Dey, J. Paul, S. Hoogland, E. H. Sargent, J. M. Luther, M. C. Beard, and D. Karaiskaj, “Quantum beats due to excitonic ground-state splitting in colloidal quantum dots,” Phys. Rev. B 86, 125322 (2012).
[Crossref]

Pierz, K.

D. Sarkar, H. P. van der Meulen, J. M. Calleja, J. M. Meyer, R. J. Haug, and K. Pierz, “Piezoelectric exciton acoustic-phonon coupling in single quantum dots,” Phys. Rev. B 78, 241305(R) (2008).
[Crossref]

Qin, G.

S. F. Ren, D. Lu, and G. Qin, “Phonon modes in InAs quantum dots,” Phys. Rev. B 63, 195315 (2001).
[Crossref]

Rabitz, H.

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992).
[Crossref] [PubMed]

Raisanen, A.

A. Raisanen, L. J. Brillson, R. S. Goldman, K. L. Kavanagh, and H. H. Wieder, “Optical detection of misfit dislocation-induced deep levels at InGaAs/GaAs heterojunctions,” Appl. Phys. Lett. 64, 3572–3574 (1994).
[Crossref]

Read, E. L.

E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, and G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. 104, 14203–14208 (2007).
[Crossref] [PubMed]

Reitze, D. H.

Ren, S. F.

S. F. Ren, D. Lu, and G. Qin, “Phonon modes in InAs quantum dots,” Phys. Rev. B 63, 195315 (2001).
[Crossref]

Rice, S. A.

D. J. Tannor and S. A. Rice, “Control of selectivity of chemical reactions via control of wavepacket evolution,” J. Chem. Phys. 83, 5013–5018 (1985).
[Crossref]

Richter, M.

I. A. Ostapenko, G. Honig, S. Rodt, A. Schliwa, A. Hoffmann, D. Bimberg, M. R. Dachner, M. Richter, A. Knorr, S. Kako, and Y. Arakawa, “Exciton acoustic-phonon coupling in single GaN/AlN quantum dots,” Phys. Rev. B 85, 081303(R) (2012).
[Crossref]

Ripalda, J. M.

J. M. Ripalda, D. Granados, Y. Gonzalez, A. M. Sanchez, S. I. Molina, and J. M. Garcia, “Room temperature emission at 1.6 um from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005).
[Crossref]

Rodt, S.

I. A. Ostapenko, G. Honig, S. Rodt, A. Schliwa, A. Hoffmann, D. Bimberg, M. R. Dachner, M. Richter, A. Knorr, S. Kako, and Y. Arakawa, “Exciton acoustic-phonon coupling in single GaN/AlN quantum dots,” Phys. Rev. B 85, 081303(R) (2012).
[Crossref]

Rupich, S. M.

E. Harel, S. M. Rupich, R. D. Schaller, D. V. Talapin, and G. S. Engel, “Measurement of electronic splitting in PbS quantum dots by two-dimensional nonlinear spectroscopy,” Phys. Rev. B 86, 075412 (2012).
[Crossref]

Sakaki, H.

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Sanchez, A. M.

J. M. Ripalda, D. Granados, Y. Gonzalez, A. M. Sanchez, S. I. Molina, and J. M. Garcia, “Room temperature emission at 1.6 um from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005).
[Crossref]

Sargent, E. H.

J. Bylsma, P. Dey, J. Paul, S. Hoogland, E. H. Sargent, J. M. Luther, M. C. Beard, and D. Karaiskaj, “Quantum beats due to excitonic ground-state splitting in colloidal quantum dots,” Phys. Rev. B 86, 125322 (2012).
[Crossref]

Sarkar, D.

D. Sarkar, H. P. van der Meulen, J. M. Calleja, J. M. Meyer, R. J. Haug, and K. Pierz, “Piezoelectric exciton acoustic-phonon coupling in single quantum dots,” Phys. Rev. B 78, 241305(R) (2008).
[Crossref]

Schaller, R. D.

E. Harel, S. M. Rupich, R. D. Schaller, D. V. Talapin, and G. S. Engel, “Measurement of electronic splitting in PbS quantum dots by two-dimensional nonlinear spectroscopy,” Phys. Rev. B 86, 075412 (2012).
[Crossref]

Schliwa, A.

I. A. Ostapenko, G. Honig, S. Rodt, A. Schliwa, A. Hoffmann, D. Bimberg, M. R. Dachner, M. Richter, A. Knorr, S. Kako, and Y. Arakawa, “Exciton acoustic-phonon coupling in single GaN/AlN quantum dots,” Phys. Rev. B 85, 081303(R) (2012).
[Crossref]

Shahid, H.

B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, “Direct modulation of excited state quantum dot lasers,” Appl. Phys. Lett. 95(6), 061101 (2009).
[Crossref]

Shapiro, M.

P. Brumer and M. Shapiro, “Control of unimolecular reactions using coherent light,” Chem. Phys. Lett. 126, 541–564 (1986).
[Crossref]

Shchekin, O. B.

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 um room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[Crossref]

Shiau, M. J.

P. C. Chiu, W. S. Liu, M. J. Shiau, J. I. Chyi, W. Y. Chen, H. S. Chang, and T. M. Hsu, “Enhancing the optical properties of InAs quantum dots by an InAlAsSb overgrown layer,” Appl. Phys. Lett. 91, 153106 (2007).
[Crossref]

Siemens, M. E.

D. B. Turner, P. Wen, D. H. Arias, K. A. Nelson, H. Li, G. Moody, M. E. Siemens, and S. T. Cundiff, “Persistent exciton-type many-body interactions in GaAs quantum wells measured using two-dimensional optical spectroscopy,” Phys. Rev. B 85, 201303(R) (2012).
[Crossref]

G. Moody, M. E. Siemens, A. D. Bristow, X. Dai, D. Karaiskaj, A. S. Bracker, D. Gammon, and S. T. Cundiff, “Exciton-exciton and exciton-phonon interactions in an interfacial GaAs quantum dot ensemble,” Phys. Rev. B 83, 115324 (2011).
[Crossref]

Silberberg, Y.

D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287–1292 (1999).
[Crossref]

Stevens, B. J.

B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, “Direct modulation of excited state quantum dot lasers,” Appl. Phys. Lett. 95(6), 061101 (2009).
[Crossref]

Stone, K. W.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-Quantum 2D FT Electronic Spectroscopy of Biexcitons in GaAs Quantum Wells,” Science 324, 1169–1173 (2009).
[Crossref] [PubMed]

Sugawara, M.

K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, “1.3-um CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA,” IEEE Photon. Technol. Lett. 11(10), 1205–1207 (1999).
[Crossref]

Szigeti, S. S.

S. S. Szigeti, A. R. Carvalho, J. G. Morley, and M. R. Hush, “Ignorance is bliss: General and robust cancellation of decoherence via no-knowledge quantum feedback,” Phys. Rev. Lett. 113, 020407 (2014).
[Crossref] [PubMed]

Talapin, D. V.

E. Harel, S. M. Rupich, R. D. Schaller, D. V. Talapin, and G. S. Engel, “Measurement of electronic splitting in PbS quantum dots by two-dimensional nonlinear spectroscopy,” Phys. Rev. B 86, 075412 (2012).
[Crossref]

Tannor, D. J.

D. J. Tannor and S. A. Rice, “Control of selectivity of chemical reactions via control of wavepacket evolution,” J. Chem. Phys. 83, 5013–5018 (1985).
[Crossref]

Tollerud, J. O.

Tseng, H. L.

Turner, D. B.

D. B. Turner, P. Wen, D. H. Arias, K. A. Nelson, H. Li, G. Moody, M. E. Siemens, and S. T. Cundiff, “Persistent exciton-type many-body interactions in GaAs quantum wells measured using two-dimensional optical spectroscopy,” Phys. Rev. B 85, 201303(R) (2012).
[Crossref]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-Quantum 2D FT Electronic Spectroscopy of Biexcitons in GaAs Quantum Wells,” Science 324, 1169–1173 (2009).
[Crossref] [PubMed]

van der Meulen, H. P.

D. Sarkar, H. P. van der Meulen, J. M. Calleja, J. M. Meyer, R. J. Haug, and K. Pierz, “Piezoelectric exciton acoustic-phonon coupling in single quantum dots,” Phys. Rev. B 78, 241305(R) (2008).
[Crossref]

Weinacht, T. C.

T. C. Weinacht and P. H. Bucksbaum, “Using feedback for coherent control of quantum systems,” J. Opt. B Quantum Semiclass. Opt. 4, R35–R52 (2001).
[Crossref]

Weiner, A. M.

Wen, P.

D. B. Turner, P. Wen, D. H. Arias, K. A. Nelson, H. Li, G. Moody, M. E. Siemens, and S. T. Cundiff, “Persistent exciton-type many-body interactions in GaAs quantum wells measured using two-dimensional optical spectroscopy,” Phys. Rev. B 85, 201303(R) (2012).
[Crossref]

Wieder, H. H.

A. Raisanen, L. J. Brillson, R. S. Goldman, K. L. Kavanagh, and H. H. Wieder, “Optical detection of misfit dislocation-induced deep levels at InGaAs/GaAs heterojunctions,” Appl. Phys. Lett. 64, 3572–3574 (1994).
[Crossref]

Yang, Q.

Yokoyama, N.

K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, “1.3-um CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA,” IEEE Photon. Technol. Lett. 11(10), 1205–1207 (1999).
[Crossref]

Zhang, T.

X. Li, T. Zhang, C. N. Borca, and S. T. Cundiff, “Many-Body Interactions in Semiconductors Probed by Optical Two-Dimensional Fourier Transform Spectroscopy,” Phys. Rev. Lett. 96, 057406 (2006).
[Crossref] [PubMed]

Zou, Z.

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 um room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[Crossref]

Annu. Rev. Phys. Chem. (1)

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[Crossref] [PubMed]

Appl. Phys. B (1)

M. C. Chen, J. Y. Huang, and L. Chen, “Coherent control multiphoton processes in semiconductor saturable Bragg reflector with freezing phase algorithm,” Appl. Phys. B 80, 333–340 (2005).
[Crossref]

Appl. Phys. Lett. (7)

A. Raisanen, L. J. Brillson, R. S. Goldman, K. L. Kavanagh, and H. H. Wieder, “Optical detection of misfit dislocation-induced deep levels at InGaAs/GaAs heterojunctions,” Appl. Phys. Lett. 64, 3572–3574 (1994).
[Crossref]

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 um room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[Crossref]

B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, “Direct modulation of excited state quantum dot lasers,” Appl. Phys. Lett. 95(6), 061101 (2009).
[Crossref]

C. S. Lee, P. Bhattacharya, T. Frost, and W. Guo, “Characteristics of a high speed 1.22um tunnel injection p-doped quantum dot excited state laser,” Appl. Phys. Lett. 98(1), 011103 (2011).
[Crossref]

J. M. Ripalda, D. Granados, Y. Gonzalez, A. M. Sanchez, S. I. Molina, and J. M. Garcia, “Room temperature emission at 1.6 um from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005).
[Crossref]

P. C. Chiu, W. S. Liu, M. J. Shiau, J. I. Chyi, W. Y. Chen, H. S. Chang, and T. M. Hsu, “Enhancing the optical properties of InAs quantum dots by an InAlAsSb overgrown layer,” Appl. Phys. Lett. 91, 153106 (2007).
[Crossref]

Chem. Phys. Lett. (1)

P. Brumer and M. Shapiro, “Control of unimolecular reactions using coherent light,” Chem. Phys. Lett. 126, 541–564 (1986).
[Crossref]

IEEE Photon. Technol. Lett. (1)

K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, “1.3-um CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA,” IEEE Photon. Technol. Lett. 11(10), 1205–1207 (1999).
[Crossref]

J. Appl. Phys. (1)

W. S. Liu, H. Chang, Y. S. Liu, and J. I. Chyi, “Pinholelike defects in multistack 1.3 um InAs quantum dot laser,” J. Appl. Phys. 99(11), 114514 (2006).
[Crossref]

J. Chem. Phys. (1)

D. J. Tannor and S. A. Rice, “Control of selectivity of chemical reactions via control of wavepacket evolution,” J. Chem. Phys. 83, 5013–5018 (1985).
[Crossref]

J. Opt. B Quantum Semiclass. Opt. (1)

T. C. Weinacht and P. H. Bucksbaum, “Using feedback for coherent control of quantum systems,” J. Opt. B Quantum Semiclass. Opt. 4, R35–R52 (2001).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (1)

M. A. Montgomery and N. H. Damrauer, “Elucidation of control mechanisms discovered during adaptive manipulation of [Ru(dpb)3](PF6)2 emission in the solution phase,” J. Phys. Chem. A 111, 1426–1433 (2007).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. A (1)

D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287–1292 (1999).
[Crossref]

Phys. Rev. B (7)

S. F. Ren, D. Lu, and G. Qin, “Phonon modes in InAs quantum dots,” Phys. Rev. B 63, 195315 (2001).
[Crossref]

I. A. Ostapenko, G. Honig, S. Rodt, A. Schliwa, A. Hoffmann, D. Bimberg, M. R. Dachner, M. Richter, A. Knorr, S. Kako, and Y. Arakawa, “Exciton acoustic-phonon coupling in single GaN/AlN quantum dots,” Phys. Rev. B 85, 081303(R) (2012).
[Crossref]

D. Sarkar, H. P. van der Meulen, J. M. Calleja, J. M. Meyer, R. J. Haug, and K. Pierz, “Piezoelectric exciton acoustic-phonon coupling in single quantum dots,” Phys. Rev. B 78, 241305(R) (2008).
[Crossref]

G. Moody, M. E. Siemens, A. D. Bristow, X. Dai, D. Karaiskaj, A. S. Bracker, D. Gammon, and S. T. Cundiff, “Exciton-exciton and exciton-phonon interactions in an interfacial GaAs quantum dot ensemble,” Phys. Rev. B 83, 115324 (2011).
[Crossref]

J. Bylsma, P. Dey, J. Paul, S. Hoogland, E. H. Sargent, J. M. Luther, M. C. Beard, and D. Karaiskaj, “Quantum beats due to excitonic ground-state splitting in colloidal quantum dots,” Phys. Rev. B 86, 125322 (2012).
[Crossref]

E. Harel, S. M. Rupich, R. D. Schaller, D. V. Talapin, and G. S. Engel, “Measurement of electronic splitting in PbS quantum dots by two-dimensional nonlinear spectroscopy,” Phys. Rev. B 86, 075412 (2012).
[Crossref]

D. B. Turner, P. Wen, D. H. Arias, K. A. Nelson, H. Li, G. Moody, M. E. Siemens, and S. T. Cundiff, “Persistent exciton-type many-body interactions in GaAs quantum wells measured using two-dimensional optical spectroscopy,” Phys. Rev. B 85, 201303(R) (2012).
[Crossref]

Phys. Rev. Lett. (3)

X. Li, T. Zhang, C. N. Borca, and S. T. Cundiff, “Many-Body Interactions in Semiconductors Probed by Optical Two-Dimensional Fourier Transform Spectroscopy,” Phys. Rev. Lett. 96, 057406 (2006).
[Crossref] [PubMed]

S. S. Szigeti, A. R. Carvalho, J. G. Morley, and M. R. Hush, “Ignorance is bliss: General and robust cancellation of decoherence via no-knowledge quantum feedback,” Phys. Rev. Lett. 113, 020407 (2014).
[Crossref] [PubMed]

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. (1)

E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, and G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. 104, 14203–14208 (2007).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[Crossref]

Science (1)

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-Quantum 2D FT Electronic Spectroscopy of Biexcitons in GaAs Quantum Wells,” Science 324, 1169–1173 (2009).
[Crossref] [PubMed]

Other (1)

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagrams showing successive freezing steps of a phase-distorted coherent pulse [25,26]. For simplicity, the spectral phase profile of the pulse is represented with four components only.
Fig. 2
Fig. 2 (a) Schematic showing the two-dimensional coherent spectroscopy with four phase-stabilized pulses propagating to the sample in a boxcar phase matching geometry. The timing diagram of the three excitation pulses and the echo pulse was depicted on the right side. (b) Retrieved field (solid curve) and phase (dashed curve) profiles of 1.2-μm pulse measured at a position right in front of the sample under study. Inset: the measured and retrieved FROG patterns.
Fig. 3
Fig. 3 (a) Schematic diagrams showing the device structure and its energy level diagram. (b) One-photon excitation photoluminescence spectrum of InAs QD devices with different types of strain-reducing layers (In0.18Ga0.82As: blue solid curve; In0.18Ga0.82As0.8Sb0.2: red dashed curve).
Fig. 4
Fig. 4 (a) Two-photon excitation fluorescence spectrum of the InAs QD device with In0.18Ga0.82As SRL (S3355: black solid line) and In0.18Ga0.82As0.8Sb0.2 (S3357: red dashed curve) SRL. (b) Coherent controlled two-photon excitation fluorescence spectrum of S3355 excited by 1.253 μm femtosecond laser pulse with random phase retardation profile (red dashed curve) and an optimal phase retardation profile for maximal TPF (black solid curve).
Fig. 5
Fig. 5 Simulated result with Eq. 7 using A0 = 1, R0 = 0.3, tlag = 300 fs, and σω = 0.01.
Fig. 6
Fig. 6 Spectral-phase sensitivity curves of ccTPF and the spectral-phase patterns used to generate maximum ccTPF signal from the InAs quantum dot device with (a) In0.18Ga0.82As, (b) In0.18Ga0.82As0.8Sb0.2 strain-reducing layer. (c) Fourier transform of the spectral-phase sensitivity profiles shown in (a) blue solid curve and (b) red dashed curve.
Fig. 7
Fig. 7 2D coherent spectroscopy of the InAs QDs device with an In0.18Ga0.82As strain-reducing layer. The device was excited by three ultrashort laser pulses with a spectrum covering from 1164 nm (258 THz) to 1246 nm (240 THz). During the 2D CS measurements, the waiting time was fixed at (a) 0 fs, (b) 33 fs, (c) 67 fs, (d) 100 fs, and (e) 234 fs. Note 249 THz=1029.8 meV=1203.4 nm, 251 THz=1038.1 meV=1194.4 nm, 252 THz=1042.2 meV=1189.7 nm, respectively

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

a g e ( 2 ) ( t ) = ( i ) 2 t d t 1 t 1 d t 2 m μ em μ mg E ( t 1 ) E ( t 2 ) e i ω em t 1 e i ω mg t 2 ,
a g e ( 2 ) ( t ) = i 2 m μ em μ mg + E ˜ ( ω ) E ˜ ( ω eg ω ) ω ω em i η d ω .
d d t ( absorbed energy / volume ) t = d I d z = β I 2 ,
R g e TPA = | a g e ( 2 ) ( t ) | 2 τ p = β I 2 2 ω
+ E ˜ ( ω ) E ˜ ( ω eg ω ) ω ω er i η d ω = i π E ˜ ( ω er ) E ˜ ( ω rg ) + P + E ˜ ( ω ) E ˜ ( ω eg ω ) ω ω er d ω = R ˜ 0 e i ω t lag ,
s I ( ω ) = A 0 ˜ R ˜ 0 e ω 2 4 σ ω 2 i ω t lag .
S ( t ) = 𝔽 { S ( ω ) } = A 0 2 e t 2 σ ω 2 / 2 + A 0 2 R 0 e ( t t lag ) 2 σ ω 2 / 2 .

Metrics