Abstract

This work deals with the analysis of the electronic subsystem of a multiwavelength elastic scanning lidar. Several calibration tests are applied to the Cubatão scanning lidar placed at the industrial area of Cubatão in the State of São Paulo (Brazil), in order to improve the knowledge of its performing itself and to design protocols for correcting lidar signal for undesirable instrumental effects. In particular, the trigger delay is assessed by means of zero-bin and bin-shift tests for analog (AN) and photo-counting (PC) signals, respectively. Dark current test is also performed to detect potential range-dependency that could affect lidar products. All tests were performed at different spatial resolutions. These instrumental corrections were applied to a case study of data acquired for characterizing the optical and microphysical properties of particles in an industrial flare. To that aim, a graphical method based on the space defined by the extinction-related Angström exponent versus its spectral curvature is used to derive the contribution of fine aerosol to extinction and the size of the fine aerosols in the industrial flare, therefore revealing features of the processes occurring inside the flame. Our study demonstrates the potential of this new technique for the study and measurement of industrial emissions.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data

Eduard Chemyakin, Detlef Müller, Sharon Burton, Alexei Kolgotin, Chris Hostetler, and Richard Ferrare
Appl. Opt. 53(31) 7252-7266 (2014)

Characteristics of aerosol optical properties in pollution and Asian dust episodes over Beijing, China

Chenbo Xie, Tomoki Nishizawa, Nobuo Sugimoto, Ichiro Matsui, and Zifa Wang
Appl. Opt. 47(27) 4945-4951 (2008)

References

  • View by:
  • |
  • |
  • |

  1. P. Weibring, M. Andersson, H. Edner, and S. Svanberg, “Remote monitoring of industrial emissions by combination of lidar and plume velocity measurements,” Appl. Phys. B 66(3), 383–388 (1998).
    [Crossref]
  2. U.S. Environmental Protection Agency, EPA Proposes Clean Air Standards for Harmful Soot Pollution/99 percent of U.S. counties projected to meet proposed standards without any additional actions, http://yosemite.epa.gov/opa/admpress.nsf/0/F51C2FDEDA736EA285257A1E0050C45F (2012).
  3. M. J. Molina and L. T. Molina, “Megacities and atmospheric pollution,” J. Air Waste Manag. Assoc. 54(6), 644–680 (2004).
    [Crossref] [PubMed]
  4. M. C. de Mello Lemos, “The politics of pollution control in Brazil: State actors and social movements cleaning up Cubatão,” World Dev. 26(1), 75–87 (1998).
    [Crossref]
  5. CETESB, “Environmental pollution control in Cubatão: results report July 1983 to July 1986” (CETESB, 1986).
  6. CETESB, “Relatório de qualidade do ar no estado de São Paulo” (CETESB, 2013).
  7. J. Steffens, R. Guardani, E. Landulfo, P. F. Moreira, and R. F. da Costa, “Study on correlations between lidar scattered light signal and air quality data in an industrial area,” Procedia Environ. Sci. 4, 95–102 (2011).
    [Crossref]
  8. R. F. da Costa, J. Steffens, E. Landulfo, R. Guardani, W. M. Nakaema, P. F. Moreira, F. J. S. Lopes, and P. Ferrini, “Real-time mapping of an industrial flare using LIDAR,” Proc. SPIE 8182, 81820Y (2011).
    [Crossref]
  9. R. F. da Costa, R. Bourayou, E. Landulfo, R. Guardani, I. Veselovskii, and J. Steffens, “Stand-off mapping of the soot extinction coefficient in a refinery flare using a 3-wavelength elastic backscatter LIDAR,” Proc. SPIE 8894, 88940P (2013).
    [Crossref]
  10. G. Pappalardo, A. Amodeo, A. Apituley, A. Comerón, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
    [Crossref]
  11. J. L. Guerrero-Rascado, “Técnica Lidar para la caracterización atmosférica mediante dispersión elástica y Raman,” PhD. Dissertation, D.L.: GR. 187–2009 (University of Granada, 2009).
  12. F. Navas-Guzmán, “Atmospheric vertical profiling by Raman lidar,” PhD. Dissertation, D.L.: GR 3118–2012 (University of Granada, 2012).
  13. J. A. Bravo-Aranda, “Lidar depolarization technique: assessment of the hardware polarizing sensitivity and applications,” PhD. Dissertation (University of Granada, 2014).
  14. V. A. Kovalev and W. E. Eichinger, Elastic Lidar: Theory, Practice and Analysis Methods (Wiley-Interscience, 2004).
  15. F. G. Fernald, B. M. Herman, and J. A. Reagan, “Determination of aerosol height distribution by lidar,” J. Appl. Meteorol. 11(3), 482–489 (1972).
    [Crossref]
  16. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23(5), 652–653 (1984).
    [Crossref] [PubMed]
  17. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20(2), 211–220 (1981).
    [Crossref] [PubMed]
  18. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24(11), 1638–1643 (1985).
    [Crossref] [PubMed]
  19. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31(33), 7113–7131 (1992).
    [Crossref] [PubMed]
  20. R. J. Hall and P. A. Bonczyk, “Sooting flame thermometry using emission/absorption tomography,” Appl. Opt. 29(31), 4590–4598 (1990).
    [Crossref] [PubMed]
  21. O. I. Smith, “Fundamentals of soot formation in flames with application to diesel engine particulate emissions,” Pror. Energy Combust. Sci. 7(4), 275–291 (1981).
    [Crossref]
  22. C. H. Jung and Y. P. Kim, “Analytic solution on the estimation of the Ångstrom exponent in log-normal aerosol size distribution,” Particul. Sci. Technol. 31(1), 92–99 (2013).
    [Crossref]
  23. Z. G. Habib and P. Vervisch, “On the refractive index of soot at flame temperature,” Combust. Sci. Technol. 59(4–6), 261–274 (1988).
    [Crossref]
  24. M. R. Davis, “Turbulent refractive index fluctuations in a hydrogen diffusion flame,” Combust. Sci. Technol. 64(1–3), 51–65 (1989).
    [Crossref]
  25. Y. J. Kaufman, “Aerosol optical thickness and atmospheric path radiance,” J. Geophys. Res. 98(D2), 2677–2692 (1993).
    [Crossref]
  26. G. L. Schuster, O. Dubovik, and B. N. Holben, “Angström exponent and bimodal aerosol size distributions,” J. Geophys. Res. 111(D7), D07207 (2006).
    [Crossref]
  27. G. P. Gobbi, Y. J. Kaufman, I. Koren, and T. F. Eck, “Classification of aerosol properties derived from AERONET direct sun data,” Atmos. Chem. Phys. 7(2), 453–458 (2007).
    [Crossref]
  28. M. R. Perrone, F. de Tomasi, and G. P. Gobbi, “Vertically resolved aerosol properties by multi-wavelength lidar measurements,” Atmos. Chem. Phys. 14(3), 1185–1204 (2014).
    [Crossref]

2014 (2)

G. Pappalardo, A. Amodeo, A. Apituley, A. Comerón, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

M. R. Perrone, F. de Tomasi, and G. P. Gobbi, “Vertically resolved aerosol properties by multi-wavelength lidar measurements,” Atmos. Chem. Phys. 14(3), 1185–1204 (2014).
[Crossref]

2013 (2)

C. H. Jung and Y. P. Kim, “Analytic solution on the estimation of the Ångstrom exponent in log-normal aerosol size distribution,” Particul. Sci. Technol. 31(1), 92–99 (2013).
[Crossref]

R. F. da Costa, R. Bourayou, E. Landulfo, R. Guardani, I. Veselovskii, and J. Steffens, “Stand-off mapping of the soot extinction coefficient in a refinery flare using a 3-wavelength elastic backscatter LIDAR,” Proc. SPIE 8894, 88940P (2013).
[Crossref]

2011 (2)

J. Steffens, R. Guardani, E. Landulfo, P. F. Moreira, and R. F. da Costa, “Study on correlations between lidar scattered light signal and air quality data in an industrial area,” Procedia Environ. Sci. 4, 95–102 (2011).
[Crossref]

R. F. da Costa, J. Steffens, E. Landulfo, R. Guardani, W. M. Nakaema, P. F. Moreira, F. J. S. Lopes, and P. Ferrini, “Real-time mapping of an industrial flare using LIDAR,” Proc. SPIE 8182, 81820Y (2011).
[Crossref]

2007 (1)

G. P. Gobbi, Y. J. Kaufman, I. Koren, and T. F. Eck, “Classification of aerosol properties derived from AERONET direct sun data,” Atmos. Chem. Phys. 7(2), 453–458 (2007).
[Crossref]

2006 (1)

G. L. Schuster, O. Dubovik, and B. N. Holben, “Angström exponent and bimodal aerosol size distributions,” J. Geophys. Res. 111(D7), D07207 (2006).
[Crossref]

2004 (1)

M. J. Molina and L. T. Molina, “Megacities and atmospheric pollution,” J. Air Waste Manag. Assoc. 54(6), 644–680 (2004).
[Crossref] [PubMed]

1998 (2)

M. C. de Mello Lemos, “The politics of pollution control in Brazil: State actors and social movements cleaning up Cubatão,” World Dev. 26(1), 75–87 (1998).
[Crossref]

P. Weibring, M. Andersson, H. Edner, and S. Svanberg, “Remote monitoring of industrial emissions by combination of lidar and plume velocity measurements,” Appl. Phys. B 66(3), 383–388 (1998).
[Crossref]

1993 (1)

Y. J. Kaufman, “Aerosol optical thickness and atmospheric path radiance,” J. Geophys. Res. 98(D2), 2677–2692 (1993).
[Crossref]

1992 (1)

1990 (1)

1989 (1)

M. R. Davis, “Turbulent refractive index fluctuations in a hydrogen diffusion flame,” Combust. Sci. Technol. 64(1–3), 51–65 (1989).
[Crossref]

1988 (1)

Z. G. Habib and P. Vervisch, “On the refractive index of soot at flame temperature,” Combust. Sci. Technol. 59(4–6), 261–274 (1988).
[Crossref]

1985 (1)

1984 (1)

1981 (2)

O. I. Smith, “Fundamentals of soot formation in flames with application to diesel engine particulate emissions,” Pror. Energy Combust. Sci. 7(4), 275–291 (1981).
[Crossref]

J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20(2), 211–220 (1981).
[Crossref] [PubMed]

1972 (1)

F. G. Fernald, B. M. Herman, and J. A. Reagan, “Determination of aerosol height distribution by lidar,” J. Appl. Meteorol. 11(3), 482–489 (1972).
[Crossref]

Alados-Arboledas, L.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comerón, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

Amiridis, V.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comerón, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

Amodeo, A.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comerón, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

Andersson, M.

P. Weibring, M. Andersson, H. Edner, and S. Svanberg, “Remote monitoring of industrial emissions by combination of lidar and plume velocity measurements,” Appl. Phys. B 66(3), 383–388 (1998).
[Crossref]

Ansmann, A.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comerón, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31(33), 7113–7131 (1992).
[Crossref] [PubMed]

Apituley, A.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comerón, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

Bonczyk, P. A.

Bösenberg, J.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comerón, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

Bourayou, R.

R. F. da Costa, R. Bourayou, E. Landulfo, R. Guardani, I. Veselovskii, and J. Steffens, “Stand-off mapping of the soot extinction coefficient in a refinery flare using a 3-wavelength elastic backscatter LIDAR,” Proc. SPIE 8894, 88940P (2013).
[Crossref]

Comerón, A.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comerón, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

D’Amico, G.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comerón, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

da Costa, R. F.

R. F. da Costa, R. Bourayou, E. Landulfo, R. Guardani, I. Veselovskii, and J. Steffens, “Stand-off mapping of the soot extinction coefficient in a refinery flare using a 3-wavelength elastic backscatter LIDAR,” Proc. SPIE 8894, 88940P (2013).
[Crossref]

J. Steffens, R. Guardani, E. Landulfo, P. F. Moreira, and R. F. da Costa, “Study on correlations between lidar scattered light signal and air quality data in an industrial area,” Procedia Environ. Sci. 4, 95–102 (2011).
[Crossref]

R. F. da Costa, J. Steffens, E. Landulfo, R. Guardani, W. M. Nakaema, P. F. Moreira, F. J. S. Lopes, and P. Ferrini, “Real-time mapping of an industrial flare using LIDAR,” Proc. SPIE 8182, 81820Y (2011).
[Crossref]

Davis, M. R.

M. R. Davis, “Turbulent refractive index fluctuations in a hydrogen diffusion flame,” Combust. Sci. Technol. 64(1–3), 51–65 (1989).
[Crossref]

de Mello Lemos, M. C.

M. C. de Mello Lemos, “The politics of pollution control in Brazil: State actors and social movements cleaning up Cubatão,” World Dev. 26(1), 75–87 (1998).
[Crossref]

de Tomasi, F.

M. R. Perrone, F. de Tomasi, and G. P. Gobbi, “Vertically resolved aerosol properties by multi-wavelength lidar measurements,” Atmos. Chem. Phys. 14(3), 1185–1204 (2014).
[Crossref]

Dubovik, O.

G. L. Schuster, O. Dubovik, and B. N. Holben, “Angström exponent and bimodal aerosol size distributions,” J. Geophys. Res. 111(D7), D07207 (2006).
[Crossref]

Eck, T. F.

G. P. Gobbi, Y. J. Kaufman, I. Koren, and T. F. Eck, “Classification of aerosol properties derived from AERONET direct sun data,” Atmos. Chem. Phys. 7(2), 453–458 (2007).
[Crossref]

Edner, H.

P. Weibring, M. Andersson, H. Edner, and S. Svanberg, “Remote monitoring of industrial emissions by combination of lidar and plume velocity measurements,” Appl. Phys. B 66(3), 383–388 (1998).
[Crossref]

Fernald, F. G.

F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23(5), 652–653 (1984).
[Crossref] [PubMed]

F. G. Fernald, B. M. Herman, and J. A. Reagan, “Determination of aerosol height distribution by lidar,” J. Appl. Meteorol. 11(3), 482–489 (1972).
[Crossref]

Ferrini, P.

R. F. da Costa, J. Steffens, E. Landulfo, R. Guardani, W. M. Nakaema, P. F. Moreira, F. J. S. Lopes, and P. Ferrini, “Real-time mapping of an industrial flare using LIDAR,” Proc. SPIE 8182, 81820Y (2011).
[Crossref]

Freudenthaler, V.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comerón, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

Gobbi, G. P.

M. R. Perrone, F. de Tomasi, and G. P. Gobbi, “Vertically resolved aerosol properties by multi-wavelength lidar measurements,” Atmos. Chem. Phys. 14(3), 1185–1204 (2014).
[Crossref]

G. P. Gobbi, Y. J. Kaufman, I. Koren, and T. F. Eck, “Classification of aerosol properties derived from AERONET direct sun data,” Atmos. Chem. Phys. 7(2), 453–458 (2007).
[Crossref]

Guardani, R.

R. F. da Costa, R. Bourayou, E. Landulfo, R. Guardani, I. Veselovskii, and J. Steffens, “Stand-off mapping of the soot extinction coefficient in a refinery flare using a 3-wavelength elastic backscatter LIDAR,” Proc. SPIE 8894, 88940P (2013).
[Crossref]

J. Steffens, R. Guardani, E. Landulfo, P. F. Moreira, and R. F. da Costa, “Study on correlations between lidar scattered light signal and air quality data in an industrial area,” Procedia Environ. Sci. 4, 95–102 (2011).
[Crossref]

R. F. da Costa, J. Steffens, E. Landulfo, R. Guardani, W. M. Nakaema, P. F. Moreira, F. J. S. Lopes, and P. Ferrini, “Real-time mapping of an industrial flare using LIDAR,” Proc. SPIE 8182, 81820Y (2011).
[Crossref]

Habib, Z. G.

Z. G. Habib and P. Vervisch, “On the refractive index of soot at flame temperature,” Combust. Sci. Technol. 59(4–6), 261–274 (1988).
[Crossref]

Hall, R. J.

Herman, B. M.

F. G. Fernald, B. M. Herman, and J. A. Reagan, “Determination of aerosol height distribution by lidar,” J. Appl. Meteorol. 11(3), 482–489 (1972).
[Crossref]

Holben, B. N.

G. L. Schuster, O. Dubovik, and B. N. Holben, “Angström exponent and bimodal aerosol size distributions,” J. Geophys. Res. 111(D7), D07207 (2006).
[Crossref]

Jung, C. H.

C. H. Jung and Y. P. Kim, “Analytic solution on the estimation of the Ångstrom exponent in log-normal aerosol size distribution,” Particul. Sci. Technol. 31(1), 92–99 (2013).
[Crossref]

Kaufman, Y. J.

G. P. Gobbi, Y. J. Kaufman, I. Koren, and T. F. Eck, “Classification of aerosol properties derived from AERONET direct sun data,” Atmos. Chem. Phys. 7(2), 453–458 (2007).
[Crossref]

Y. J. Kaufman, “Aerosol optical thickness and atmospheric path radiance,” J. Geophys. Res. 98(D2), 2677–2692 (1993).
[Crossref]

Kim, Y. P.

C. H. Jung and Y. P. Kim, “Analytic solution on the estimation of the Ångstrom exponent in log-normal aerosol size distribution,” Particul. Sci. Technol. 31(1), 92–99 (2013).
[Crossref]

Klett, J. D.

Koren, I.

G. P. Gobbi, Y. J. Kaufman, I. Koren, and T. F. Eck, “Classification of aerosol properties derived from AERONET direct sun data,” Atmos. Chem. Phys. 7(2), 453–458 (2007).
[Crossref]

Landulfo, E.

R. F. da Costa, R. Bourayou, E. Landulfo, R. Guardani, I. Veselovskii, and J. Steffens, “Stand-off mapping of the soot extinction coefficient in a refinery flare using a 3-wavelength elastic backscatter LIDAR,” Proc. SPIE 8894, 88940P (2013).
[Crossref]

R. F. da Costa, J. Steffens, E. Landulfo, R. Guardani, W. M. Nakaema, P. F. Moreira, F. J. S. Lopes, and P. Ferrini, “Real-time mapping of an industrial flare using LIDAR,” Proc. SPIE 8182, 81820Y (2011).
[Crossref]

J. Steffens, R. Guardani, E. Landulfo, P. F. Moreira, and R. F. da Costa, “Study on correlations between lidar scattered light signal and air quality data in an industrial area,” Procedia Environ. Sci. 4, 95–102 (2011).
[Crossref]

Linné, H.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comerón, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

Lopes, F. J. S.

R. F. da Costa, J. Steffens, E. Landulfo, R. Guardani, W. M. Nakaema, P. F. Moreira, F. J. S. Lopes, and P. Ferrini, “Real-time mapping of an industrial flare using LIDAR,” Proc. SPIE 8182, 81820Y (2011).
[Crossref]

Mattis, I.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comerón, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

Michaelis, W.

Molina, L. T.

M. J. Molina and L. T. Molina, “Megacities and atmospheric pollution,” J. Air Waste Manag. Assoc. 54(6), 644–680 (2004).
[Crossref] [PubMed]

Molina, M. J.

M. J. Molina and L. T. Molina, “Megacities and atmospheric pollution,” J. Air Waste Manag. Assoc. 54(6), 644–680 (2004).
[Crossref] [PubMed]

Mona, L.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comerón, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

Moreira, P. F.

J. Steffens, R. Guardani, E. Landulfo, P. F. Moreira, and R. F. da Costa, “Study on correlations between lidar scattered light signal and air quality data in an industrial area,” Procedia Environ. Sci. 4, 95–102 (2011).
[Crossref]

R. F. da Costa, J. Steffens, E. Landulfo, R. Guardani, W. M. Nakaema, P. F. Moreira, F. J. S. Lopes, and P. Ferrini, “Real-time mapping of an industrial flare using LIDAR,” Proc. SPIE 8182, 81820Y (2011).
[Crossref]

Nakaema, W. M.

R. F. da Costa, J. Steffens, E. Landulfo, R. Guardani, W. M. Nakaema, P. F. Moreira, F. J. S. Lopes, and P. Ferrini, “Real-time mapping of an industrial flare using LIDAR,” Proc. SPIE 8182, 81820Y (2011).
[Crossref]

Nicolae, D.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comerón, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

Pappalardo, G.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comerón, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

Perrone, M. R.

M. R. Perrone, F. de Tomasi, and G. P. Gobbi, “Vertically resolved aerosol properties by multi-wavelength lidar measurements,” Atmos. Chem. Phys. 14(3), 1185–1204 (2014).
[Crossref]

Reagan, J. A.

F. G. Fernald, B. M. Herman, and J. A. Reagan, “Determination of aerosol height distribution by lidar,” J. Appl. Meteorol. 11(3), 482–489 (1972).
[Crossref]

Riebesell, M.

Schuster, G. L.

G. L. Schuster, O. Dubovik, and B. N. Holben, “Angström exponent and bimodal aerosol size distributions,” J. Geophys. Res. 111(D7), D07207 (2006).
[Crossref]

Smith, O. I.

O. I. Smith, “Fundamentals of soot formation in flames with application to diesel engine particulate emissions,” Pror. Energy Combust. Sci. 7(4), 275–291 (1981).
[Crossref]

Steffens, J.

R. F. da Costa, R. Bourayou, E. Landulfo, R. Guardani, I. Veselovskii, and J. Steffens, “Stand-off mapping of the soot extinction coefficient in a refinery flare using a 3-wavelength elastic backscatter LIDAR,” Proc. SPIE 8894, 88940P (2013).
[Crossref]

R. F. da Costa, J. Steffens, E. Landulfo, R. Guardani, W. M. Nakaema, P. F. Moreira, F. J. S. Lopes, and P. Ferrini, “Real-time mapping of an industrial flare using LIDAR,” Proc. SPIE 8182, 81820Y (2011).
[Crossref]

J. Steffens, R. Guardani, E. Landulfo, P. F. Moreira, and R. F. da Costa, “Study on correlations between lidar scattered light signal and air quality data in an industrial area,” Procedia Environ. Sci. 4, 95–102 (2011).
[Crossref]

Svanberg, S.

P. Weibring, M. Andersson, H. Edner, and S. Svanberg, “Remote monitoring of industrial emissions by combination of lidar and plume velocity measurements,” Appl. Phys. B 66(3), 383–388 (1998).
[Crossref]

Vervisch, P.

Z. G. Habib and P. Vervisch, “On the refractive index of soot at flame temperature,” Combust. Sci. Technol. 59(4–6), 261–274 (1988).
[Crossref]

Veselovskii, I.

R. F. da Costa, R. Bourayou, E. Landulfo, R. Guardani, I. Veselovskii, and J. Steffens, “Stand-off mapping of the soot extinction coefficient in a refinery flare using a 3-wavelength elastic backscatter LIDAR,” Proc. SPIE 8894, 88940P (2013).
[Crossref]

Wandinger, U.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comerón, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31(33), 7113–7131 (1992).
[Crossref] [PubMed]

Weibring, P.

P. Weibring, M. Andersson, H. Edner, and S. Svanberg, “Remote monitoring of industrial emissions by combination of lidar and plume velocity measurements,” Appl. Phys. B 66(3), 383–388 (1998).
[Crossref]

Weitkamp, C.

Wiegner, M.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comerón, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

Appl. Opt. (5)

Appl. Phys. B (1)

P. Weibring, M. Andersson, H. Edner, and S. Svanberg, “Remote monitoring of industrial emissions by combination of lidar and plume velocity measurements,” Appl. Phys. B 66(3), 383–388 (1998).
[Crossref]

Atmos. Chem. Phys. (2)

G. P. Gobbi, Y. J. Kaufman, I. Koren, and T. F. Eck, “Classification of aerosol properties derived from AERONET direct sun data,” Atmos. Chem. Phys. 7(2), 453–458 (2007).
[Crossref]

M. R. Perrone, F. de Tomasi, and G. P. Gobbi, “Vertically resolved aerosol properties by multi-wavelength lidar measurements,” Atmos. Chem. Phys. 14(3), 1185–1204 (2014).
[Crossref]

Atmos. Meas. Tech. (1)

G. Pappalardo, A. Amodeo, A. Apituley, A. Comerón, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

Combust. Sci. Technol. (2)

Z. G. Habib and P. Vervisch, “On the refractive index of soot at flame temperature,” Combust. Sci. Technol. 59(4–6), 261–274 (1988).
[Crossref]

M. R. Davis, “Turbulent refractive index fluctuations in a hydrogen diffusion flame,” Combust. Sci. Technol. 64(1–3), 51–65 (1989).
[Crossref]

J. Air Waste Manag. Assoc. (1)

M. J. Molina and L. T. Molina, “Megacities and atmospheric pollution,” J. Air Waste Manag. Assoc. 54(6), 644–680 (2004).
[Crossref] [PubMed]

J. Appl. Meteorol. (1)

F. G. Fernald, B. M. Herman, and J. A. Reagan, “Determination of aerosol height distribution by lidar,” J. Appl. Meteorol. 11(3), 482–489 (1972).
[Crossref]

J. Geophys. Res. (2)

Y. J. Kaufman, “Aerosol optical thickness and atmospheric path radiance,” J. Geophys. Res. 98(D2), 2677–2692 (1993).
[Crossref]

G. L. Schuster, O. Dubovik, and B. N. Holben, “Angström exponent and bimodal aerosol size distributions,” J. Geophys. Res. 111(D7), D07207 (2006).
[Crossref]

Particul. Sci. Technol. (1)

C. H. Jung and Y. P. Kim, “Analytic solution on the estimation of the Ångstrom exponent in log-normal aerosol size distribution,” Particul. Sci. Technol. 31(1), 92–99 (2013).
[Crossref]

Proc. SPIE (2)

R. F. da Costa, J. Steffens, E. Landulfo, R. Guardani, W. M. Nakaema, P. F. Moreira, F. J. S. Lopes, and P. Ferrini, “Real-time mapping of an industrial flare using LIDAR,” Proc. SPIE 8182, 81820Y (2011).
[Crossref]

R. F. da Costa, R. Bourayou, E. Landulfo, R. Guardani, I. Veselovskii, and J. Steffens, “Stand-off mapping of the soot extinction coefficient in a refinery flare using a 3-wavelength elastic backscatter LIDAR,” Proc. SPIE 8894, 88940P (2013).
[Crossref]

Procedia Environ. Sci. (1)

J. Steffens, R. Guardani, E. Landulfo, P. F. Moreira, and R. F. da Costa, “Study on correlations between lidar scattered light signal and air quality data in an industrial area,” Procedia Environ. Sci. 4, 95–102 (2011).
[Crossref]

Pror. Energy Combust. Sci. (1)

O. I. Smith, “Fundamentals of soot formation in flames with application to diesel engine particulate emissions,” Pror. Energy Combust. Sci. 7(4), 275–291 (1981).
[Crossref]

World Dev. (1)

M. C. de Mello Lemos, “The politics of pollution control in Brazil: State actors and social movements cleaning up Cubatão,” World Dev. 26(1), 75–87 (1998).
[Crossref]

Other (7)

CETESB, “Environmental pollution control in Cubatão: results report July 1983 to July 1986” (CETESB, 1986).

CETESB, “Relatório de qualidade do ar no estado de São Paulo” (CETESB, 2013).

U.S. Environmental Protection Agency, EPA Proposes Clean Air Standards for Harmful Soot Pollution/99 percent of U.S. counties projected to meet proposed standards without any additional actions, http://yosemite.epa.gov/opa/admpress.nsf/0/F51C2FDEDA736EA285257A1E0050C45F (2012).

J. L. Guerrero-Rascado, “Técnica Lidar para la caracterización atmosférica mediante dispersión elástica y Raman,” PhD. Dissertation, D.L.: GR. 187–2009 (University of Granada, 2009).

F. Navas-Guzmán, “Atmospheric vertical profiling by Raman lidar,” PhD. Dissertation, D.L.: GR 3118–2012 (University of Granada, 2012).

J. A. Bravo-Aranda, “Lidar depolarization technique: assessment of the hardware polarizing sensitivity and applications,” PhD. Dissertation (University of Granada, 2014).

V. A. Kovalev and W. E. Eichinger, Elastic Lidar: Theory, Practice and Analysis Methods (Wiley-Interscience, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Location of the industrial and residential areas at Cubatão, and the scanning lidar system installed at CEPEMA.
Fig. 2
Fig. 2 Cubatão scanning lidar in operation during the sampling sequence of the flare.
Fig. 3
Fig. 3 Zero-bin calibration at 532 nm in AN mode indicating a delay between the laser pulses firing and the start of data acquisition.
Fig. 4
Fig. 4 Bin-shift calibration at 355 nm by comparison of AN (pink) and PC (cyan) signals. AN signal is fixed and PC signals is slided between –5 (dashed dark cyan) and + 5 bins (dashed blue). Both signals matches when PC signal is displaced 5 bins to the right.
Fig. 5
Fig. 5 Relationship between distance-ranges from lidar and the corresponding bins using different spatial resolutions.
Fig. 6
Fig. 6 Bin-shift calibration at 355 nm performed on 20/05/2014 between 16:07 and 16:17 (local time) at spatial resolution of 7.5 m: (upper panel) normalized range corrected signals in AN and PC modes (normalization distance range: 1.5-2.4 km above the instrument) and (bottom panel) correlation coefficient between An and PC range corrected signals (evaluated in the distance range between 2 and 3 km above the instrument) fixing the AN signal and displacing the PC signal between −20 and + 20 bins.
Fig. 7
Fig. 7 Dark current measurement performed over 10 min at 355 nm with spatial resolution of 3.75 m: (left) AN mode and (right) PC mode.
Fig. 8
Fig. 8 Flame optical properties on the monitoring virtual matrix for different wavelengths and spectral ranges: (upper row) lidar R.C.S. in arbitrary units at 355, 532 and 1064 nm; (middle row) flame optical depth at 355, 532 and 1064 nm; and (bottom row) flame Angströn Exponent at 355-532 nm and 532-1064 nm.
Fig. 9
Fig. 9 Graphical network for aerosol characterization calculated by [28] for continental pollution.

Tables (3)

Tables Icon

Table 1 Zero-bin position for AN channels determined experimentally using different spatial resolutionsa

Tables Icon

Table 2 Zero-bin position for AN channels and bin-shift between AN and PC channels determined experimentally and zero-bin position for PC channels resulting from application of Eq. (6) for 355 and 532 nm using different spatial resolutions

Tables Icon

Table 3 Mean value (±standard deviation) of 10-min dark current measurements performed at 355, 532 and 1064 nm with different spatial resolutions for near and far distance ranges

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

bi n 0 PC =bi n 0 AN +Δbi n ANPC .
R.C.S.(λ)=KO(r)β(λ) e 2 r o r α(ζ,λ)dζ .
R.C.S.( r 1 ,λ) R.C.S.( r 2 ,λ) = e 2 r 2 r 1 α(ζ,λ)dζ = e 2 τ flame (λ) .
τ flame (λ)= ln[ R.C.S.( r 1 ,λ) R.C.S.( r 2 ,λ) ] 2 .
α part (λ)= τ flame (λ) r 2 r 1 α mol (λ).
AE = λ 1 , λ 2 ln[ α part ( λ 1 ) α part ( λ 2 ) ] ln[ λ 1 λ 2 ] .
bi n 0 (n)=integer[ bi n 0 (n=0) 2 n ].

Metrics