Abstract

Strong subwavelength field enhancement has often been assumed to be unique to plasmonic nanostructures. Here we propose a type of all-dielectric metamaterials based on split bar resonators. The nano gap at the centre of the resonant elements results in large local field enhancement and light localization in the surrounding medium, which can be employed for strong light-matter interactions. In a Fano-resonant dielectric metamaterial comprising pairs of asymmetric split silicon bars, the enhancement of electric field amplitude in the gap exceeds 120 while the averaged electromagnetic energy density is enhanced by more than 7000 times. An optical refractive index sensor with a potential sensitivity of 525 nm/RIU is designed based on the proposed metamaterials. The proposed concept can be applied to other types of dielectric nanostructures and may stimulate further research of dielectric metamaterials for applications ranging from nonlinear optics and sensing to the realization of new types of active lasing devices.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High Q-factor multiple Fano resonances for high-sensitivity sensing in all-dielectric metamaterials

Wudeng Wang, Li Zheng, Li Xiong, Jianguang Qi, and Baoying Li
OSA Continuum 2(10) 2818-2825 (2019)

Theoretical investigation of active modulation and enhancement of Fano resonance in THz metamaterials

Subhajit Karmakar, Ravendra K. Varshney, and Dibakar Roy Chowdhury
OSA Continuum 2(3) 531-539 (2019)

References

  • View by:
  • |
  • |
  • |

  1. B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
    [Crossref]
  2. A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2, 247–264 (2013).
    [Crossref]
  3. A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
    [Crossref] [PubMed]
  4. Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12, 60–69 (2009).
    [Crossref]
  5. A. García-Etxarri, R. Gómez-Medina, L. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
    [Crossref] [PubMed]
  6. A. Kuznetsov, A. Miroshnichenko, Y. Fu, J. Zhang, and B. LukŁanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
    [Crossref] [PubMed]
  7. L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: Silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
    [Crossref] [PubMed]
  8. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
    [Crossref] [PubMed]
  9. F. Zhang, Q. Zhao, C. Lan, X. He, W. Zhang, J. Zhou, and K. Qiu, “Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial,” Applied Physics Letters 104, 131907 (2014).
    [Crossref]
  10. V. Khardikov, E. Iarko, and S. Prosvirnin, “A giant red shift and enhancement of the light confinement in a planar array of dielectric bars,” J. Opt. 14, 035103 (2012).
    [Crossref]
  11. J. Zhang, W. Liu, X. Yuan, and S. Qin, “Electromagnetically induced transparency-like optical responses in all-dielectric metamaterials,” J. Opt. 16, 125102 (2014).
    [Crossref]
  12. P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13, 471–475 (2014).
    [Crossref] [PubMed]
  13. A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12, 6459–6463 (2012).
    [Crossref] [PubMed]
  14. D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104, 021104 (2014).
    [Crossref]
  15. K. E. Chong, B. Hopkins, I. Staude, A. E. Miroshnichenko, J. Dominguez, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Observation of fano resonances in all-dielectric nanoparticle oligomers,” Small 10, 1985–1990 (2014).
    [Crossref] [PubMed]
  16. J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial,” Opt. Express 21, 26721–26728 (2013).
    [Crossref] [PubMed]
  17. Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “High quality factor fano-resonant all-dielectric metamaterials,” arXiv:1405.3901 (2014).
  18. J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Nonlinear dielectric optomechanical metamaterials,” Light: Sci. & Appl. 2, e96 (2013).
    [Crossref]
  19. J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Giant optical forces in planar dielectric photonic metamaterials,” Opt. Lett. 39, 4883–4886 (2014).
    [Crossref] [PubMed]
  20. P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
    [Crossref]
  21. M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency light-wave control with all-dielectric optical huygens’ metasurfaces,” arXiv:1405.5038 (2014).
  22. C. Wu, N. Arju, G. Kelp, J. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Comm. 5, 3892 (2013).
  23. J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
    [Crossref] [PubMed]
  24. L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
    [Crossref]
  25. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Optics letters 29, 1209–1211 (2004).
    [Crossref] [PubMed]
  26. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29, 1626–1628 (2004).
    [Crossref] [PubMed]
  27. M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater 3, 211–219 (2004).
    [Crossref]
  28. K. Liu, W. Xu, Z. H. Zhu, W. M. Ye, X. D. Yuan, and C. Zeng, “Wave propagation in deep-subwavelength mode waveguides,” Opt. Lett. 37, 2826–2828 (2012).
    [Crossref] [PubMed]
  29. K. Liu, Z. Luo, W. M. Ye, X. D. Yuan, Z. H. Zhu, and C. Zeng, “Improving the room-temperature confinement of light by miniaturizing mode sizes into a deep subwavelength scale using dielectric spheres in metal cavities,” Opt. Lett. 37, 4107–4109 (2012).
    [Crossref] [PubMed]
  30. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano letters 10, 2342–2348 (2010).
    [Crossref] [PubMed]
  31. Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Na. Comm. 4, 2381 (2013).
  32. N. Zheludev, S. Prosvirnin, N. Papasimakis, and V. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
    [Crossref]

2014 (6)

F. Zhang, Q. Zhao, C. Lan, X. He, W. Zhang, J. Zhou, and K. Qiu, “Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial,” Applied Physics Letters 104, 131907 (2014).
[Crossref]

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Giant optical forces in planar dielectric photonic metamaterials,” Opt. Lett. 39, 4883–4886 (2014).
[Crossref] [PubMed]

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104, 021104 (2014).
[Crossref]

K. E. Chong, B. Hopkins, I. Staude, A. E. Miroshnichenko, J. Dominguez, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Observation of fano resonances in all-dielectric nanoparticle oligomers,” Small 10, 1985–1990 (2014).
[Crossref] [PubMed]

J. Zhang, W. Liu, X. Yuan, and S. Qin, “Electromagnetically induced transparency-like optical responses in all-dielectric metamaterials,” J. Opt. 16, 125102 (2014).
[Crossref]

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13, 471–475 (2014).
[Crossref] [PubMed]

2013 (6)

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial,” Opt. Express 21, 26721–26728 (2013).
[Crossref] [PubMed]

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Nonlinear dielectric optomechanical metamaterials,” Light: Sci. & Appl. 2, e96 (2013).
[Crossref]

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Na. Comm. 4, 2381 (2013).

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

C. Wu, N. Arju, G. Kelp, J. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Comm. 5, 3892 (2013).

A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2, 247–264 (2013).
[Crossref]

2012 (7)

V. Khardikov, E. Iarko, and S. Prosvirnin, “A giant red shift and enhancement of the light confinement in a planar array of dielectric bars,” J. Opt. 14, 035103 (2012).
[Crossref]

A. Kuznetsov, A. Miroshnichenko, Y. Fu, J. Zhang, and B. LukŁanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: Silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
[Crossref] [PubMed]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref] [PubMed]

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12, 6459–6463 (2012).
[Crossref] [PubMed]

K. Liu, W. Xu, Z. H. Zhu, W. M. Ye, X. D. Yuan, and C. Zeng, “Wave propagation in deep-subwavelength mode waveguides,” Opt. Lett. 37, 2826–2828 (2012).
[Crossref] [PubMed]

K. Liu, Z. Luo, W. M. Ye, X. D. Yuan, Z. H. Zhu, and C. Zeng, “Improving the room-temperature confinement of light by miniaturizing mode sizes into a deep subwavelength scale using dielectric spheres in metal cavities,” Opt. Lett. 37, 4107–4109 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (2)

B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano letters 10, 2342–2348 (2010).
[Crossref] [PubMed]

2009 (1)

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12, 60–69 (2009).
[Crossref]

2008 (1)

N. Zheludev, S. Prosvirnin, N. Papasimakis, and V. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[Crossref]

2007 (1)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[Crossref] [PubMed]

2004 (3)

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Optics letters 29, 1209–1211 (2004).
[Crossref] [PubMed]

Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29, 1626–1628 (2004).
[Crossref] [PubMed]

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater 3, 211–219 (2004).
[Crossref]

Aizpurua, J.

Almeida, V. R.

Anderson, Z.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Arju, N.

C. Wu, N. Arju, G. Kelp, J. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Comm. 5, 3892 (2013).

Atwater, H. A.

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref] [PubMed]

Barrios, C. A.

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Optics letters 29, 1209–1211 (2004).
[Crossref] [PubMed]

Basilio, L. I.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref] [PubMed]

Belov, P. A.

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104, 021104 (2014).
[Crossref]

Boltasseva, A.

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref] [PubMed]

Brener, I.

K. E. Chong, B. Hopkins, I. Staude, A. E. Miroshnichenko, J. Dominguez, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Observation of fano resonances in all-dielectric nanoparticle oligomers,” Small 10, 1985–1990 (2014).
[Crossref] [PubMed]

C. Wu, N. Arju, G. Kelp, J. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Comm. 5, 3892 (2013).

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref] [PubMed]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency light-wave control with all-dielectric optical huygens’ metasurfaces,” arXiv:1405.5038 (2014).

Briggs, D. P.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “High quality factor fano-resonant all-dielectric metamaterials,” arXiv:1405.3901 (2014).

Brongersma, M. L.

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13, 471–475 (2014).
[Crossref] [PubMed]

Chantada, L.

Chong, C.

B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Chong, K. E.

K. E. Chong, B. Hopkins, I. Staude, A. E. Miroshnichenko, J. Dominguez, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Observation of fano resonances in all-dielectric nanoparticle oligomers,” Small 10, 1985–1990 (2014).
[Crossref] [PubMed]

Clem, P. G.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref] [PubMed]

Decker, M.

K. E. Chong, B. Hopkins, I. Staude, A. E. Miroshnichenko, J. Dominguez, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Observation of fano resonances in all-dielectric nanoparticle oligomers,” Small 10, 1985–1990 (2014).
[Crossref] [PubMed]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency light-wave control with all-dielectric optical huygens’ metasurfaces,” arXiv:1405.5038 (2014).

Dominguez, J.

K. E. Chong, B. Hopkins, I. Staude, A. E. Miroshnichenko, J. Dominguez, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Observation of fano resonances in all-dielectric nanoparticle oligomers,” Small 10, 1985–1990 (2014).
[Crossref] [PubMed]

C. Wu, N. Arju, G. Kelp, J. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Comm. 5, 3892 (2013).

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency light-wave control with all-dielectric optical huygens’ metasurfaces,” arXiv:1405.5038 (2014).

Falkner, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency light-wave control with all-dielectric optical huygens’ metasurfaces,” arXiv:1405.5038 (2014).

Fan, J.

C. Wu, N. Arju, G. Kelp, J. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Comm. 5, 3892 (2013).

Fan, P.

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13, 471–475 (2014).
[Crossref] [PubMed]

Fan, S.

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13, 471–475 (2014).
[Crossref] [PubMed]

Fedotov, V.

N. Zheludev, S. Prosvirnin, N. Papasimakis, and V. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[Crossref]

Fedotov, V. A.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[Crossref] [PubMed]

Fenollosa, R.

L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: Silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
[Crossref] [PubMed]

Filonov, D. S.

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104, 021104 (2014).
[Crossref]

Froufe-Pérez, L.

Fu, Y.

A. Kuznetsov, A. Miroshnichenko, Y. Fu, J. Zhang, and B. LukŁanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

García-Etxarri, A.

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano letters 10, 2342–2348 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Ginn, J. C.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref] [PubMed]

Gómez-Medina, R.

Gonzales, E.

C. Wu, N. Arju, G. Kelp, J. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Comm. 5, 3892 (2013).

Halas, N.

B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

He, X.

F. Zhang, Q. Zhao, C. Lan, X. He, W. Zhang, J. Zhou, and K. Qiu, “Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial,” Applied Physics Letters 104, 131907 (2014).
[Crossref]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano letters 10, 2342–2348 (2010).
[Crossref] [PubMed]

Hines, P. F.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref] [PubMed]

Hopkins, B.

K. E. Chong, B. Hopkins, I. Staude, A. E. Miroshnichenko, J. Dominguez, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Observation of fano resonances in all-dielectric nanoparticle oligomers,” Small 10, 1985–1990 (2014).
[Crossref] [PubMed]

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104, 021104 (2014).
[Crossref]

Iarko, E.

V. Khardikov, E. Iarko, and S. Prosvirnin, “A giant red shift and enhancement of the light confinement in a planar array of dielectric bars,” J. Opt. 14, 035103 (2012).
[Crossref]

Ihlefeld, J. F.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref] [PubMed]

Jiang, R.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Na. Comm. 4, 2381 (2013).

Jin, C.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Na. Comm. 4, 2381 (2013).

Joannopoulos, J. D.

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater 3, 211–219 (2004).
[Crossref]

Kelp, G.

C. Wu, N. Arju, G. Kelp, J. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Comm. 5, 3892 (2013).

Khanikaev, A. B.

A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2, 247–264 (2013).
[Crossref]

Khardikov, V.

V. Khardikov, E. Iarko, and S. Prosvirnin, “A giant red shift and enhancement of the light confinement in a planar array of dielectric bars,” J. Opt. 14, 035103 (2012).
[Crossref]

Kivshar, Y. S.

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104, 021104 (2014).
[Crossref]

K. E. Chong, B. Hopkins, I. Staude, A. E. Miroshnichenko, J. Dominguez, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Observation of fano resonances in all-dielectric nanoparticle oligomers,” Small 10, 1985–1990 (2014).
[Crossref] [PubMed]

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12, 6459–6463 (2012).
[Crossref] [PubMed]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency light-wave control with all-dielectric optical huygens’ metasurfaces,” arXiv:1405.5038 (2014).

Krasnok, A. E.

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104, 021104 (2014).
[Crossref]

Kravchenko, I. I.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “High quality factor fano-resonant all-dielectric metamaterials,” arXiv:1405.3901 (2014).

Kuznetsov, A.

A. Kuznetsov, A. Miroshnichenko, Y. Fu, J. Zhang, and B. LukŁanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Lan, C.

F. Zhang, Q. Zhao, C. Lan, X. He, W. Zhang, J. Zhou, and K. Qiu, “Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial,” Applied Physics Letters 104, 131907 (2014).
[Crossref]

Lippens, D.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12, 60–69 (2009).
[Crossref]

Lipson, M.

Liu, K.

Liu, M.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Na. Comm. 4, 2381 (2013).

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano letters 10, 2342–2348 (2010).
[Crossref] [PubMed]

Liu, T.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Na. Comm. 4, 2381 (2013).

Liu, W.

J. Zhang, W. Liu, X. Yuan, and S. Qin, “Electromagnetically induced transparency-like optical responses in all-dielectric metamaterials,” J. Opt. 16, 125102 (2014).
[Crossref]

López, C.

Luk’yanchuk, B.

B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

LukLanchuk, B.

A. Kuznetsov, A. Miroshnichenko, Y. Fu, J. Zhang, and B. LukŁanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Luo, Z.

MacDonald, K. F.

Maier, S.

B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano letters 10, 2342–2348 (2010).
[Crossref] [PubMed]

Meseguer, F.

L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: Silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
[Crossref] [PubMed]

Miroshnichenko, A.

A. Kuznetsov, A. Miroshnichenko, Y. Fu, J. Zhang, and B. LukŁanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Miroshnichenko, A. E.

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104, 021104 (2014).
[Crossref]

K. E. Chong, B. Hopkins, I. Staude, A. E. Miroshnichenko, J. Dominguez, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Observation of fano resonances in all-dielectric nanoparticle oligomers,” Small 10, 1985–1990 (2014).
[Crossref] [PubMed]

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12, 6459–6463 (2012).
[Crossref] [PubMed]

Moitra, P.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Nenasheva, E. A.

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104, 021104 (2014).
[Crossref]

Neshev, D. N.

K. E. Chong, B. Hopkins, I. Staude, A. E. Miroshnichenko, J. Dominguez, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Observation of fano resonances in all-dielectric nanoparticle oligomers,” Small 10, 1985–1990 (2014).
[Crossref] [PubMed]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency light-wave control with all-dielectric optical huygens’ metasurfaces,” arXiv:1405.5038 (2014).

Nieto-Vesperinas, M.

Nordlander, P.

B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Novotny, L.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[Crossref]

Panepucci, R. R.

Papasimakis, N.

N. Zheludev, S. Prosvirnin, N. Papasimakis, and V. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[Crossref]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[Crossref] [PubMed]

Pertsch, T.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency light-wave control with all-dielectric optical huygens’ metasurfaces,” arXiv:1405.5038 (2014).

Peters, D. W.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref] [PubMed]

Prosvirnin, S.

V. Khardikov, E. Iarko, and S. Prosvirnin, “A giant red shift and enhancement of the light confinement in a planar array of dielectric bars,” J. Opt. 14, 035103 (2012).
[Crossref]

N. Zheludev, S. Prosvirnin, N. Papasimakis, and V. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[Crossref]

Prosvirnin, S. L.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[Crossref] [PubMed]

Qin, S.

J. Zhang, W. Liu, X. Yuan, and S. Qin, “Electromagnetically induced transparency-like optical responses in all-dielectric metamaterials,” J. Opt. 16, 125102 (2014).
[Crossref]

Qiu, K.

F. Zhang, Q. Zhao, C. Lan, X. He, W. Zhang, J. Zhou, and K. Qiu, “Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial,” Applied Physics Letters 104, 131907 (2014).
[Crossref]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[Crossref] [PubMed]

Sáenz, J.

Scheffold, F.

Shen, Y.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Na. Comm. 4, 2381 (2013).

Shi, L.

L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: Silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
[Crossref] [PubMed]

Shvets, G.

C. Wu, N. Arju, G. Kelp, J. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Comm. 5, 3892 (2013).

A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2, 247–264 (2013).
[Crossref]

Sinclair, M. B.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref] [PubMed]

Slobozhanyuk, A. P.

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104, 021104 (2014).
[Crossref]

Soljacic, M.

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater 3, 211–219 (2004).
[Crossref]

Staude, I.

K. E. Chong, B. Hopkins, I. Staude, A. E. Miroshnichenko, J. Dominguez, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Observation of fano resonances in all-dielectric nanoparticle oligomers,” Small 10, 1985–1990 (2014).
[Crossref] [PubMed]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency light-wave control with all-dielectric optical huygens’ metasurfaces,” arXiv:1405.5038 (2014).

Stevens, J. O.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref] [PubMed]

Tao, Y.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Na. Comm. 4, 2381 (2013).

Tutuc, E.

C. Wu, N. Arju, G. Kelp, J. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Comm. 5, 3892 (2013).

Tuzer, T. U.

L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: Silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
[Crossref] [PubMed]

Valentine, J.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “High quality factor fano-resonant all-dielectric metamaterials,” arXiv:1405.3901 (2014).

Van Hulst, N.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[Crossref]

Wang, J.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Na. Comm. 4, 2381 (2013).

Wang, X.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Na. Comm. 4, 2381 (2013).

Warne, L. K.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref] [PubMed]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano letters 10, 2342–2348 (2010).
[Crossref] [PubMed]

Wendt, J. R.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref] [PubMed]

Wu, C.

C. Wu, N. Arju, G. Kelp, J. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Comm. 5, 3892 (2013).

A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2, 247–264 (2013).
[Crossref]

Xiao, G.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Na. Comm. 4, 2381 (2013).

Xu, Q.

Xu, W.

Yang, Y.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “High quality factor fano-resonant all-dielectric metamaterials,” arXiv:1405.3901 (2014).

Ye, W. M.

Yu, Z.

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13, 471–475 (2014).
[Crossref] [PubMed]

Yuan, X.

J. Zhang, W. Liu, X. Yuan, and S. Qin, “Electromagnetically induced transparency-like optical responses in all-dielectric metamaterials,” J. Opt. 16, 125102 (2014).
[Crossref]

Yuan, X. D.

Zeng, C.

Zhang, F.

F. Zhang, Q. Zhao, C. Lan, X. He, W. Zhang, J. Zhou, and K. Qiu, “Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial,” Applied Physics Letters 104, 131907 (2014).
[Crossref]

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12, 60–69 (2009).
[Crossref]

Zhang, J.

J. Zhang, W. Liu, X. Yuan, and S. Qin, “Electromagnetically induced transparency-like optical responses in all-dielectric metamaterials,” J. Opt. 16, 125102 (2014).
[Crossref]

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Giant optical forces in planar dielectric photonic metamaterials,” Opt. Lett. 39, 4883–4886 (2014).
[Crossref] [PubMed]

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Nonlinear dielectric optomechanical metamaterials,” Light: Sci. & Appl. 2, e96 (2013).
[Crossref]

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial,” Opt. Express 21, 26721–26728 (2013).
[Crossref] [PubMed]

A. Kuznetsov, A. Miroshnichenko, Y. Fu, J. Zhang, and B. LukŁanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Zhang, W.

F. Zhang, Q. Zhao, C. Lan, X. He, W. Zhang, J. Zhou, and K. Qiu, “Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial,” Applied Physics Letters 104, 131907 (2014).
[Crossref]

Zhao, Q.

F. Zhang, Q. Zhao, C. Lan, X. He, W. Zhang, J. Zhou, and K. Qiu, “Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial,” Applied Physics Letters 104, 131907 (2014).
[Crossref]

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12, 60–69 (2009).
[Crossref]

Zheludev, N.

B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

N. Zheludev, S. Prosvirnin, N. Papasimakis, and V. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[Crossref]

Zheludev, N. I.

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Giant optical forces in planar dielectric photonic metamaterials,” Opt. Lett. 39, 4883–4886 (2014).
[Crossref] [PubMed]

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Nonlinear dielectric optomechanical metamaterials,” Light: Sci. & Appl. 2, e96 (2013).
[Crossref]

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial,” Opt. Express 21, 26721–26728 (2013).
[Crossref] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[Crossref] [PubMed]

Zhou, J.

F. Zhang, Q. Zhao, C. Lan, X. He, W. Zhang, J. Zhou, and K. Qiu, “Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial,” Applied Physics Letters 104, 131907 (2014).
[Crossref]

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Na. Comm. 4, 2381 (2013).

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12, 60–69 (2009).
[Crossref]

Zhou, Z.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Na. Comm. 4, 2381 (2013).

Zhu, J.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Na. Comm. 4, 2381 (2013).

Zhu, Z. H.

Adv. Mater. (1)

L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: Silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104, 021104 (2014).
[Crossref]

Applied Physics Letters (1)

F. Zhang, Q. Zhao, C. Lan, X. He, W. Zhang, J. Zhou, and K. Qiu, “Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial,” Applied Physics Letters 104, 131907 (2014).
[Crossref]

J. Opt. (2)

V. Khardikov, E. Iarko, and S. Prosvirnin, “A giant red shift and enhancement of the light confinement in a planar array of dielectric bars,” J. Opt. 14, 035103 (2012).
[Crossref]

J. Zhang, W. Liu, X. Yuan, and S. Qin, “Electromagnetically induced transparency-like optical responses in all-dielectric metamaterials,” J. Opt. 16, 125102 (2014).
[Crossref]

Light: Sci. & Appl. (1)

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Nonlinear dielectric optomechanical metamaterials,” Light: Sci. & Appl. 2, e96 (2013).
[Crossref]

Mater. Today (1)

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12, 60–69 (2009).
[Crossref]

Na. Comm. (1)

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Na. Comm. 4, 2381 (2013).

Nano Lett. (1)

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12, 6459–6463 (2012).
[Crossref] [PubMed]

Nano letters (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano letters 10, 2342–2348 (2010).
[Crossref] [PubMed]

Nanophotonics (1)

A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2, 247–264 (2013).
[Crossref]

Nat. Comm. (1)

C. Wu, N. Arju, G. Kelp, J. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Comm. 5, 3892 (2013).

Nat. Mater (1)

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater 3, 211–219 (2004).
[Crossref]

Nat. Mater. (2)

B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13, 471–475 (2014).
[Crossref] [PubMed]

Nat. Photonics (3)

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

N. Zheludev, S. Prosvirnin, N. Papasimakis, and V. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[Crossref]

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Optics letters (1)

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Optics letters 29, 1209–1211 (2004).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[Crossref] [PubMed]

Sci. Rep. (1)

A. Kuznetsov, A. Miroshnichenko, Y. Fu, J. Zhang, and B. LukŁanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Science (1)

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref] [PubMed]

Small (1)

K. E. Chong, B. Hopkins, I. Staude, A. E. Miroshnichenko, J. Dominguez, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Observation of fano resonances in all-dielectric nanoparticle oligomers,” Small 10, 1985–1990 (2014).
[Crossref] [PubMed]

Other (2)

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency light-wave control with all-dielectric optical huygens’ metasurfaces,” arXiv:1405.5038 (2014).

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “High quality factor fano-resonant all-dielectric metamaterials,” arXiv:1405.3901 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of a dielectric metamaterial comprising periodical array of continuous bar resonators. (b) A dielectric metamaterial composed of split bar resonantors with a gap at the middle. (c) A dielectric metamaterial comprising pairs of parallel, geometrically asymmetric split bar resonators.
Fig. 2
Fig. 2 Dipole resonances in dielectric metamaterials. (a) Top view and geometric parameters of a unit cell of the dielectric metamaterial consisted of continuous silicon bars; The silicon bars are 750 nm long and 200 nm wide. (b) A unit cell of the dielectric metamaterial consisted of split silicon bars with a 50 nm wide groove at the centre. (c) Numerically simulated transmission spectra of the two metamaterials. The metamaterials are illuminated with a x-polarized plane wave at normal incidence. The thickness of the silicon bars are both 150 nm.
Fig. 3
Fig. 3 Local field enhancement and light localization in dielectric metamaterials at dipole resonances. (a) Electric field in z-direction. The field is normalized to the field amplitude (E0) of the incident light and plotted at the x–y plane that is 5 nm above the top surface of the dielectric bars. (b) Normalized electric field and (c) Normalized time averaged energy density at the x–y plane bisecting the nanobars. The metamaterial is illuminated with a x-polarized plane wave at normal incidence. Top: metamaterial with continuous silicon bars. Bottom: metamaterial with split silicon bars.
Fig. 4
Fig. 4 Fano-resonances in dielectric metamaterials. (a) Top view and geometric parameters of a dielectric metamaterial comprising pairs of parallel, geometrically dissimilar silicon nano-bars. (b) A similar dielectric metamaterial consisted of split silicon bars. (c) Numerically simulated transmission spectra of three metamaterials with different gaps. The width of the gaps are g=0 (no gap), 50 and 100 nm, respectively. The metamaterials are illuminated with a x-polarized plane wave at normal incidence. The thickness of the silicon bars are 150 nm.
Fig. 5
Fig. 5 Local field enhancement and light localization in dielectric metamaterials at Fano-resonances. (a) Electric field in z-direction normalized to the field amplitude (E0) of the incident light. The field distribution is plotted at the x–y plane that is 5 nm above the top surface of the dielectric bars. (b) Normalized electric field and (c) Normalized time averaged energy density at the x–y plane bisecting the nanobars. The metamaterial is illuminated with a x-polarized plane wave at normal incidence. Top: metamaterial with continuous silicon bars. Middle: metamaterial with split silicon bars (g=50 nm). Bottom: metamaterial with split silicon bars (g=100 nm).
Fig. 6
Fig. 6 Dependence of the maximum field enhancement factor on gap size. The red curve is a fitted line.
Fig. 7
Fig. 7 An optical sensor based on the proposed dielectric metamaterial. (a) Transmission spectra for a metamaterial on a silica substrate and covered by liquids with different refractive indices. The inset is the top view of a metamaterial unit cell. (b) Dependence of the minimum transmission wavelength on the refractive index of surrounding medium for metamaterials comprising dielectric bars with different gaps. The width of the gaps are g=0, 50 and 100 nm, respectively. The slope of the curves shows the sensitivity.

Metrics