Abstract

In this paper, doping liquid materials to enhance the electro-optical (EO) properties of twisted nematic liquid crystals (NLCs) was presented. Two aromatic hydrocarbon (AH) liquids, toluene and 1-methylnaphthalene, were chosen as dopants in order to lower the driving voltage and response time of the NLCs. A 18% decrease in driving voltage and response time was achieved by doping 10 wt% toluene into NLCs. The main reason of this phenomenon is due to a large amount of reduction in the rotational viscosity of AH liquids doped NLCs. This method provides an easy and potential choice for applications in various LC display systems.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of electro-optic properties in liquid crystal devices via titanium nanoparticle doping

Yong-Seok Ha, Hyung-Jun Kim, Hong-Gyu Park, and Dae-Shik Seo
Opt. Express 20(6) 6448-6455 (2012)

Effects of chiral dopant on electro-optical properties of nematic liquid crystal cells under in-plane switching and non-uniform vertical electric fields

Guan-Jhong Lin, Tien-Jung Chen, Yu-Ting Lin, Jin-Jei Wu, and Ying-Jay Yang
Opt. Mater. Express 4(12) 2468-2477 (2014)

Variable optical attenuator based on polymer stabilized twisted nematic liquid crystal

Yan-qing Lu, Fang Du, Yi-Hsin Lin, and Shin-Tson Wu
Opt. Express 12(7) 1221-1227 (2004)

References

  • View by:
  • |
  • |
  • |

  1. K. C. Chu, C. Y. Chao, Y. F. Chen, Y. C. Wu, and C. C. Chen, “Electrically controlled surface plasmon resonance frequency of gold nanorods,” Appl. Phys. Lett. 89(10), 103107 (2006).
    [Crossref]
  2. H. Qi, B. Kinkead, and T. Hegmann, “Unprecedented dual alignment mode and Freedericksz transition in planar nematic liquid crystal cells doped with gold nanoclusters,” Adv. Funct. Mater. 18(2), 212–221 (2008).
    [Crossref]
  3. W. K. Lee, Y. S. Choi, Y. G. Kang, J. Sung, D. S. Seo, and C. Park, “Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks,” Adv. Funct. Mater. 21(20), 3843–3850 (2011).
    [Crossref]
  4. J. Liu, J. C. She, S. Z. Deng, J. Chen, and N. S. Xu, “Ultrathin seed-layer for tuning density of ZnO nanowire arrays and their field emission characteristics,” J. Phys. Chem. C 112(31), 11685–11690 (2008).
    [Crossref]
  5. H. G. Walton, “Influence of TiO2 nanoparticle doping on the splay and bend elastic constants of the nematic liquid crystal 4-butyl-4-heptyl-bicyclohexyl-4-carbononitrile, CCN47,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 574(1), 60–66 (2013).
    [Crossref]
  6. H. K. Chung, H. G. Park, Y. S. Ha, J. M. Han, J. W. Lee, and D. S. Seo, “Superior electro-optic properties of liquid crystal system using cobalt oxide nanoparticle dispersion,” Liq. Cryst. 40(5), 632–638 (2013).
    [Crossref]
  7. S. Torgova, E. Pozhidaev, A. Lobanov, M. Minchenko, and B. Khlebtsov, “Nanocomposites consisting of gold nanorods and nematic liquid crystals: optical properties,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 525(1), 176–183 (2010).
    [Crossref]
  8. D. P. Singh, S. K. Gupta, and R. Manohar, “ZnO1-xSx nanosphere in ferroelectric liquid crystal matrix: the effect of aggregation and defects on the dielectric and electro-optical properties,” Adv. Condens. Matter Phys. 2013, 250301 (2013).
    [Crossref]
  9. K. Araya, D. A. Dunmur, M. C. Grossel, G. R. Luckhurst, S. E. Marchant-Lane, and A. Sugimura, “Flexible dimers as dopants for liquid crystal display mixtures with faster relaxation times,” J. Mater. Chem. 16(48), 4675–4689 (2006).
    [Crossref]
  10. P. Kilickiran, A. Masutani, N. Hollfelder, G. Nelles, and A. Yasuda, “Halogenated non-planar dopants for fast response liquid crystals,” SID Symposium Digest38, 999–1002 (2007).
    [Crossref]
  11. P. Kilickiran, A. Masutani, T. Roberts, N. Hollfelder, B. Schüller, G. Nelles, and A. Yasuda, “Towards faster liquid crystals at lower driving voltages,” J. SID 16, 63–70 (2008).
  12. M. R. Cargill, G. Sandford, A. J. Tadeusiak, G. D. Love, N. Hollfelder, F. Pleis, G. Nelles, and P. Kilickiran, “Highly fluorinated biphenyl ether systems as dopants for fast-response liquid crystal display applications,” Liq. Cryst. 38(8), 1069–1078 (2011).
    [Crossref]
  13. S. T. Wu, A. M. Lackner, and U. Efron, “Optimal operation temperature of liquid crystal modulators,” Appl. Opt. 26(16), 3441–3445 (1987).
    [Crossref] [PubMed]
  14. S. Gauza, H. Y. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42(1), 3463–3466 (2003).
    [Crossref]
  15. P. R. Gerber, “Measurement of the rotational viscosity of nematic liquid-crystals,” Appl. Phys., A Mater. Sci. Process. 26(3), 139–142 (1981).
    [Crossref]
  16. H. Kneppe, F. Schneider, and N. K. Sharma, “Rotational viscosity -gamma-1 of nematic liquid-crystals,” J. Chem. Phys. 77(6), 3203–3208 (1982).
    [Crossref]
  17. H. Schad and H. R. Zeller, “Universal law for the rotational viscosity of nematic liquid-crystals,” Phys. Rev. A 26(5), 2940–2945 (1982).
    [Crossref]
  18. S. T. Wu and C. S. Wu, “Experimental confirmation of the osipov-terentjev theory on the viscosity of nematic liquid crystals,” Phys. Rev. A 42(4), 2219–2227 (1990).
    [Crossref] [PubMed]
  19. G. Christoph, W. Stille, and G. Strobl, “Dependence of the rotational viscosity of nematic mixtures on the rotational diffusion constants of their components,” J. Chem. Phys. 99(4), 3075–3081 (1993).
    [Crossref]
  20. M. Imai, H. Naito, M. Okuda, and A. Sugimura, “Determination of rotational viscosity and pretilt angle in nematic liquid crystals from transient current: Influence of ionic conduction,” Mol. Cryst. Liq. Cryst. A 259(1), 37–46 (1995).
    [Crossref]
  21. E. Jakeman and E. P. Raynes, “Electrooptic response times in liquid-crystals,” Phys. Lett. A 39(1), 69–70 (1972).
    [Crossref]

2013 (3)

H. G. Walton, “Influence of TiO2 nanoparticle doping on the splay and bend elastic constants of the nematic liquid crystal 4-butyl-4-heptyl-bicyclohexyl-4-carbononitrile, CCN47,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 574(1), 60–66 (2013).
[Crossref]

H. K. Chung, H. G. Park, Y. S. Ha, J. M. Han, J. W. Lee, and D. S. Seo, “Superior electro-optic properties of liquid crystal system using cobalt oxide nanoparticle dispersion,” Liq. Cryst. 40(5), 632–638 (2013).
[Crossref]

D. P. Singh, S. K. Gupta, and R. Manohar, “ZnO1-xSx nanosphere in ferroelectric liquid crystal matrix: the effect of aggregation and defects on the dielectric and electro-optical properties,” Adv. Condens. Matter Phys. 2013, 250301 (2013).
[Crossref]

2011 (2)

W. K. Lee, Y. S. Choi, Y. G. Kang, J. Sung, D. S. Seo, and C. Park, “Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks,” Adv. Funct. Mater. 21(20), 3843–3850 (2011).
[Crossref]

M. R. Cargill, G. Sandford, A. J. Tadeusiak, G. D. Love, N. Hollfelder, F. Pleis, G. Nelles, and P. Kilickiran, “Highly fluorinated biphenyl ether systems as dopants for fast-response liquid crystal display applications,” Liq. Cryst. 38(8), 1069–1078 (2011).
[Crossref]

2010 (1)

S. Torgova, E. Pozhidaev, A. Lobanov, M. Minchenko, and B. Khlebtsov, “Nanocomposites consisting of gold nanorods and nematic liquid crystals: optical properties,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 525(1), 176–183 (2010).
[Crossref]

2008 (3)

J. Liu, J. C. She, S. Z. Deng, J. Chen, and N. S. Xu, “Ultrathin seed-layer for tuning density of ZnO nanowire arrays and their field emission characteristics,” J. Phys. Chem. C 112(31), 11685–11690 (2008).
[Crossref]

H. Qi, B. Kinkead, and T. Hegmann, “Unprecedented dual alignment mode and Freedericksz transition in planar nematic liquid crystal cells doped with gold nanoclusters,” Adv. Funct. Mater. 18(2), 212–221 (2008).
[Crossref]

P. Kilickiran, A. Masutani, T. Roberts, N. Hollfelder, B. Schüller, G. Nelles, and A. Yasuda, “Towards faster liquid crystals at lower driving voltages,” J. SID 16, 63–70 (2008).

2006 (2)

K. C. Chu, C. Y. Chao, Y. F. Chen, Y. C. Wu, and C. C. Chen, “Electrically controlled surface plasmon resonance frequency of gold nanorods,” Appl. Phys. Lett. 89(10), 103107 (2006).
[Crossref]

K. Araya, D. A. Dunmur, M. C. Grossel, G. R. Luckhurst, S. E. Marchant-Lane, and A. Sugimura, “Flexible dimers as dopants for liquid crystal display mixtures with faster relaxation times,” J. Mater. Chem. 16(48), 4675–4689 (2006).
[Crossref]

2003 (1)

S. Gauza, H. Y. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42(1), 3463–3466 (2003).
[Crossref]

1995 (1)

M. Imai, H. Naito, M. Okuda, and A. Sugimura, “Determination of rotational viscosity and pretilt angle in nematic liquid crystals from transient current: Influence of ionic conduction,” Mol. Cryst. Liq. Cryst. A 259(1), 37–46 (1995).
[Crossref]

1993 (1)

G. Christoph, W. Stille, and G. Strobl, “Dependence of the rotational viscosity of nematic mixtures on the rotational diffusion constants of their components,” J. Chem. Phys. 99(4), 3075–3081 (1993).
[Crossref]

1990 (1)

S. T. Wu and C. S. Wu, “Experimental confirmation of the osipov-terentjev theory on the viscosity of nematic liquid crystals,” Phys. Rev. A 42(4), 2219–2227 (1990).
[Crossref] [PubMed]

1987 (1)

1982 (2)

H. Kneppe, F. Schneider, and N. K. Sharma, “Rotational viscosity -gamma-1 of nematic liquid-crystals,” J. Chem. Phys. 77(6), 3203–3208 (1982).
[Crossref]

H. Schad and H. R. Zeller, “Universal law for the rotational viscosity of nematic liquid-crystals,” Phys. Rev. A 26(5), 2940–2945 (1982).
[Crossref]

1981 (1)

P. R. Gerber, “Measurement of the rotational viscosity of nematic liquid-crystals,” Appl. Phys., A Mater. Sci. Process. 26(3), 139–142 (1981).
[Crossref]

1972 (1)

E. Jakeman and E. P. Raynes, “Electrooptic response times in liquid-crystals,” Phys. Lett. A 39(1), 69–70 (1972).
[Crossref]

Araya, K.

K. Araya, D. A. Dunmur, M. C. Grossel, G. R. Luckhurst, S. E. Marchant-Lane, and A. Sugimura, “Flexible dimers as dopants for liquid crystal display mixtures with faster relaxation times,” J. Mater. Chem. 16(48), 4675–4689 (2006).
[Crossref]

Cargill, M. R.

M. R. Cargill, G. Sandford, A. J. Tadeusiak, G. D. Love, N. Hollfelder, F. Pleis, G. Nelles, and P. Kilickiran, “Highly fluorinated biphenyl ether systems as dopants for fast-response liquid crystal display applications,” Liq. Cryst. 38(8), 1069–1078 (2011).
[Crossref]

Chao, C. Y.

K. C. Chu, C. Y. Chao, Y. F. Chen, Y. C. Wu, and C. C. Chen, “Electrically controlled surface plasmon resonance frequency of gold nanorods,” Appl. Phys. Lett. 89(10), 103107 (2006).
[Crossref]

Chen, C. C.

K. C. Chu, C. Y. Chao, Y. F. Chen, Y. C. Wu, and C. C. Chen, “Electrically controlled surface plasmon resonance frequency of gold nanorods,” Appl. Phys. Lett. 89(10), 103107 (2006).
[Crossref]

Chen, J.

J. Liu, J. C. She, S. Z. Deng, J. Chen, and N. S. Xu, “Ultrathin seed-layer for tuning density of ZnO nanowire arrays and their field emission characteristics,” J. Phys. Chem. C 112(31), 11685–11690 (2008).
[Crossref]

Chen, Y. F.

K. C. Chu, C. Y. Chao, Y. F. Chen, Y. C. Wu, and C. C. Chen, “Electrically controlled surface plasmon resonance frequency of gold nanorods,” Appl. Phys. Lett. 89(10), 103107 (2006).
[Crossref]

Choi, Y. S.

W. K. Lee, Y. S. Choi, Y. G. Kang, J. Sung, D. S. Seo, and C. Park, “Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks,” Adv. Funct. Mater. 21(20), 3843–3850 (2011).
[Crossref]

Christoph, G.

G. Christoph, W. Stille, and G. Strobl, “Dependence of the rotational viscosity of nematic mixtures on the rotational diffusion constants of their components,” J. Chem. Phys. 99(4), 3075–3081 (1993).
[Crossref]

Chu, K. C.

K. C. Chu, C. Y. Chao, Y. F. Chen, Y. C. Wu, and C. C. Chen, “Electrically controlled surface plasmon resonance frequency of gold nanorods,” Appl. Phys. Lett. 89(10), 103107 (2006).
[Crossref]

Chung, H. K.

H. K. Chung, H. G. Park, Y. S. Ha, J. M. Han, J. W. Lee, and D. S. Seo, “Superior electro-optic properties of liquid crystal system using cobalt oxide nanoparticle dispersion,” Liq. Cryst. 40(5), 632–638 (2013).
[Crossref]

Dabrowski, R.

S. Gauza, H. Y. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42(1), 3463–3466 (2003).
[Crossref]

Deng, S. Z.

J. Liu, J. C. She, S. Z. Deng, J. Chen, and N. S. Xu, “Ultrathin seed-layer for tuning density of ZnO nanowire arrays and their field emission characteristics,” J. Phys. Chem. C 112(31), 11685–11690 (2008).
[Crossref]

Dunmur, D. A.

K. Araya, D. A. Dunmur, M. C. Grossel, G. R. Luckhurst, S. E. Marchant-Lane, and A. Sugimura, “Flexible dimers as dopants for liquid crystal display mixtures with faster relaxation times,” J. Mater. Chem. 16(48), 4675–4689 (2006).
[Crossref]

Efron, U.

Gauza, S.

S. Gauza, H. Y. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42(1), 3463–3466 (2003).
[Crossref]

Gerber, P. R.

P. R. Gerber, “Measurement of the rotational viscosity of nematic liquid-crystals,” Appl. Phys., A Mater. Sci. Process. 26(3), 139–142 (1981).
[Crossref]

Grossel, M. C.

K. Araya, D. A. Dunmur, M. C. Grossel, G. R. Luckhurst, S. E. Marchant-Lane, and A. Sugimura, “Flexible dimers as dopants for liquid crystal display mixtures with faster relaxation times,” J. Mater. Chem. 16(48), 4675–4689 (2006).
[Crossref]

Gupta, S. K.

D. P. Singh, S. K. Gupta, and R. Manohar, “ZnO1-xSx nanosphere in ferroelectric liquid crystal matrix: the effect of aggregation and defects on the dielectric and electro-optical properties,” Adv. Condens. Matter Phys. 2013, 250301 (2013).
[Crossref]

Ha, Y. S.

H. K. Chung, H. G. Park, Y. S. Ha, J. M. Han, J. W. Lee, and D. S. Seo, “Superior electro-optic properties of liquid crystal system using cobalt oxide nanoparticle dispersion,” Liq. Cryst. 40(5), 632–638 (2013).
[Crossref]

Han, J. M.

H. K. Chung, H. G. Park, Y. S. Ha, J. M. Han, J. W. Lee, and D. S. Seo, “Superior electro-optic properties of liquid crystal system using cobalt oxide nanoparticle dispersion,” Liq. Cryst. 40(5), 632–638 (2013).
[Crossref]

Hegmann, T.

H. Qi, B. Kinkead, and T. Hegmann, “Unprecedented dual alignment mode and Freedericksz transition in planar nematic liquid crystal cells doped with gold nanoclusters,” Adv. Funct. Mater. 18(2), 212–221 (2008).
[Crossref]

Hollfelder, N.

M. R. Cargill, G. Sandford, A. J. Tadeusiak, G. D. Love, N. Hollfelder, F. Pleis, G. Nelles, and P. Kilickiran, “Highly fluorinated biphenyl ether systems as dopants for fast-response liquid crystal display applications,” Liq. Cryst. 38(8), 1069–1078 (2011).
[Crossref]

P. Kilickiran, A. Masutani, T. Roberts, N. Hollfelder, B. Schüller, G. Nelles, and A. Yasuda, “Towards faster liquid crystals at lower driving voltages,” J. SID 16, 63–70 (2008).

P. Kilickiran, A. Masutani, N. Hollfelder, G. Nelles, and A. Yasuda, “Halogenated non-planar dopants for fast response liquid crystals,” SID Symposium Digest38, 999–1002 (2007).
[Crossref]

Imai, M.

M. Imai, H. Naito, M. Okuda, and A. Sugimura, “Determination of rotational viscosity and pretilt angle in nematic liquid crystals from transient current: Influence of ionic conduction,” Mol. Cryst. Liq. Cryst. A 259(1), 37–46 (1995).
[Crossref]

Jakeman, E.

E. Jakeman and E. P. Raynes, “Electrooptic response times in liquid-crystals,” Phys. Lett. A 39(1), 69–70 (1972).
[Crossref]

Kang, Y. G.

W. K. Lee, Y. S. Choi, Y. G. Kang, J. Sung, D. S. Seo, and C. Park, “Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks,” Adv. Funct. Mater. 21(20), 3843–3850 (2011).
[Crossref]

Khlebtsov, B.

S. Torgova, E. Pozhidaev, A. Lobanov, M. Minchenko, and B. Khlebtsov, “Nanocomposites consisting of gold nanorods and nematic liquid crystals: optical properties,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 525(1), 176–183 (2010).
[Crossref]

Kilickiran, P.

M. R. Cargill, G. Sandford, A. J. Tadeusiak, G. D. Love, N. Hollfelder, F. Pleis, G. Nelles, and P. Kilickiran, “Highly fluorinated biphenyl ether systems as dopants for fast-response liquid crystal display applications,” Liq. Cryst. 38(8), 1069–1078 (2011).
[Crossref]

P. Kilickiran, A. Masutani, T. Roberts, N. Hollfelder, B. Schüller, G. Nelles, and A. Yasuda, “Towards faster liquid crystals at lower driving voltages,” J. SID 16, 63–70 (2008).

P. Kilickiran, A. Masutani, N. Hollfelder, G. Nelles, and A. Yasuda, “Halogenated non-planar dopants for fast response liquid crystals,” SID Symposium Digest38, 999–1002 (2007).
[Crossref]

Kinkead, B.

H. Qi, B. Kinkead, and T. Hegmann, “Unprecedented dual alignment mode and Freedericksz transition in planar nematic liquid crystal cells doped with gold nanoclusters,” Adv. Funct. Mater. 18(2), 212–221 (2008).
[Crossref]

Kneppe, H.

H. Kneppe, F. Schneider, and N. K. Sharma, “Rotational viscosity -gamma-1 of nematic liquid-crystals,” J. Chem. Phys. 77(6), 3203–3208 (1982).
[Crossref]

Lackner, A. M.

Lee, J. W.

H. K. Chung, H. G. Park, Y. S. Ha, J. M. Han, J. W. Lee, and D. S. Seo, “Superior electro-optic properties of liquid crystal system using cobalt oxide nanoparticle dispersion,” Liq. Cryst. 40(5), 632–638 (2013).
[Crossref]

Lee, W. K.

W. K. Lee, Y. S. Choi, Y. G. Kang, J. Sung, D. S. Seo, and C. Park, “Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks,” Adv. Funct. Mater. 21(20), 3843–3850 (2011).
[Crossref]

Liu, J.

J. Liu, J. C. She, S. Z. Deng, J. Chen, and N. S. Xu, “Ultrathin seed-layer for tuning density of ZnO nanowire arrays and their field emission characteristics,” J. Phys. Chem. C 112(31), 11685–11690 (2008).
[Crossref]

Lobanov, A.

S. Torgova, E. Pozhidaev, A. Lobanov, M. Minchenko, and B. Khlebtsov, “Nanocomposites consisting of gold nanorods and nematic liquid crystals: optical properties,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 525(1), 176–183 (2010).
[Crossref]

Love, G. D.

M. R. Cargill, G. Sandford, A. J. Tadeusiak, G. D. Love, N. Hollfelder, F. Pleis, G. Nelles, and P. Kilickiran, “Highly fluorinated biphenyl ether systems as dopants for fast-response liquid crystal display applications,” Liq. Cryst. 38(8), 1069–1078 (2011).
[Crossref]

Luckhurst, G. R.

K. Araya, D. A. Dunmur, M. C. Grossel, G. R. Luckhurst, S. E. Marchant-Lane, and A. Sugimura, “Flexible dimers as dopants for liquid crystal display mixtures with faster relaxation times,” J. Mater. Chem. 16(48), 4675–4689 (2006).
[Crossref]

Manohar, R.

D. P. Singh, S. K. Gupta, and R. Manohar, “ZnO1-xSx nanosphere in ferroelectric liquid crystal matrix: the effect of aggregation and defects on the dielectric and electro-optical properties,” Adv. Condens. Matter Phys. 2013, 250301 (2013).
[Crossref]

Marchant-Lane, S. E.

K. Araya, D. A. Dunmur, M. C. Grossel, G. R. Luckhurst, S. E. Marchant-Lane, and A. Sugimura, “Flexible dimers as dopants for liquid crystal display mixtures with faster relaxation times,” J. Mater. Chem. 16(48), 4675–4689 (2006).
[Crossref]

Masutani, A.

P. Kilickiran, A. Masutani, T. Roberts, N. Hollfelder, B. Schüller, G. Nelles, and A. Yasuda, “Towards faster liquid crystals at lower driving voltages,” J. SID 16, 63–70 (2008).

P. Kilickiran, A. Masutani, N. Hollfelder, G. Nelles, and A. Yasuda, “Halogenated non-planar dopants for fast response liquid crystals,” SID Symposium Digest38, 999–1002 (2007).
[Crossref]

Minchenko, M.

S. Torgova, E. Pozhidaev, A. Lobanov, M. Minchenko, and B. Khlebtsov, “Nanocomposites consisting of gold nanorods and nematic liquid crystals: optical properties,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 525(1), 176–183 (2010).
[Crossref]

Naito, H.

M. Imai, H. Naito, M. Okuda, and A. Sugimura, “Determination of rotational viscosity and pretilt angle in nematic liquid crystals from transient current: Influence of ionic conduction,” Mol. Cryst. Liq. Cryst. A 259(1), 37–46 (1995).
[Crossref]

Nelles, G.

M. R. Cargill, G. Sandford, A. J. Tadeusiak, G. D. Love, N. Hollfelder, F. Pleis, G. Nelles, and P. Kilickiran, “Highly fluorinated biphenyl ether systems as dopants for fast-response liquid crystal display applications,” Liq. Cryst. 38(8), 1069–1078 (2011).
[Crossref]

P. Kilickiran, A. Masutani, T. Roberts, N. Hollfelder, B. Schüller, G. Nelles, and A. Yasuda, “Towards faster liquid crystals at lower driving voltages,” J. SID 16, 63–70 (2008).

P. Kilickiran, A. Masutani, N. Hollfelder, G. Nelles, and A. Yasuda, “Halogenated non-planar dopants for fast response liquid crystals,” SID Symposium Digest38, 999–1002 (2007).
[Crossref]

Okuda, M.

M. Imai, H. Naito, M. Okuda, and A. Sugimura, “Determination of rotational viscosity and pretilt angle in nematic liquid crystals from transient current: Influence of ionic conduction,” Mol. Cryst. Liq. Cryst. A 259(1), 37–46 (1995).
[Crossref]

Park, C.

W. K. Lee, Y. S. Choi, Y. G. Kang, J. Sung, D. S. Seo, and C. Park, “Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks,” Adv. Funct. Mater. 21(20), 3843–3850 (2011).
[Crossref]

Park, H. G.

H. K. Chung, H. G. Park, Y. S. Ha, J. M. Han, J. W. Lee, and D. S. Seo, “Superior electro-optic properties of liquid crystal system using cobalt oxide nanoparticle dispersion,” Liq. Cryst. 40(5), 632–638 (2013).
[Crossref]

Pleis, F.

M. R. Cargill, G. Sandford, A. J. Tadeusiak, G. D. Love, N. Hollfelder, F. Pleis, G. Nelles, and P. Kilickiran, “Highly fluorinated biphenyl ether systems as dopants for fast-response liquid crystal display applications,” Liq. Cryst. 38(8), 1069–1078 (2011).
[Crossref]

Pozhidaev, E.

S. Torgova, E. Pozhidaev, A. Lobanov, M. Minchenko, and B. Khlebtsov, “Nanocomposites consisting of gold nanorods and nematic liquid crystals: optical properties,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 525(1), 176–183 (2010).
[Crossref]

Qi, H.

H. Qi, B. Kinkead, and T. Hegmann, “Unprecedented dual alignment mode and Freedericksz transition in planar nematic liquid crystal cells doped with gold nanoclusters,” Adv. Funct. Mater. 18(2), 212–221 (2008).
[Crossref]

Raynes, E. P.

E. Jakeman and E. P. Raynes, “Electrooptic response times in liquid-crystals,” Phys. Lett. A 39(1), 69–70 (1972).
[Crossref]

Roberts, T.

P. Kilickiran, A. Masutani, T. Roberts, N. Hollfelder, B. Schüller, G. Nelles, and A. Yasuda, “Towards faster liquid crystals at lower driving voltages,” J. SID 16, 63–70 (2008).

Sandford, G.

M. R. Cargill, G. Sandford, A. J. Tadeusiak, G. D. Love, N. Hollfelder, F. Pleis, G. Nelles, and P. Kilickiran, “Highly fluorinated biphenyl ether systems as dopants for fast-response liquid crystal display applications,” Liq. Cryst. 38(8), 1069–1078 (2011).
[Crossref]

Schad, H.

H. Schad and H. R. Zeller, “Universal law for the rotational viscosity of nematic liquid-crystals,” Phys. Rev. A 26(5), 2940–2945 (1982).
[Crossref]

Schneider, F.

H. Kneppe, F. Schneider, and N. K. Sharma, “Rotational viscosity -gamma-1 of nematic liquid-crystals,” J. Chem. Phys. 77(6), 3203–3208 (1982).
[Crossref]

Schüller, B.

P. Kilickiran, A. Masutani, T. Roberts, N. Hollfelder, B. Schüller, G. Nelles, and A. Yasuda, “Towards faster liquid crystals at lower driving voltages,” J. SID 16, 63–70 (2008).

Seed, A. J.

S. Gauza, H. Y. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42(1), 3463–3466 (2003).
[Crossref]

Seo, D. S.

H. K. Chung, H. G. Park, Y. S. Ha, J. M. Han, J. W. Lee, and D. S. Seo, “Superior electro-optic properties of liquid crystal system using cobalt oxide nanoparticle dispersion,” Liq. Cryst. 40(5), 632–638 (2013).
[Crossref]

W. K. Lee, Y. S. Choi, Y. G. Kang, J. Sung, D. S. Seo, and C. Park, “Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks,” Adv. Funct. Mater. 21(20), 3843–3850 (2011).
[Crossref]

Sharma, N. K.

H. Kneppe, F. Schneider, and N. K. Sharma, “Rotational viscosity -gamma-1 of nematic liquid-crystals,” J. Chem. Phys. 77(6), 3203–3208 (1982).
[Crossref]

She, J. C.

J. Liu, J. C. She, S. Z. Deng, J. Chen, and N. S. Xu, “Ultrathin seed-layer for tuning density of ZnO nanowire arrays and their field emission characteristics,” J. Phys. Chem. C 112(31), 11685–11690 (2008).
[Crossref]

Singh, D. P.

D. P. Singh, S. K. Gupta, and R. Manohar, “ZnO1-xSx nanosphere in ferroelectric liquid crystal matrix: the effect of aggregation and defects on the dielectric and electro-optical properties,” Adv. Condens. Matter Phys. 2013, 250301 (2013).
[Crossref]

Stille, W.

G. Christoph, W. Stille, and G. Strobl, “Dependence of the rotational viscosity of nematic mixtures on the rotational diffusion constants of their components,” J. Chem. Phys. 99(4), 3075–3081 (1993).
[Crossref]

Strobl, G.

G. Christoph, W. Stille, and G. Strobl, “Dependence of the rotational viscosity of nematic mixtures on the rotational diffusion constants of their components,” J. Chem. Phys. 99(4), 3075–3081 (1993).
[Crossref]

Sugimura, A.

K. Araya, D. A. Dunmur, M. C. Grossel, G. R. Luckhurst, S. E. Marchant-Lane, and A. Sugimura, “Flexible dimers as dopants for liquid crystal display mixtures with faster relaxation times,” J. Mater. Chem. 16(48), 4675–4689 (2006).
[Crossref]

M. Imai, H. Naito, M. Okuda, and A. Sugimura, “Determination of rotational viscosity and pretilt angle in nematic liquid crystals from transient current: Influence of ionic conduction,” Mol. Cryst. Liq. Cryst. A 259(1), 37–46 (1995).
[Crossref]

Sung, J.

W. K. Lee, Y. S. Choi, Y. G. Kang, J. Sung, D. S. Seo, and C. Park, “Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks,” Adv. Funct. Mater. 21(20), 3843–3850 (2011).
[Crossref]

Tadeusiak, A. J.

M. R. Cargill, G. Sandford, A. J. Tadeusiak, G. D. Love, N. Hollfelder, F. Pleis, G. Nelles, and P. Kilickiran, “Highly fluorinated biphenyl ether systems as dopants for fast-response liquid crystal display applications,” Liq. Cryst. 38(8), 1069–1078 (2011).
[Crossref]

Torgova, S.

S. Torgova, E. Pozhidaev, A. Lobanov, M. Minchenko, and B. Khlebtsov, “Nanocomposites consisting of gold nanorods and nematic liquid crystals: optical properties,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 525(1), 176–183 (2010).
[Crossref]

Walton, H. G.

H. G. Walton, “Influence of TiO2 nanoparticle doping on the splay and bend elastic constants of the nematic liquid crystal 4-butyl-4-heptyl-bicyclohexyl-4-carbononitrile, CCN47,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 574(1), 60–66 (2013).
[Crossref]

Wang, H. Y.

S. Gauza, H. Y. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42(1), 3463–3466 (2003).
[Crossref]

Wen, C. H.

S. Gauza, H. Y. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42(1), 3463–3466 (2003).
[Crossref]

Wu, C. S.

S. T. Wu and C. S. Wu, “Experimental confirmation of the osipov-terentjev theory on the viscosity of nematic liquid crystals,” Phys. Rev. A 42(4), 2219–2227 (1990).
[Crossref] [PubMed]

Wu, S. T.

S. Gauza, H. Y. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42(1), 3463–3466 (2003).
[Crossref]

S. T. Wu and C. S. Wu, “Experimental confirmation of the osipov-terentjev theory on the viscosity of nematic liquid crystals,” Phys. Rev. A 42(4), 2219–2227 (1990).
[Crossref] [PubMed]

S. T. Wu, A. M. Lackner, and U. Efron, “Optimal operation temperature of liquid crystal modulators,” Appl. Opt. 26(16), 3441–3445 (1987).
[Crossref] [PubMed]

Wu, Y. C.

K. C. Chu, C. Y. Chao, Y. F. Chen, Y. C. Wu, and C. C. Chen, “Electrically controlled surface plasmon resonance frequency of gold nanorods,” Appl. Phys. Lett. 89(10), 103107 (2006).
[Crossref]

Xu, N. S.

J. Liu, J. C. She, S. Z. Deng, J. Chen, and N. S. Xu, “Ultrathin seed-layer for tuning density of ZnO nanowire arrays and their field emission characteristics,” J. Phys. Chem. C 112(31), 11685–11690 (2008).
[Crossref]

Yasuda, A.

P. Kilickiran, A. Masutani, T. Roberts, N. Hollfelder, B. Schüller, G. Nelles, and A. Yasuda, “Towards faster liquid crystals at lower driving voltages,” J. SID 16, 63–70 (2008).

P. Kilickiran, A. Masutani, N. Hollfelder, G. Nelles, and A. Yasuda, “Halogenated non-planar dopants for fast response liquid crystals,” SID Symposium Digest38, 999–1002 (2007).
[Crossref]

Zeller, H. R.

H. Schad and H. R. Zeller, “Universal law for the rotational viscosity of nematic liquid-crystals,” Phys. Rev. A 26(5), 2940–2945 (1982).
[Crossref]

Adv. Condens. Matter Phys. (1)

D. P. Singh, S. K. Gupta, and R. Manohar, “ZnO1-xSx nanosphere in ferroelectric liquid crystal matrix: the effect of aggregation and defects on the dielectric and electro-optical properties,” Adv. Condens. Matter Phys. 2013, 250301 (2013).
[Crossref]

Adv. Funct. Mater. (2)

H. Qi, B. Kinkead, and T. Hegmann, “Unprecedented dual alignment mode and Freedericksz transition in planar nematic liquid crystal cells doped with gold nanoclusters,” Adv. Funct. Mater. 18(2), 212–221 (2008).
[Crossref]

W. K. Lee, Y. S. Choi, Y. G. Kang, J. Sung, D. S. Seo, and C. Park, “Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks,” Adv. Funct. Mater. 21(20), 3843–3850 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. C. Chu, C. Y. Chao, Y. F. Chen, Y. C. Wu, and C. C. Chen, “Electrically controlled surface plasmon resonance frequency of gold nanorods,” Appl. Phys. Lett. 89(10), 103107 (2006).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

P. R. Gerber, “Measurement of the rotational viscosity of nematic liquid-crystals,” Appl. Phys., A Mater. Sci. Process. 26(3), 139–142 (1981).
[Crossref]

J. Chem. Phys. (2)

H. Kneppe, F. Schneider, and N. K. Sharma, “Rotational viscosity -gamma-1 of nematic liquid-crystals,” J. Chem. Phys. 77(6), 3203–3208 (1982).
[Crossref]

G. Christoph, W. Stille, and G. Strobl, “Dependence of the rotational viscosity of nematic mixtures on the rotational diffusion constants of their components,” J. Chem. Phys. 99(4), 3075–3081 (1993).
[Crossref]

J. Mater. Chem. (1)

K. Araya, D. A. Dunmur, M. C. Grossel, G. R. Luckhurst, S. E. Marchant-Lane, and A. Sugimura, “Flexible dimers as dopants for liquid crystal display mixtures with faster relaxation times,” J. Mater. Chem. 16(48), 4675–4689 (2006).
[Crossref]

J. Phys. Chem. C (1)

J. Liu, J. C. She, S. Z. Deng, J. Chen, and N. S. Xu, “Ultrathin seed-layer for tuning density of ZnO nanowire arrays and their field emission characteristics,” J. Phys. Chem. C 112(31), 11685–11690 (2008).
[Crossref]

J. SID (1)

P. Kilickiran, A. Masutani, T. Roberts, N. Hollfelder, B. Schüller, G. Nelles, and A. Yasuda, “Towards faster liquid crystals at lower driving voltages,” J. SID 16, 63–70 (2008).

Jpn. J. Appl. Phys. (1)

S. Gauza, H. Y. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42(1), 3463–3466 (2003).
[Crossref]

Liq. Cryst. (2)

M. R. Cargill, G. Sandford, A. J. Tadeusiak, G. D. Love, N. Hollfelder, F. Pleis, G. Nelles, and P. Kilickiran, “Highly fluorinated biphenyl ether systems as dopants for fast-response liquid crystal display applications,” Liq. Cryst. 38(8), 1069–1078 (2011).
[Crossref]

H. K. Chung, H. G. Park, Y. S. Ha, J. M. Han, J. W. Lee, and D. S. Seo, “Superior electro-optic properties of liquid crystal system using cobalt oxide nanoparticle dispersion,” Liq. Cryst. 40(5), 632–638 (2013).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (2)

S. Torgova, E. Pozhidaev, A. Lobanov, M. Minchenko, and B. Khlebtsov, “Nanocomposites consisting of gold nanorods and nematic liquid crystals: optical properties,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 525(1), 176–183 (2010).
[Crossref]

H. G. Walton, “Influence of TiO2 nanoparticle doping on the splay and bend elastic constants of the nematic liquid crystal 4-butyl-4-heptyl-bicyclohexyl-4-carbononitrile, CCN47,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 574(1), 60–66 (2013).
[Crossref]

Mol. Cryst. Liq. Cryst. A (1)

M. Imai, H. Naito, M. Okuda, and A. Sugimura, “Determination of rotational viscosity and pretilt angle in nematic liquid crystals from transient current: Influence of ionic conduction,” Mol. Cryst. Liq. Cryst. A 259(1), 37–46 (1995).
[Crossref]

Phys. Lett. A (1)

E. Jakeman and E. P. Raynes, “Electrooptic response times in liquid-crystals,” Phys. Lett. A 39(1), 69–70 (1972).
[Crossref]

Phys. Rev. A (2)

H. Schad and H. R. Zeller, “Universal law for the rotational viscosity of nematic liquid-crystals,” Phys. Rev. A 26(5), 2940–2945 (1982).
[Crossref]

S. T. Wu and C. S. Wu, “Experimental confirmation of the osipov-terentjev theory on the viscosity of nematic liquid crystals,” Phys. Rev. A 42(4), 2219–2227 (1990).
[Crossref] [PubMed]

Other (1)

P. Kilickiran, A. Masutani, N. Hollfelder, G. Nelles, and A. Yasuda, “Halogenated non-planar dopants for fast response liquid crystals,” SID Symposium Digest38, 999–1002 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Chemical structures of (a) toluene and (b) 1-methylnaphthalene.
Fig. 2
Fig. 2 Polarizing optical microscopy (POM) pictures of (a) NLCs, (b) doping 10 wt.% toluene, and (c) doping 10 wt.% 1-methylnaphthalene, (d) doping 12 wt.% toluene, and (e) doping 12 wt.% 1-methylnaphthalene. POM images show the bright states (voltage off) on the left side and dark states (voltage applied) on the right side for each group of pictures. A and P show the directions of analyzer and polarizer.
Fig. 3
Fig. 3 Voltage-transmittance curves with various doping concentrations of (a) toluene and (b) 1-methylnaphthalene.
Fig. 4
Fig. 4 (a) & (b) The performances of rise time and decay time of doping toluene and 1-methylnaphthalene into NLCs, respectively.
Fig. 5
Fig. 5 (a) The phase relaxation time of NLCs doped with AH liquids at various concentrations. (b) The improvements of rotational viscosity and visco-elastic coefficient by doping AH liquids.

Tables (1)

Tables Icon

Table 1 The birefringence and dielectric anisotropy characteristics of AH doped NLCs.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

δ ( t ) = δ 0 exp ( 2 t τ 0 )
I ( t ) = I 0 sin 2 ( Δ t o t δ ( t ) 2 )
γ 1 = τ 0 K 11 π 2 d 2
K e f f = ( V t h π ) 2 ε 0 Δ ε
T r i s e = γ 1 d 2 K e f f π 2 | V 2 V d 2 |
T d e c a y = γ 1 d 2 K e f f π 2

Metrics