Abstract

We performed experiments using a volume hologram filter (VHF) coupled with a telephoto objective lens to detect weak distant signals masked by strong background noise. The VHF was able to selectively pass light originating from a certain distance while attenuating background noise contributions from other distances, resulting in a higher signal–to–noise ratio (SNR). The proposed method is useful in remote sensing applications such as daytime artificial satellite and space debris detection.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of volume hologram filters for suppression of daytime sky brightness in artificial satellite detection

Hanhong Gao, Jonathan M. Watson, Joseph Scott Stuart, and George Barbastathis
Opt. Express 21(5) 6448-6458 (2013)

Volume holographic imaging for surface metrology at long working distances

Arnab Sinha and George Barbastathis
Opt. Express 11(24) 3202-3209 (2003)

Volume holographic telescope

Arnab Sinha and George Barbastathis
Opt. Lett. 27(19) 1690-1692 (2002)

References

  • View by:
  • |
  • |
  • |

  1. J. V. Hughes, “Sky brightness as a function of altitude,” Appl. Opt. 3, 1135–1138 (1964).
    [Crossref]
  2. E. W. Rork, S. S. Lin, and A. J. Yakutis, “Ground-based electro-optical detection of artificial satellites in daylight from reflected sunlight,” NASA STI/Recon. Tech. Rep. N 83, 10098 (1982).
  3. A. Potter, “Ground-based optical observations of orbital debris: A review,” Adv. Space Res. 16, 35–45 (1995).
    [Crossref]
  4. J. Shell, “Optimizing orbital debris monitoring with optical telescopes,” in “Advanced Maui Optical and Space Surveillance Technologies Conference,” (2010).
  5. R. Anthony, “Observation of non-rayleigh scattering in the spectrum of the day sky in the region 0.56 to 2.2 microns,” J Meteorol 10, 60–63 (1953).
    [Crossref]
  6. H. Gao, J. M. Watson, J. S. Stuart, and G. Barbastathis, “Design of volume hologram filters for suppression of daytime sky brightness in artificial satellite detection,” Opt. Express 21, 6448–6458 (2013).
    [Crossref] [PubMed]
  7. A. Sinha, W. Sun, T. Shih, and G. Barbastathis, “Volume holographic imaging in transmission geometry,” Appl. Opt. 43, 1533–1551 (2004).
    [Crossref] [PubMed]
  8. J. W. Goodman, Introduction to Fourier optics, 3rd ed. (McGraw-Hill, 2002).
  9. D. Psaltis, “Coherent optical information systems,” Science 298, 1359–1363 (2002).
    [Crossref] [PubMed]
  10. G. Barbastathis and D. Brady, “Multidimensional tomographic imaging using volume holography,” Proc. IEEE 87, 2098–2120 (1999).
    [Crossref]
  11. W. Liu, D. Psaltis, and G. Barbastathis, “Real-time spectral imaging in three spatial dimensions,” Opt. Lett. 27, 854–856 (2002).
    [Crossref]
  12. D. Psaltis, D. Brady, X.-G. Gu, and S. Lin, “Holography in artificial neural networks,” Nature 343, 325–330 (1990).
    [Crossref] [PubMed]
  13. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
    [Crossref] [PubMed]
  14. H.-Y. S. Li and D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt. 33, 3764–3774 (1994).
    [Crossref] [PubMed]
  15. Y. Luo, P. J. Gelsinger-Austin, J. M. Watson, G. Barbastathis, J. K. Barton, and R. K. Kostuk, “Laser-induced fluorescence imaging of subsurface tissue structures with a volume holographic spatial-spectral imaging system,” Opt. Lett. 33, 2098–2100 (2008).
    [Crossref] [PubMed]
  16. L. Waller, Y. Luo, S. Y. Yang, and G. Barbastathis, “Transport of intensity phase imaging in a volume holographic microscope,” Opt. Lett. 35, 2961–2963 (2010).
    [Crossref] [PubMed]
  17. A. Sinha and G. Barbastathis, “Volume holographic telescope,” Opt. Lett. 27, 1690–1692 (2002).
    [Crossref]
  18. X. Zhang, J. Feng, B. Xiong, K. Zou, and X. Yuan, “Diffraction of volume Bragg gratings under high flux laser irradiation,” Opt. Express 22, 8291–8297 (2014).
    [Crossref] [PubMed]
  19. S. B. Oh, Z.-Q. J. Lu, J.-C. Tsai, H.-H. Chen, G. Barbastathis, and Y. Luo, “Phase-coded volume holographic gratings for spatial-spectral imaging filters,” Opt. Lett. 38, 477–479 (2013).
    [Crossref] [PubMed]

2014 (1)

2013 (2)

2010 (1)

2008 (1)

2004 (1)

2002 (3)

1999 (1)

G. Barbastathis and D. Brady, “Multidimensional tomographic imaging using volume holography,” Proc. IEEE 87, 2098–2120 (1999).
[Crossref]

1995 (1)

A. Potter, “Ground-based optical observations of orbital debris: A review,” Adv. Space Res. 16, 35–45 (1995).
[Crossref]

1994 (2)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[Crossref] [PubMed]

H.-Y. S. Li and D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt. 33, 3764–3774 (1994).
[Crossref] [PubMed]

1990 (1)

D. Psaltis, D. Brady, X.-G. Gu, and S. Lin, “Holography in artificial neural networks,” Nature 343, 325–330 (1990).
[Crossref] [PubMed]

1982 (1)

E. W. Rork, S. S. Lin, and A. J. Yakutis, “Ground-based electro-optical detection of artificial satellites in daylight from reflected sunlight,” NASA STI/Recon. Tech. Rep. N 83, 10098 (1982).

1964 (1)

1953 (1)

R. Anthony, “Observation of non-rayleigh scattering in the spectrum of the day sky in the region 0.56 to 2.2 microns,” J Meteorol 10, 60–63 (1953).
[Crossref]

Anthony, R.

R. Anthony, “Observation of non-rayleigh scattering in the spectrum of the day sky in the region 0.56 to 2.2 microns,” J Meteorol 10, 60–63 (1953).
[Crossref]

Barbastathis, G.

Barton, J. K.

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[Crossref] [PubMed]

Brady, D.

G. Barbastathis and D. Brady, “Multidimensional tomographic imaging using volume holography,” Proc. IEEE 87, 2098–2120 (1999).
[Crossref]

D. Psaltis, D. Brady, X.-G. Gu, and S. Lin, “Holography in artificial neural networks,” Nature 343, 325–330 (1990).
[Crossref] [PubMed]

Chen, H.-H.

Feng, J.

Gao, H.

Gelsinger-Austin, P. J.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier optics, 3rd ed. (McGraw-Hill, 2002).

Gu, X.-G.

D. Psaltis, D. Brady, X.-G. Gu, and S. Lin, “Holography in artificial neural networks,” Nature 343, 325–330 (1990).
[Crossref] [PubMed]

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[Crossref] [PubMed]

Hesselink, L.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[Crossref] [PubMed]

Hughes, J. V.

Kostuk, R. K.

Li, H.-Y. S.

Lin, S.

D. Psaltis, D. Brady, X.-G. Gu, and S. Lin, “Holography in artificial neural networks,” Nature 343, 325–330 (1990).
[Crossref] [PubMed]

Lin, S. S.

E. W. Rork, S. S. Lin, and A. J. Yakutis, “Ground-based electro-optical detection of artificial satellites in daylight from reflected sunlight,” NASA STI/Recon. Tech. Rep. N 83, 10098 (1982).

Liu, W.

Lu, Z.-Q. J.

Luo, Y.

Oh, S. B.

Potter, A.

A. Potter, “Ground-based optical observations of orbital debris: A review,” Adv. Space Res. 16, 35–45 (1995).
[Crossref]

Psaltis, D.

W. Liu, D. Psaltis, and G. Barbastathis, “Real-time spectral imaging in three spatial dimensions,” Opt. Lett. 27, 854–856 (2002).
[Crossref]

D. Psaltis, “Coherent optical information systems,” Science 298, 1359–1363 (2002).
[Crossref] [PubMed]

H.-Y. S. Li and D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt. 33, 3764–3774 (1994).
[Crossref] [PubMed]

D. Psaltis, D. Brady, X.-G. Gu, and S. Lin, “Holography in artificial neural networks,” Nature 343, 325–330 (1990).
[Crossref] [PubMed]

Rork, E. W.

E. W. Rork, S. S. Lin, and A. J. Yakutis, “Ground-based electro-optical detection of artificial satellites in daylight from reflected sunlight,” NASA STI/Recon. Tech. Rep. N 83, 10098 (1982).

Shell, J.

J. Shell, “Optimizing orbital debris monitoring with optical telescopes,” in “Advanced Maui Optical and Space Surveillance Technologies Conference,” (2010).

Shih, T.

Sinha, A.

Stuart, J. S.

Sun, W.

Tsai, J.-C.

Waller, L.

Watson, J. M.

Xiong, B.

Yakutis, A. J.

E. W. Rork, S. S. Lin, and A. J. Yakutis, “Ground-based electro-optical detection of artificial satellites in daylight from reflected sunlight,” NASA STI/Recon. Tech. Rep. N 83, 10098 (1982).

Yang, S. Y.

Yuan, X.

Zhang, X.

Zou, K.

Adv. Space Res. (1)

A. Potter, “Ground-based optical observations of orbital debris: A review,” Adv. Space Res. 16, 35–45 (1995).
[Crossref]

Appl. Opt. (3)

J Meteorol (1)

R. Anthony, “Observation of non-rayleigh scattering in the spectrum of the day sky in the region 0.56 to 2.2 microns,” J Meteorol 10, 60–63 (1953).
[Crossref]

NASA STI/Recon. Tech. Rep. N (1)

E. W. Rork, S. S. Lin, and A. J. Yakutis, “Ground-based electro-optical detection of artificial satellites in daylight from reflected sunlight,” NASA STI/Recon. Tech. Rep. N 83, 10098 (1982).

Nature (1)

D. Psaltis, D. Brady, X.-G. Gu, and S. Lin, “Holography in artificial neural networks,” Nature 343, 325–330 (1990).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (5)

Proc. IEEE (1)

G. Barbastathis and D. Brady, “Multidimensional tomographic imaging using volume holography,” Proc. IEEE 87, 2098–2120 (1999).
[Crossref]

Science (2)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[Crossref] [PubMed]

D. Psaltis, “Coherent optical information systems,” Science 298, 1359–1363 (2002).
[Crossref] [PubMed]

Other (2)

J. W. Goodman, Introduction to Fourier optics, 3rd ed. (McGraw-Hill, 2002).

J. Shell, “Optimizing orbital debris monitoring with optical telescopes,” in “Advanced Maui Optical and Space Surveillance Technologies Conference,” (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) VHF geometry with a single objective lens. (b) VHF with a typical telephoto lens (PP1: first principal plane, FFL: front focal length, EFL: effective focal length.)
Fig. 2
Fig. 2 Experiment schematic. BS: beamsplitter, L1: positive lens with focal length 250 mm, L2: negative lens with focal length −25 mm, VH: volume hologram, TL1 and TL2: tube lenses with focal length 100 mm. The distance between L1 and L2 is 213 mm.
Fig. 3
Fig. 3 (a) Image captured in conventional imaging system, (b) Line plot of the region near the object in (a), red arrow show the location of the object signal, (c) image captured in VH telescope system, (d) Line plot of the region near the object in (c).
Fig. 4
Fig. 4 (a) Images of a single resolution element (500 μm line width) in the USAF target captured by (i) a conventional imaging system and (ii) a VH telescope when only the resolution target was illuminated, and images captured by (iii) a conventional imaging system and (iv) a VH telescope when the background diffuser was also illuminated. (b) Vertical cross–section of each of the four images from (a).
Fig. 5
Fig. 5 Contrast comparison of conventional imaging system and VH imaging system (a) with object signals only; and (b) with both object signals and background noise.
Fig. 6
Fig. 6 Rate of contrast decrease after adding background noise.

Tables (1)

Tables Icon

Table 1 SNR Values under Various Illumination Conditions

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I d I 0 = 1 π 0 2 π d ϕ 0 1 d ρ ρ sinc 2 ( a L θ s δ n λ f f 2 ρ sin ϕ ) ,
Δ z FWHM = G λ f f 2 a L ,
Δ z FWHM = G λ f ( EFL ) 2 r L = G λ f f 2 a L EFL FFL .
C = I max I min I max + I min

Metrics